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Abstract— During the last decade, Turbo codes have been 
taking an increasing importance in channel coding due to its 
good performance in error correction. One key component in 
Turbo codes is the interleaver/deinterleaver pair, often 
designed as reconfigurable coprocessors able to deal with 
requirements of large data length variability found in the 
newest communication standards. In this work we introduce a 
configurable interleaver architecture for the turbo decoder in 
3GPP standard. It is implemented under the idea of “iterative 
modulo computation” presented in [1] and exploited in [2], but 
capable to handle all the data-length configurations. 
Additionally, the presented solution not only generates the 
interleaved addresses, but also deals with the flow of data 
streams through the interleaver. The architecture and FPGA 
implementation results are also presented.    
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I. INTRODUCTION 
Nowadays, communications systems have been growing 

and developing very quickly. Applications in satellite 
communications, wireless networks, mobile telephony, 
internet, etc. continuously demand an increase in bit rates, 
while lowering bit error rates and power consumption. In this 
context, channel coding schemes have been developed and 
consist basically in adding redundancy bits to the original 
information that are utilized later on in the detection process 
by the receiver. Among those schemes, Turbo codes, that 
were introduced in 1993 by C. Berrou in [3], have become a 
popular technique in communications research and a key 
component in recent communications standards (such as 
3GPP mobile phones and recently, LTE standard), mainly 
because its performance is near to Shannon coding limit.  

Turbo codes’ high performance in error correction is 
heavily related to both iterative decoding and the use of 
interleavers. Interleavers help to increase the minimum 
distance in the code distance spectrum, which is intimately 
related to the correction capability of the code [4]; therefore, 
designing Turbo codes requires a meticulous design of its 
constituent interleaver.  

An interleaver is a device that rearranges the order of  
data or bit sequences in a one-to-one pseudo random format. 
The inverse operation to interleaving is called deinterleaving, 
devoted to restore the received sequence into its original 
order. The mapping rules for the interleaver/deinterleaver 
(I/D) processes are usually given in form of equations, tables 
and special architectures [5]. 

In Turbo codes, the interleaver is located, at the encoder side, 
between the two recursive systematic convolutional (RSC) 
encoders as shown in Fig. 1. At the decoder side, interleaver 
and deinterleavers are required, as shown in Fig. 2, for the 
Log-MAP-based iterative decoding turbo decoder, as the one 
presented in [6]. 

 
Figure 1. Turbo coder diagram 

Figure 2. General structure of a turbo decoder 

In this paper we focus on the design of the 3GPP 
standard Turbo code I/D. The main objective is to devise an 
architecture capable of managing every one of the 5074 
different block sizes of data defined in the 3GPP standard, 
while maintaining low hardware complexity and small use of 
resources. 

This paper is organized as follows: In section II, the 
equations defined in 3GPP standard, over which our 
interleaver is based on, are introduced. In section III the 
architecture presented in [2] and how it should be completed 
to manage all sizes of data specified by the standard, as well 
as how to deal with data and not only with addresses is 
discussed. Section IV presents the proposed configurable 
interleaver architecture. A comparison of the proposed 
architecture with related approaches, as well as performance 
results of an FPGA implementation is given in section V. 
Finally, section VI shows the gathered conclusions.  



II     3GPP INTERLEAVER ALGORITHM 
From the 3GPP standard [7], we can get the interleaver 

algorithm defined for turbo coding/decoding. In this 
algorithm input bits feed a rectangular matrix, and then some 
permutations are performed, where i, j are the indexing 
variables for row and column, starting from 0, top to bottom 
and left to right, respectively. The algorithm works as 
follows: 

• Block size: K is the integer number of input bits and 
takes a value from 40 to 5114. 

• Determine the number of rows, R, of the rectangular 
matrix, such that: 

R=5, if(40≤K≤159) 
R=10, if((160≤K≤200)or(481≤K≤530))
R=20, if(K=any other value)

rows are numbered from 0 to R-1. 

• Determine the prime number p to be used in the 
intra permutation, and the number of columns, C, of 
the rectangular matrix such that: 

If(481≤K≤530)then 
p=53 and C=p  

else 
find the minimum prime number p  from table 2 in   
the standard  such that K≤R×(p+1) 
and determine C such that: 
C=p-1,    if K≤R×(p-1) 
C=p,    if  R×(p-1)<K<R×p 
C=p+1, if R×p<K 

end if. 
Note: For every p exists a value v in the same table, 
so when we find p we also obtain its corresponding 
v. 

• Construct the base sequence S(j) for intra row 
permutation such that: 

S(j)=(v ×S(j-1))mod p, 
and  S(0)=1. 

j=1,2…,(p-2)

Where mod stands for modulo operator.  
•  Determine the prime integers in the sequence qi 

such that: 
g.c.d(qi,p-1)=1, qi>6, and qi>qi-1 for  i=1,2,…,R-1. 
Where g.c.d means greatest common divisor. 

