
Design And Implementation of a Configurable Interleaver/Deinterleaver for Turbo
Codes in 3GPP Standard

Héctor Borrayo-Sandoval and
R. Parra-Michel

 Department of Elec. Eng.
CINVESTAV-Gdl, México.
hborrayo@gdl.cinvestav.mx

Luis F. González-Pérez and
Fernando Landeros Printzen

Electronic Design Center
ITESM-Gdl, México

gonzalez.luis@itesm.mx

Claudia Feregrino-Uribe
Department of Computer Science

INAOE, Puebla, México
cferegrino@inaoep.mx

Abstract— During the last decade, Turbo codes have been
taking an increasing importance in channel coding due to its
good performance in error correction. One key component in
Turbo codes is the interleaver/deinterleaver pair, often
designed as reconfigurable coprocessors able to deal with
requirements of large data length variability found in the
newest communication standards. In this work we introduce a
configurable interleaver architecture for the turbo decoder in
3GPP standard. It is implemented under the idea of “iterative
modulo computation” presented in [1] and exploited in [2], but
capable to handle all the data-length configurations.
Additionally, the presented solution not only generates the
interleaved addresses, but also deals with the flow of data
streams through the interleaver. The architecture and FPGA
implementation results are also presented.

Keywords- 3GPP Turbo code; Configurable Interleaver.

I. INTRODUCTION
Nowadays, communications systems have been growing

and developing very quickly. Applications in satellite
communications, wireless networks, mobile telephony,
internet, etc. continuously demand an increase in bit rates,
while lowering bit error rates and power consumption. In this
context, channel coding schemes have been developed and
consist basically in adding redundancy bits to the original
information that are utilized later on in the detection process
by the receiver. Among those schemes, Turbo codes, that
were introduced in 1993 by C. Berrou in [3], have become a
popular technique in communications research and a key
component in recent communications standards (such as
3GPP mobile phones and recently, LTE standard), mainly
because its performance is near to Shannon coding limit.

Turbo codes’ high performance in error correction is
heavily related to both iterative decoding and the use of
interleavers. Interleavers help to increase the minimum
distance in the code distance spectrum, which is intimately
related to the correction capability of the code [4]; therefore,
designing Turbo codes requires a meticulous design of its
constituent interleaver.

An interleaver is a device that rearranges the order of
data or bit sequences in a one-to-one pseudo random format.
The inverse operation to interleaving is called deinterleaving,
devoted to restore the received sequence into its original
order. The mapping rules for the interleaver/deinterleaver
(I/D) processes are usually given in form of equations, tables
and special architectures [5].

In Turbo codes, the interleaver is located, at the encoder side,
between the two recursive systematic convolutional (RSC)
encoders as shown in Fig. 1. At the decoder side, interleaver
and deinterleavers are required, as shown in Fig. 2, for the
Log-MAP-based iterative decoding turbo decoder, as the one
presented in [6].

Figure 1. Turbo coder diagram

Figure 2. General structure of a turbo decoder

In this paper we focus on the design of the 3GPP
standard Turbo code I/D. The main objective is to devise an
architecture capable of managing every one of the 5074
different block sizes of data defined in the 3GPP standard,
while maintaining low hardware complexity and small use of
resources.

This paper is organized as follows: In section II, the
equations defined in 3GPP standard, over which our
interleaver is based on, are introduced. In section III the
architecture presented in [2] and how it should be completed
to manage all sizes of data specified by the standard, as well
as how to deal with data and not only with addresses is
discussed. Section IV presents the proposed configurable
interleaver architecture. A comparison of the proposed
architecture with related approaches, as well as performance
results of an FPGA implementation is given in section V.
Finally, section VI shows the gathered conclusions.

II 3GPP INTERLEAVER ALGORITHM
From the 3GPP standard [7], we can get the interleaver

algorithm defined for turbo coding/decoding. In this
algorithm input bits feed a rectangular matrix, and then some
permutations are performed, where i, j are the indexing
variables for row and column, starting from 0, top to bottom
and left to right, respectively. The algorithm works as
follows:

• Block size: K is the integer number of input bits and
takes a value from 40 to 5114.

• Determine the number of rows, R, of the rectangular
matrix, such that:

R=5, if(40≤K≤159)
R=10, if((160≤K≤200)or(481≤K≤530))
R=20, if(K=any other value)

rows are numbered from 0 to R-1.

