
Runtime Task Mapping Based on Hardware Configuration Reuse

Kamana Sigdel, Carlo Galuzzi, Koen Bertels
Computer Engineering Group, TU Delft, The Netherlands
Email: {K.Sigdel, C.Galuzzi, K.L.M.Bertels}@tudelft.nl

Mark Thompson, Andy D. Pimentel
Systems Architecture Group, UvA, The Netherlands

Email: {M.Thompson, A.D.Pimentel}@uva.nl

Abstract—In this paper, we propose a new heuristic for

runtime task mapping of application(s) onto reconfigurable

architectures. The heuristic is based on hardware configuration

reuse, which tries to avoid the reconfiguration overhead of few

selected tasks, by reusing the hardware configurations already

available in the reconfigurable hardware. We evaluate our

heuristic by performing a mapping of an extended Motion-

JPEG application onto a reconfigurable architecture. A large

variety of experiments have been conducted on the proposed

algorithm for the same reconfigurable architecture model with

different FPGA sizes. The obtained result shows up to 45%

performance gain by reusing the hardware configurations as

suggested by the proposed heuristic, compared to well-known

approaches from the state-of-the-art, which do not take into

consideration the hardware configuration reuse.

I. INTRODUCTION

More than a decade long, we have witnessed an in-
creasing popularity of reconfigurable architectures due to
their capability of providing high execution performance
for an application by tuning the architecture towards the
specific requirements of the application. These architectures
are typically formed with a combination of a General Pur-
pose Processor (GPP) and a reconfigurable hardware such
as an FPGA. Reconfigurable architectures are subject to
numerous constraints and design objectives, such as cost,
resource constraints, power consumption, timing constraints,
and dependability. The design of heterogenous reconfigurable
systems imposes several challenges to system designers, such
as hardware-software partitioning, Design Space Exploration
(DSE), task mapping and scheduling.

The applications that will run in parallel and their respec-
tive user requirements are not known at the design time. As a
result, the design time evaluation alone is not enough for any
kind of architectural exploration. Due to changing runtime
conditions with respect to e.g. user requirements or having
multiple simultaneously executing applications competing for
platform resources, it is necessary to perform runtime evalua-
tion for better accuracy. Runtime evaluation enables a system
to be more efficient in terms of various design constraints,
such as performance, chip area and power consumption. In
case of partially dynamic reconfigurable architectures which
are subject to changes at runtime, the design time task
partitioning, mapping and exploration are inadequate and
cannot address the changing runtime conditions.

0This research is partially supported by Artemisia iFEST project (grant
100203), Artemisia SMECY (grant 100230), FP7 Reflect (grant 248976).

Towards this goal, in this paper, we present a new heuristic
for runtime task mapping onto reconfigurable architectures.
The heuristic is based on hardware configurations reuse.
By reusing hardware configurations already available on the
hardware, multiple reconfigurations can be avoided. As a
consequence, the total execution time of the application can
be significantly reduced. The paper presents a task mapping
strategy that exploits the hardware configuration reuse to
reduce the reconfiguration overhead. The main contributions
of this paper are the following:

• the presentation of a new heuristic for runtime task map-
ping of application(s) onto reconfigurable architectures.
The proposed heuristic exploits hardware configuration
reuse to avoid multiple reconfigurations in order to
increase the performance gain.

• the evaluation of the proposed heuristic for a given
reconfigurable architecture. This evaluation is done by
considering for the same reconfigurable architecture
model different number of resources.

• the comparison of the proposed heuristic with the well
known methodology from the current state-of-the-art,
under different resource conditions. Obtained results
suggest up to 45% increase in the performance by
reusing hardware configurations.

The rest of the paper is organized as follows: Section
II provides the related research. Section III discusses the
proposed task mapping heuristic based on the hardware
configurations reuse, while Section IV presents a case study
using the proposed heuristic. In Section V, a detailed analysis
and evaluation of the overall performance is presented and a
comparison with existing algorithms from the state-of-the-art
is presented. Finally, section VI concludes the paper.