• Permute the sequence qi to make the sequence ri 
such that: 

ri = T(qi), i=0,1,…,R-1  
where T(i) is a simple indexing transformation and 
is defined by the standard. 

• Perform the intra-row permutation as: 
If(C=p),          Ui,j=S[(j×ri)mod(p-1)]
                  Where Ui,(p-1)=0; 
If(C=p+1), Ui,j=S[(j×ri)mod(p-1)]

           Where Ui,(p-1)=0;  U i,p=p; 
                And If(K=R×C)  then     
                    Exchange UR-1,0  with UR-1,p 

If(C=p-1), Ui,j=S[(j×ri)mod(p-1)]-1
 
Where i=0,1,…,R-1;  and j=0,1,…,p-2. 

• Perform the inter-row permutation for the 
rectangular matrix based on the pattern T(i). 
Ui=U(T(i)), where i=0,1,…,R-1. 

• Read out the addresses columnwise. 
As we can see from the algorithm, it is necessary to 

perform different kinds of operations to achieve the 
interleaving pattern, some of those operations are: 

• Comparison  
• Addition 
• Multiplication 
• Permutation 
• Modulo  
• Calculation of  g.c.d. 

In order to develop our interleaver architecture, we based 
our design on previously reported architecture [2]. 
Nevertheless, this architecture was improved in some 
relevant aspects that will be highlighted in the following 
sections. 

III. 3GPP INTERLEAVER ARCHITECTURE 
The interleaving process can be separated in two main 

modes. The first one, the pre-computation mode, has to be 
performed each time a change in the block size occurs; that 
means, for a fixed block size K, these operations have to be 
performed only once. This mode computes the number of 
rows (R), number of columns (C), the integer prime (p), the 
primitive root (v), the base sequence for intra-row 
permutation S(j), the sequence of minimum prime integers 
(qi ) and the permuted prime integers (ri ). 

The second mode, called run time mode, calculates the 
permutation sequence Ui,j and the interleaved address i_addr 
where we can write or read the data bits (in/from a data 
RAM) depending on whether interleaving or de-interleaving 
is performed. This run time mode has to be performed for 
each data block. Note that the set of addresses could also be 
computed and saved in memory only once, however, the 
approach presented here, based in two modes and computing 
addresses at run time mode, is what permits to reduce the 
implementation size of the I/D algorithm as compared to a 
memory or LUT (Look-Up Table) based approach, where 
interleaving addresses are saved in memory. Next, the two 
modes of the algorithm as well as their associated 
architectures are presented.  

A. Pre-Computation Mode 
First, we calculate R with logical functions. Parameters p 

and v are stored in pairs in a Look Up Table (LUT), just like 
in the standard, so we read this LUT addressed via a counter 
generated by the controller based on equation (1). 

K≤R×(p+1) → (K-R)≤(R×p) (1)

To perform the operations in equation (1), we use the 
architecture proposed in [2] and shown in Fig. 3. 



Figure 3. Hardware architecture for multiplication, addition and comparison 
operations 

This architecture is capable of performing multiplication, 
addition and comparison, and it is controlled by m1-m5 flags 
generated by the controller. 

Once p and v are obtained, we can proceed to get the 
number of columns (C). We know that C can take one of the 
three values p-1, p or p+1, and should be the minimum value 
that gets (R×C)≥K. The controller generates C and the 
architecture shown in Fig. 3 performs the comparison.  

According to the algorithm, we have to calculate the 
prime sequences qi. However, it can be noticed that the qi 
sequences (as mentioned in [2]) are almost the same in most 
cases and they only differ by one or two elements from other 
sequences. Based on this observation, we decided to place 
sub groups of qi sequence into a ROM and then choose one 
according to the p value.  

To calculate the S(j)=(v×S(j-1))mod p sequence it is 
mandatory to perform the modulo operation. Fortunately, 
this operation is presented in simplified form in [1], where an 
iterative numerical algorithm based basically on additions, 
shifts, comparisons and bit retrieval is presented. A flow 
diagram depicting this algorithm is presented in Fig. 4.  

From Fig. 4 we can design its corresponding hardware 
architecture, shown in Fig. 5. With this architecture we can 
calculate and write in a RAM every S(j) in at most four clock 
cycles. The number of cycles needed to calculate every S(j) 
depends on v, which can take only six different values: 
2,3,5,6,7 and 19.  For v =2 and v =3 we need only one 
iteration, for v =5, v =6 and v =7 we need two iterations and 
for v =19 we need four iterations. 