• Determine the prime number p to be used in the
intra permutation, and the number of columns, C, of
the rectangular matrix such that:

If(481≤K≤530)then
p=53 and C=p

else
find the minimum prime number p from table 2 in
the standard such that K≤R×(p+1)
and determine C such that:
C=p-1, if K≤R×(p-1)
C=p, if R×(p-1)<K<R×p
C=p+1, if R×p<K

end if.
Note: For every p exists a value v in the same table,
so when we find p we also obtain its corresponding
v.

• Construct the base sequence S(j) for intra row
permutation such that:

S(j)=(v ×S(j-1))mod p,
and S(0)=1.

j=1,2…,(p-2)

Where mod stands for modulo operator.
• Determine the prime integers in the sequence qi

such that:
g.c.d(qi,p-1)=1, qi>6, and qi>qi-1 for i=1,2,…,R-1.
Where g.c.d means greatest common divisor.

• Permute the sequence qi to make the sequence ri
such that:

ri = T(qi), i=0,1,…,R-1
where T(i) is a simple indexing transformation and
is defined by the standard.

• Perform the intra-row permutation as:
If(C=p), Ui,j=S[(j×ri)mod(p-1)]
 Where Ui,(p-1)=0;
If(C=p+1), Ui,j=S[(j×ri)mod(p-1)]

 Where Ui,(p-1)=0; U i,p=p;
 And If(K=R×C) then
 Exchange UR-1,0 with UR-1,p

If(C=p-1), Ui,j=S[(j×ri)mod(p-1)]-1

Where i=0,1,…,R-1; and j=0,1,…,p-2.

• Perform the inter-row permutation for the
rectangular matrix based on the pattern T(i).
Ui=U(T(i)), where i=0,1,…,R-1.

• Read out the addresses columnwise.
As we can see from the algorithm, it is necessary to

perform different kinds of operations to achieve the
interleaving pattern, some of those operations are:

• Comparison
• Addition
• Multiplication
• Permutation
• Modulo
• Calculation of g.c.d.

In order to develop our interleaver architecture, we based
our design on previously reported architecture [2].
Nevertheless, this architecture was improved in some
relevant aspects that will be highlighted in the following
sections.

III. 3GPP INTERLEAVER ARCHITECTURE
The interleaving process can be separated in two main

modes. The first one, the pre-computation mode, has to be
performed each time a change in the block size occurs; that
means, for a fixed block size K, these operations have to be
performed only once. This mode computes the number of
rows (R), number of columns (C), the integer prime (p), the
primitive root (v), the base sequence for intra-row
permutation S(j), the sequence of minimum prime integers
(qi) and the permuted prime integers (ri).

The second mode, called run time mode, calculates the
permutation sequence Ui,j and the interleaved address i_addr
where we can write or read the data bits (in/from a data
RAM) depending on whether interleaving or de-interleaving
is performed. This run time mode has to be performed for
each data block. Note that the set of addresses could also be
computed and saved in memory only once, however, the
approach presented here, based in two modes and computing
addresses at run time mode, is what permits to reduce the
implementation size of the I/D algorithm as compared to a
memory or LUT (Look-Up Table) based approach, where
interleaving addresses are saved in memory. Next, the two
modes of the algorithm as well as their associated
architectures are presented.

A. Pre-Computation Mode
First, we calculate R with logical functions. Parameters p

and v are stored in pairs in a Look Up Table (LUT), just like
in the standard, so we read this LUT addressed via a counter
generated by the controller based on equation (1).

K≤R×(p+1) → (K-R)≤(R×p) (1)

To perform the operations in equation (1), we use the
architecture proposed in [2] and shown in Fig. 3.

Figure 3. Hardware architecture for multiplication, addition and comparison
operations

This architecture is capable of performing multiplication,
addition and comparison, and it is controlled by m1-m5 flags
generated by the controller.

Once p and v are obtained, we can proceed to get the
number of columns (C). We know that C can take one of the
three values p-1, p or p+1, and should be the minimum value
that gets (R×C)≥K. The controller generates C and the
architecture shown in Fig. 3 performs the comparison.

According to the algorithm, we have to calculate the
prime sequences qi. However, it can be noticed that the qi
sequences (as mentioned in [2]) are almost the same in most
cases and they only differ by one or two elements from other
sequences. Based on this observation, we decided to place
sub groups of qi sequence into a ROM and then choose one
according to the p value.