II. RELATED WORK

Task mapping can be performed in two mutual non-
exclusive ways: at design-time and at runtime. At design time
task mapping is performed under static conditions without
taking into account any change of the system. Such examples
are: dynamic programming [7], Integer Linear Programming
(ILP) [6], simulated annealing [9], tabu search [8], genetic
algorithm [3] and ant colony optimization [16]. When task
mapping is performed at runtime, changes in the system are
considered, and the mapping is performed accordingly.

In [14], authors present a simple approach for runtime task
mapping, which evaluates the most frequently executed tasks



at runtime, and maps them onto a reconfigurable hardware.
This work, however, has a focus on the lower level, and it
targets only loop kernels. A similar approach for high-level
runtime task mapping for multiprocessor SoC containing
fine-grain reconfigurable hardware tiles is presented in [10].
[4] presents a runtime mapping based on a cumulative benefit
heuristic which is based on a commonly used accumulation
approach.

In the same way, the study in [1] presents runtime resource
allocation and scheduling heuristic for the multi-threaded
environment based on the status of the reconfigurable sys-
tem. Correspondingly, [2] presents a dynamic method for
runtime task mapping, task scheduling and task allocation
for reconfigurable architectures. Authors in [12] present a
runtime optimization which targets the speedup of applica-
tions running onto a reconfigurable platform. In this context
[12], an online adaptive decision algorithm to determine
whether a task should be executed as hardware or software
has been proposed. Likewise, the approach of [13] consists
of a mapper which determines a mapping of application(s)
to a heterogeneous reconfigurable tiled SoC architecture by
using a library at runtime.

The above mentioned techniques for runtime task mapping
perform mapping based on various functional and non-
functional parameters. However, none of these techniques
exploit the hardware configuration reuse. In order to improve
the performance gain by avoiding the reconfiguration over-
head, in our approach, we perform runtime task mapping
based on hardware configurations reuse, which avoids mul-
tiple configurations.

III. TASK MAPPING HEURISTIC

Reconfiguration overhead has always been a serious con-
cern for reconfigurable architectures, as it can drastically
limit the performance of reconfigurable systems. In an ideal
case, a task is configured on the reconfigurable hardware only
once, and it is reused to accelerate the application in all other
cases. The reuse of the hardware configuration avoids multi-
ple configurations, and as a result, reconfiguration overhead
can be significantly reduced. In case of application domains,
such as streaming applications and networking applications,
where certain tasks are executed in a periodic manner or per
frame basis, the hardware configuration reuse can be easily
exploited.

The proposed runtime task mapping heuristic tries to avoid
the reconfiguration overhead by reusing the hardware config-
urations which are already available on the FPGA. The basic
idea of the heuristic is to avoid multiple reconfigurations such
that the execution time is reduced. Certain tasks mapped onto
the FPGA are preserved in the FPGA after their execution.
These hardware configurations can be reused when the task
is re-executed. Reusing hardware configurations multiple
times avoids reconfiguration overhead, thus, performance can
be considerably improved. It is not possible for all tasks
to preserve their configurations in the hardware. For this

reason, the heuristic tries to preserve hardware configurations
for selected tasks. For example, tasks which have higher
reconfiguration delay and occur very frequently in the system
have priority on being preserved onto the FPGA.

We define three states for a task: a waiting state, a mapped
state, and a running state. A task is in the waiting state
if it waits to be mapped. A task is in the mapped state if
it is already configured on the FPGA but it is not being
executed, however, it may be re-executed later. A task is in
the running state when the task is actually processing data. It
should be noted that when a task is in the mapped state, its
hardware configuration is saved in the FPGA, thus, when the
task needed to be re-executed it can directly start processing
without reconfiguration.

Algorithm 1 Pseudocode for the proposed task mapping
heuristic based on hardware configuration reuse.