 
Figure 4. Flow diagram for the operation (v×S(j-1))mod p 
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Figure 5. Hardware architecture for performing (v ×S(j-1))mod p 

B. Run Time Mode 
In run time mode we obtain the interleaved addresses by 

performing the inter row T(i) and intra row Ui,j  permutations, 
where the interrow order T(i) is stored in a LUT while the 
intra row order Ui,j is stored in a RAM. With these 
parameters and the use of equation (2), the interleaving 
addresses i_addr are finally generated. 

i_addr((i×C)+j)=(C ×T(i))+ Ui,j (2)

with i=0,1,…,R-1; j=0,1,…,C-1. 

Notice that in this mode, the architecture shown in Fig. 3 is 
used to compute C×T(i). The result of this computation 
points to the first element of each of the R rows in the 
rectangular matrix, and then by adding Ui,j with the same 
architecture we obtain a displacement along every row. An 
example of this is shown in Fig  6. 

To obtain Ui,j in run time mode we have to calculate the 
modulo operation (j × ri) mod (p-1)  which has the same 
form as  (v×S(j-1))mod p in the pre-computation mode. As a 
result, and since these operations are performed at different 
times, we can reuse the architecture of Fig. 5 to perform  
both  operations with little modifications. As we can see in 
Fig. 5. a “Circular Buffer” needed for iterative operations 
and a multiplexer used to enable this buffer  in run time 
mode were added. In that architecture another multiplexer 
was added trough which signal qi is feed when functioning in 
the run time mode.     

There already exists an architecture to compute these 
operations and it works fine in the pre-computation mode, 
but in run time mode it fails almost in 12 percent of the block 
sizes [2].  



 
Figure 6. Example of calculating  i_addr 

The problem occurs when q(i)-2p+1>0, in this case the 
modulo operation cannot be performed correctly (in run time 
mode); this architecture is shown  in Fig. 7. 

In our interleaver we solved this problem by modifying 
this architecture in the piece of hardware shown in Fig. 8. 
With this modification the obtained hardware architecture 
works properly in both the pre-computing and run time 
modes. 

From architecture of Fig. 7 and using b) from Fig. 8 
instead of a), we obtain the RAM address Ui,j to read, from 
equation   (3). 

 
Ram_Adr(i,j) = [Ram_Adr(i, j-1) + Q_mod(i)] mod (p-1)       (3) 
 

Furthemore, analyzing the architecture presented in [2], it 
can be seen that, as most of the existing designs, it does not 
handle data streams but only addresses. Normally this should 
not represent a problem, but for 3GPP, exceptions exists in 
the interleaved addresses which we have to deal with. In 
order to solve this problem we added some blocks, the most 
important being a data RAM and exceptions ROM.  

 

 Figure 7. Architecture used in [2]  for  computing modulo 
operation in pre-computing and  run time modes 

 

IV. PROPOSED ARCHITECTURE AND COMPARISON WITH 
OTHER INTERLEAVERS 

In the 3GPP standard’s interleaving algorithm, there are 
some exceptions that are reflected in the architecture shown 
in Fig. 10 with an “Exceptions Handling” block. There are 
three exceptions, the first occurs when we generate addresses 
bigger than K, these addresses are tagged as invalid. For 
example, for K=41 the rectangular matrix size is 5x10, then 
there would be 9 invalid addresses. 

Figure 8. a) Hardware architecture used in [2] to obtain Q_mod(i) 
=q(i)mod(p-1), b) Modified architecture. 

Because of that, we cannot generate a valid address per 
clock cycle (see Table 1). The second exception occurs when 
C=p+1, in this case we assign 0 to Ui,(p-1) , and p to Ui,p. The 
third exception occurs when both conditions C=p+1, and 
K=RxC, occur. In this case, besides assigning 0 to Ui,(p-1) , 
and p to Ui,p, we exchange U(R-1,0) with U(R-1,p). 

Another important block in the architecture is the 
“Modulo Computation” block that besides performing the 
modulo operations in pre-computation and run time modes, it 
also writes the S(j) sequence in the S(j) RAM. Connected to 
this block is the “Circular Buffer” block used in run time 
mode for recursive operations. In order to synchronize every 
block in the architecture, a “Controller” block generates all 
control signals, its state machine diagram is shown in Fig. 9. 
 

Most interleavers like the ones presented in [2],[5],[8],[9] 
and [10] provide the interleaved addresses and a label 
indicating whether or not those addresses are valid.  Our 
interleaver architecture besides providing the addresses, it 
deals with the input data stream. For example, if we receive 
an input data stream of any size between 40 and 5114 our 
interleaver takes it and rearranges it according to its 
corresponding 3GPP interleaved path. The architecture 
outputs a data stream already processed, even when 
exceptions are present. In order to manage data streams, we 
use a data RAM which increases the size of our design, but 
as it is mandatory for Turbo codes to store this data stream 
(in a RAM), a Turbo code architecture that includes our 
interleaver may put aside the RAM. 