To calculate the S(j)=(v×S(j-1))mod p sequence it is
mandatory to perform the modulo operation. Fortunately,
this operation is presented in simplified form in [1], where an
iterative numerical algorithm based basically on additions,
shifts, comparisons and bit retrieval is presented. A flow
diagram depicting this algorithm is presented in Fig. 4.

From Fig. 4 we can design its corresponding hardware
architecture, shown in Fig. 5. With this architecture we can
calculate and write in a RAM every S(j) in at most four clock
cycles. The number of cycles needed to calculate every S(j)
depends on v, which can take only six different values:
2,3,5,6,7 and 19. For v =2 and v =3 we need only one
iteration, for v =5, v =6 and v =7 we need two iterations and
for v =19 we need four iterations.

Figure 4. Flow diagram for the operation (v×S(j-1))mod p

_

Reg S X2

+

Reg S(j-1)

_

p

p

Clear S

Load S(j-1)

S(j)

1 0

1 0

1 0

v(i)

10

10

1010

10

9

10

Figure 5. Hardware architecture for performing (v ×S(j-1))mod p

B. Run Time Mode
In run time mode we obtain the interleaved addresses by

performing the inter row T(i) and intra row Ui,j permutations,
where the interrow order T(i) is stored in a LUT while the
intra row order Ui,j is stored in a RAM. With these
parameters and the use of equation (2), the interleaving
addresses i_addr are finally generated.

i_addr((i×C)+j)=(C ×T(i))+ Ui,j (2)

with i=0,1,…,R-1; j=0,1,…,C-1.

Notice that in this mode, the architecture shown in Fig. 3 is
used to compute C×T(i). The result of this computation
points to the first element of each of the R rows in the
rectangular matrix, and then by adding Ui,j with the same
architecture we obtain a displacement along every row. An
example of this is shown in Fig 6.

To obtain Ui,j in run time mode we have to calculate the
modulo operation (j × ri) mod (p-1) which has the same
form as (v×S(j-1))mod p in the pre-computation mode. As a
result, and since these operations are performed at different
times, we can reuse the architecture of Fig. 5 to perform
both operations with little modifications. As we can see in
Fig. 5. a “Circular Buffer” needed for iterative operations
and a multiplexer used to enable this buffer in run time
mode were added. In that architecture another multiplexer
was added trough which signal qi is feed when functioning in
the run time mode.

There already exists an architecture to compute these
operations and it works fine in the pre-computation mode,
but in run time mode it fails almost in 12 percent of the block
sizes [2].

Figure 6. Example of calculating i_addr

The problem occurs when q(i)-2p+1>0, in this case the
modulo operation cannot be performed correctly (in run time
mode); this architecture is shown in Fig. 7.

In our interleaver we solved this problem by modifying
this architecture in the piece of hardware shown in Fig. 8.
With this modification the obtained hardware architecture
works properly in both the pre-computing and run time
modes.

From architecture of Fig. 7 and using b) from Fig. 8
instead of a), we obtain the RAM address Ui,j to read, from
equation (3).

Ram_Adr(i,j) = [Ram_Adr(i, j-1) + Q_mod(i)] mod (p-1) (3)

Furthemore, analyzing the architecture presented in [2], it
can be seen that, as most of the existing designs, it does not
handle data streams but only addresses. Normally this should
not represent a problem, but for 3GPP, exceptions exists in
the interleaved addresses which we have to deal with. In
order to solve this problem we added some blocks, the most
important being a data RAM and exceptions ROM.

 Figure 7. Architecture used in [2] for computing modulo
operation in pre-computing and run time modes

IV. PROPOSED ARCHITECTURE AND COMPARISON WITH
OTHER INTERLEAVERS

In the 3GPP standard’s interleaving algorithm, there are
some exceptions that are reflected in the architecture shown
in Fig. 10 with an “Exceptions Handling” block. There are
three exceptions, the first occurs when we generate addresses
bigger than K, these addresses are tagged as invalid. For
example, for K=41 the rectangular matrix size is 5x10, then
there would be 9 invalid addresses.

Figure 8. a) Hardware architecture used in [2] to obtain Q_mod(i)
=q(i)mod(p-1), b) Modified architecture.