1: {Task already mapped on FPGA, do not configure.}
2: if Ti == MAPPED then

3: Ti.state ← RUNNING;
4: else

5: if area ≥ Ti.area then

6: if SpeedUp(Ti) > 1 then

7: {Task not mapped on FPGA, configure it.}
8: configure(Ti);
9: Ti.state ← RUNNING;

10: end if

11: else

12: for All tasks Tj on the FPGA do

13: if SpeedUp(Tj ) < SpeedUp(Ti) then

14: candidateSet = Tj

15: end if

16: end for

17: while area ≤ Ti.area do

18: Select Tk ∈ candidateSet with lowest RER
19: removeSet = Tk

20: area = area + Tk .area;
21: end while

22: if Ti.area ≤ area then

23: for All task Tm ∈ removeSet do

24: Tm.state = WAITING;
25: end for

26: {Task not mapped on FPGA, configure it.}
27: configure(Ti);
28: Ti.state ← RUNNING;
29: end if

30: end if

31: end if

Algorithm 1 presents the pseudocode describing the func-
tionality of the proposed heuristic for runtime mapping of a
task Ti. If resources are available in the FPGA, Ti is mapped
onto the FPGA only if there is a performance gain (line 5
to 10 in Algorithm 1). The performance gain in this case is
measured in terms of speedup. The speedup for each task is
measured at runtime by using the following equation:

Speedup =
TSW · (#HWEx + #SWEx)

#SWEx · T SW + #HWEx · T HW + #Recon · T Recon
(1)

where #HWEx, #SWEx and #Recon are the number of
HW executions, SW executions and reconfigurations of a
task respectively. Similarly, T HW, T SW and T Recon
are the corresponding hardware, software and reconfigurable
latencies. The heuristic maintains a profiling count of HW



executions, SW executions and reconfigurations for all tasks.
Each time a task is executed, these counts for that task are up-
dated. For instance, if a task is executed with the GPP, its SW
count is incremented and if the task is executed in the FPGA,
its HW count is incremented. Similarly, the reconfiguration
count of a task is incremented when a task is (re)configured.
These count values for each task are accumulated from all
the previous executions. As a result, they reflect the execution
history of a task. The speedup calculated with these count
values indicates the precise speedup of a task up to that point
of execution.

If the available resources are not enough in the FPGA, a set
of tasks from the FPGA are swapped to accommodate Ti in
the FPGA. The task swapping, in this case, is done based on
two factors: a) speedup and b) Reconfiguration-to-Execution
Ratio (RER). At the first step, a candidate set of tasks from
the FPGA, which are beneficial than the current task in terms
of speedup, is selected (line 12 to 16 in Algorithm 1). The
speedup in this case is calculated by using the Equation 1.
At the second step, the candidate set is examined for its
RER ratio, such that tasks with the lowest RER values are
swapped first (line 17 to 13 in Algorithm 1). RER for each
task is computed as follows:

RER =
T Recon

T HW
· Exec Freq (2)

where Exec Freq is the average execution frequency of the
task in its past history. The execution frequency of a task can
be simply computed from the execution profile of each task
with respect to the total execution count of that application.
The task with a high RER value indicates that the task has
high reconfiguration per execution delay and it has executed
very frequently in the system in its history, making it a
probable candidate for future execution. The heuristic makes
a very careful selection while removing tasks from the FPGA.
By preserving tasks with higher RER value as long as
possible in the FPGA, we try to avoid the reconfiguration
of the frequently executed tasks. We would like to stress
the fact that the speedup and RER are not constant factors.
These values are constantly updated based on the execution
profile of the task at runtime. Hence, mapping tasks onto the
FPGA based on such value precisely represents the system
behavior at that particular instance of time. Note that the
proposed heuristic is generic and is not restricted to one type
of resources or one type of architecture. In order to consider
multiple resources (such as memory, DSP slices) at runtime
mapping decision for different architectural components, the
parameters in the heuristic can be easily customized, hence
making it a flexible and platform independent approach.

IV. CASE STUDY

We use the rSesame framework [11] as a simulation
platform for evaluating the proposed runtime task mapping
heuristic. The rSesame is a generic modeling and simulation
framework which can explore and evaluate reconfigurable

systems at runtime. The framework can be efficiently em-
ployed to perform DSE with respect to hardware-software
partitioning, task mapping, task allocation and scheduling.
For the application modeling, the framework uses Kahn
Process Network (KPN) [5] at the granularity of coarse-grain
tasks. With the rSesame framework, an application task can
either be modeled as a hardware (HW), software (SW) or as
a pageable task. A HW(SW) task is always mapped onto the
reconfigurable hardware component(microprocessor), while a
pageable task can be mapped on either of these resources.
Task assignment to the SW, HW and pageable categories
is performed at design time. At runtime, these tasks are
mapped onto their corresponding resources based on time,
resources and conditions of the system. For this case study,
we constructed a model using the rSesame framework for
mapping an extended MJPEG application onto the Molen
reconfigurable architecture [15] (see Section IV-A). The
proposed heuristic is used as a strategy to perform runtime
mapping decision in the model.