 

TABLE 1. AVERAGE INTERLEAVED ADDRESS RATE FOR 
DIFFERENT BLOCK SIZES 

Block Size (K) Run time mode 
Cycles / frame 

Average valid 
address /cycle

40 40 1.00
41 50 0.82

2041 2060 0.99
4241 4440 0.95
4840 4840 1.00
5114 5120 0.99

 

Find p Fill RAM

Compute 
S(j)

RunSTART Find C

p*R<K-R
R*C<K

Change Block Size

Loop
v bits

Run

Figure 9. State machine of the controller for calculating interleaved 
addresses 

Usually Turbo codes’ interleavers work with the same 
block size K several times before changing it. When an 
interleaving operation is required the  pre-computation mode 
is performed, where S(j) is calculated and placed in RAM. 
Then the Run time mode starts where interleaved addresses 
are calculated continuously meanwhile parameter K does not 
change. Only when K is changed, pre-computation mode is 
performed again. This is shown in Fig. 9. 

We also incorporate an extra RAM, called I/O RAM for 
data movement when in exception handling. In interleaver 
mode this RAM is used to hold data input when invalid 
addresses are generated, waiting for a valid address in order 
to write this data to DATA RAM. In Deinterleaver mode, 
when garbage is read from DATA RAM, because a invalid 
address, the I/O RAM ignores this garbage data waiting for a 
valid data and then output this data. In this way, we can 
receive or deliver data in a consecutive way even when 
invalid addresses caused by exceptions are generated.  This 
is another main difference with respect to [2]. In fact, in [2] it 
is not mentioned how this data swapping is implemented.  

A maximum delay of 199 clock cycles is generated due to 
invalid addresses; this is the number of locations of the extra 
I/O RAM. 

When we use our design as interleaver, we use de i_addr 
signal for writing the data stream in the DATA RAM and we 
read in a increasing order, and when we use it as 
deinterleaver, we write the data stream in a increasing order 
and we use i_addr signal for reading. To achieve this we use 
some multiplexers as shown in Fig. 10, as an input of these 
multiplexers we have an exceptions ROM that works like a 
LUT, and it is addressed by the controller. 

V. PERFORMANCE  RESULTS 
  Finally, after designing our architecture, we compiled 

and downloaded it to the FPGA Cyclone II from ALTERA. 
Table 2 summarizes the results and compares them against 
other interleaver designs. As it can be seen from the table, 
our design occupies about 16.5% (5000 out of 30216 Logic 
Elements -L.E.-) of the available resources.   

It is worth mentioning that although our design is bigger 
than others, it includes exceptions ROM, an I/O RAM and a 
DATA RAM as well as extra hardware to control them. In 
this way, our architecture is capable of working both, as an 
interleaver and as a deinterleaver, which other designs are 
not capable of.  

TABLE 2. HARDWARE USAGE COMPARISON FOR DIFERENT 
INTERLEAVER IMPLEMENTATIONS 

Implementation Size Comments
ROM (with all possible 
patterns ) > 100 Mbit Can easily manage data. 

Impractical size
Design in [9] ~30 K gates No data streams 

Processor based 
interleaver [8] ~32 K gates 

Lower average bit per cycle 
than our design and no data 
streams

Design [2] excluding  
2Kb RAM  ~2.2 K gates 

Obtain around 88% of the 
interleaved paths, and no 
data streams  

Our design including 
RAM and ROM 
modules 

~5000 L.E. 
~100 K gates 

Generates 100% of the 
interleaved paths and 
manages data streams. 
Works as Interleaver / 
Deinterleaver

 
Another advantage of using this extra hardware is that 

our design can manage data streams, and really performs the 
interleaving/ deinterleaving operation. This means that, if we 
receive a data block of any size, our architecture not only 
generates the interleaved/deinterleaved addresses but it also 
can perform data interleaving/deinterleaving as it is, i.e. 
without any modification. 

V. CONCLUSIONS 
In this paper we presented a fully functional 3GPP Turbo 

code interleaver/ deinterleaver architecture that receives an 
input data stream of any size established by the 3GPP 
standard and delivers this stream interleaved or de-
interleaved depending on the user requirements. In this 
design we used a computer algorithm to calculate modulo 
operation, and we took advantage of using the same 
hardware in pre-computation and run time modes by 
multiplexing it. Finally by adding RAMs for data handling 
we achieved a complete architecture that can perform 
interleaving/deinterleaving operations as required by the 
3GPP standard for Turbo codes.  
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Figure 10. Complete architecture for 3GPP Interleaver/De-interleaver 