Because of that, we cannot generate a valid address per
clock cycle (see Table 1). The second exception occurs when
C=p+1, in this case we assign 0 to Ui,(p-1) , and p to Ui,p. The
third exception occurs when both conditions C=p+1, and
K=RxC, occur. In this case, besides assigning 0 to Ui,(p-1) ,
and p to Ui,p, we exchange U(R-1,0) with U(R-1,p).

Another important block in the architecture is the
“Modulo Computation” block that besides performing the
modulo operations in pre-computation and run time modes, it
also writes the S(j) sequence in the S(j) RAM. Connected to
this block is the “Circular Buffer” block used in run time
mode for recursive operations. In order to synchronize every
block in the architecture, a “Controller” block generates all
control signals, its state machine diagram is shown in Fig. 9.

Most interleavers like the ones presented in [2],[5],[8],[9]
and [10] provide the interleaved addresses and a label
indicating whether or not those addresses are valid. Our
interleaver architecture besides providing the addresses, it
deals with the input data stream. For example, if we receive
an input data stream of any size between 40 and 5114 our
interleaver takes it and rearranges it according to its
corresponding 3GPP interleaved path. The architecture
outputs a data stream already processed, even when
exceptions are present. In order to manage data streams, we
use a data RAM which increases the size of our design, but
as it is mandatory for Turbo codes to store this data stream
(in a RAM), a Turbo code architecture that includes our
interleaver may put aside the RAM.

TABLE 1. AVERAGE INTERLEAVED ADDRESS RATE FOR
DIFFERENT BLOCK SIZES

Block Size (K) Run time mode
Cycles / frame

Average valid
address /cycle

40 40 1.00
41 50 0.82

2041 2060 0.99
4241 4440 0.95
4840 4840 1.00
5114 5120 0.99

Find p Fill RAM

Compute
S(j)

RunSTART Find C

p*R<K-R
R*C<K

Change Block Size

Loop
v bits

Run

Figure 9. State machine of the controller for calculating interleaved
addresses

Usually Turbo codes’ interleavers work with the same
block size K several times before changing it. When an
interleaving operation is required the pre-computation mode
is performed, where S(j) is calculated and placed in RAM.
Then the Run time mode starts where interleaved addresses
are calculated continuously meanwhile parameter K does not
change. Only when K is changed, pre-computation mode is
performed again. This is shown in Fig. 9.

We also incorporate an extra RAM, called I/O RAM for
data movement when in exception handling. In interleaver
mode this RAM is used to hold data input when invalid
addresses are generated, waiting for a valid address in order
to write this data to DATA RAM. In Deinterleaver mode,
when garbage is read from DATA RAM, because a invalid
address, the I/O RAM ignores this garbage data waiting for a
valid data and then output this data. In this way, we can
receive or deliver data in a consecutive way even when
invalid addresses caused by exceptions are generated. This
is another main difference with respect to [2]. In fact, in [2] it
is not mentioned how this data swapping is implemented.

A maximum delay of 199 clock cycles is generated due to
invalid addresses; this is the number of locations of the extra
I/O RAM.

When we use our design as interleaver, we use de i_addr
signal for writing the data stream in the DATA RAM and we
read in a increasing order, and when we use it as
deinterleaver, we write the data stream in a increasing order
and we use i_addr signal for reading. To achieve this we use
some multiplexers as shown in Fig. 10, as an input of these
multiplexers we have an exceptions ROM that works like a
LUT, and it is addressed by the controller.

V. PERFORMANCE RESULTS
 Finally, after designing our architecture, we compiled

and downloaded it to the FPGA Cyclone II from ALTERA.
Table 2 summarizes the results and compares them against
other interleaver designs. As it can be seen from the table,
our design occupies about 16.5% (5000 out of 30216 Logic
Elements -L.E.-) of the available resources.

It is worth mentioning that although our design is bigger
than others, it includes exceptions ROM, an I/O RAM and a
DATA RAM as well as extra hardware to control them. In
this way, our architecture is capable of working both, as an
interleaver and as a deinterleaver, which other designs are
not capable of.

TABLE 2. HARDWARE USAGE COMPARISON FOR DIFERENT
INTERLEAVER IMPLEMENTATIONS

Implementation Size Comments
ROM (with all possible
patterns) > 100 Mbit Can easily manage data.

Impractical size
Design in [9] ~30 K gates No data streams

Processor based
interleaver [8] ~32 K gates

Lower average bit per cycle
than our design and no data
streams

Design [2] excluding
2Kb RAM ~2.2 K gates

Obtain around 88% of the
interleaved paths, and no
data streams

Our design including
RAM and ROM
modules

~5000 L.E.
~100 K gates

Generates 100% of the
interleaved paths and
manages data streams.
Works as Interleaver /
Deinterleaver

Another advantage of using this extra hardware is that

our design can manage data streams, and really performs the
interleaving/ deinterleaving operation. This means that, if we
receive a data block of any size, our architecture not only
generates the interleaved/deinterleaved addresses but it also
can perform data interleaving/deinterleaving as it is, i.e.
without any modification.

V. CONCLUSIONS
In this paper we presented a fully functional 3GPP Turbo

code interleaver/ deinterleaver architecture that receives an
input data stream of any size established by the 3GPP
standard and delivers this stream interleaved or de-
interleaved depending on the user requirements. In this
design we used a computer algorithm to calculate modulo
operation, and we took advantage of using the same
hardware in pre-computation and run time modes by
multiplexing it. Finally by adding RAMs for data handling
we achieved a complete architecture that can perform
interleaving/deinterleaving operations as required by the
3GPP standard for Turbo codes.

REFERENCES
[1] G. R. Blakley, “A computer algorithm for calculating the product

A*B mod M”,IEEE Trans. On Computer, vol. C-32 , No 5, pp. 497-
500, may 1983.

[2] Rizwan Asghar and Dake Liu “Very low cost configurable
Hardware Interleaver for 3G turbo decoding”, 3rd International
Conference on Information and Communications Technologies: From
Theory to Applications, ICTTA 2008, pp. 1-5.

[3] C. Berrou, A. Glavieus, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-Codes,” in IEEE
ICC’93, May 1993, vol. 2, pp. 1064-1070.

[4] Branka Vucetic and Jinhong Yuan, “Turbo Codes Principles and
Applications,” Kluwer Academic Publishers, 2000.

[5] Carlos R. Sánchez, R. Parra-Michel and M. E. Guzmán-Renteria,
“Design and implementation of a multi-standard interleaver for
802.11a, 802.11n, 802.16e & DVB standards”, International
Conference on Reconfigurable Computing and FPGAs, ReConFig
2008, pp. 379 - 384.

[6] Anabel Morales-Cortés, R. Parra-Michel, Luis F. González-Pérez and
Gabriela Cervantez T, “Finite precision analysis of the 3GPP standard
turbo decoder for fixed-point inplementation in FPGA devices”,

International Conference on Reconfigurable Computing and FPGAs,
ReConFig 2008, pp. 43-48.

[7] “3rd Generation Partnership Project, Technical Specification Group
Radio Access Network; Multiplexingand Channel Coding (FDD),”
Release 6, 3GPP TS 25.212 v6.0.0(2003-12).

[8] M. Shin and I.-C. Park, “Processor-based turbo interleaver for
multiple third-generation wireless standard,” IEEE Commun. Lett.,
vol. 7, no. 5, pp. 210-212, May 2003.

[9] P. Ampadu and K. Kornegay, “An efficient hardware interleaver for
3G turbo decoding,” Proc. RAWCON’03, pp. 199-201, August 2003.

[10] Z. Wang and Q. Li, “Very low-complexity hardware interleaver for
turbo decoding,” IEEE Trans. On Circuits and Sys.- II: vol. 54, no. 7,
pp. 636-640, July 2007.

AxB

0

1

0

1

0

1

0

1

+

R

T(i)

p

C

Ui,j

R

K

K

m1

m2

m3

m1

m1

0

p

Exception
Handling

S(j)
RAM
256x8

Wr_addr
R/W

p,v
LUT

qi
qi

LUT

p,v

R,T
Logic

Rd_addr

DI

R

T

Controller

i_addr

Exceptions
Flags

K

Change
Block Size

Valid_Input

Interl/Deinterl

Exep.
ROM

Count
0-(K-1)

1
0

1
0

1
0

P_counter

Data

Valid_output

i_addr

DI

DOWE

Wr_addr

Rd_addr

DATA
RAM

5114x10

K

p

Data
output

Valid
Output

Change
Block
 Size

Valid
Input

Interl
Deint

K

Data
Input

0

1 0

1-

CLK

valid
Valid_output

Valid_input
WE
OE

DI

DO

1

0

1

0

1

0

1

0

Interl/Deinterl

I/O
RAM

m5

Figure 10. Complete architecture for 3GPP Interleaver/De-interleaver