A. Application and Architecture Model
We extend a Motion-JPEG (MJPEG) encoder application

to use it as an application model for this case study. The
corresponding KPN graph is shown in Figure 1. The frames
are divided into blocks and each task performs a different
function on each block as it is passed from task to task.
MJPEG operates on these blocks (partially) in parallel. In
order to evaluate the runtime task mapping with the pro-
posed heuristic, a random number (0 to 3) of applications
(APP1 to APP3) are injected in each frame of the MJPEG
application to create a dynamic behavior. These applications
are considered as sporadic ones which appear in the system
randomly and compete with MJPEG for the resources.

Figure 1. The Motion-JPEG (MJPEG) application model considered for
the case study. The MJPEG application is extended by injecting sporadic
applications in each frame.

The architecture model considered in this case study is
the Molen reconfigurable architecture. The Molen [15] is an
established norm for the polymorphic processor paradigm in-
corporating a GPP and a Reconfigurable Processor (RP), such
as an FPGA. The RP is used to accelerate code fragments
from the applications in a processor/co-processor paradigm.
The RP consists of one or more Custom Computing Units
(CCUs), each representing a hardware implementation of a
task. The tasks to be accelerated on the RP are mapped onto
these units. Application tasks can be executed either on the



Task DCT1 DCT3 DCT2 F’ DCT4 Q1 Q2 Q3 Q4 C B F Init VideoIn A
CCU CCU0 CCU1 CCU2 CCU3 CCU4 CCU5 CCU6 CCU7 CCU8 CCU9 CCU10 CCU11 CCU12 CCU13 CCU14
Task VLE D Vout E E’ D’ B’ A’ C’ E” D” C” B” A” F”
CCU CCU15 CCU16 CCU17 CCU18 CCU19 CCU20 CCU21 CCU22 CCU23 CCU24 CCU25 CCU26 CCU27 CCU28 CCU29

Table I
MAPPING OF TASKS ONTO CCUS

GPP, on the RP, or on both. Tasks run on the GPP as regular
(compiled) microprocessor code or on the RP as a hardware
IP core.

B. Experimental Setup

We instantiated a model using the rSesame framework for
the Molen reconfigurable architecture running the application
model depicted in Figure 1. The model consists of 30 CCUs,
thus each task is mapped onto one CCU. The mapping of
the tasks onto the CCUs is given in Table I, where the
first row lists all the tasks and the second row lists their
corresponding CCUs. For this experiment, we consider all
tasks as pageable ones; as a result, for all the tasks, mapping
decisions are made at runtime. The model allows dynamic
partial reconfiguration. In case all CCUs do not fit at the same
time in the FPGA, they can be executed after reconfiguration
at runtime.

Hardware Area (Slices)
XC4VFX20 8544
XC4VFX40 18624
XC4VFX60 25280
XC4VFX100 42176
XC4VFX140 63168

Table II
AREA AVAILABLE FOR DIFFERENT FPGAS FOR THE XILINX VIRTEX4

FX FAMILY [17].

In this case study, we studied the performance trade-off
and the task mapping/re-mapping behavior of an extended
MJPEG application by considering, for the same architecture
model, different hardware resources. We considered, for this
case study, five FPGAs from the Xilinx Virtex-4 FX family
as given in Table II. The considered FPGAs have different
available area (slices). As a result, they are used to evaluate
the runtime task mapping under different resource conditions.
The computational latencies for the GPP and the CCUs for
the application model are initialized using estimated values.
We also used estimated area occupancy for each CCU. Note
that the CCU size corresponds to the size of the task mapped
onto it. As a result, with different task size in the considered
MJPEG application, the size of the CCU also differs. Based
on the reconfiguration delay of each FPGA, we computed
the reconfiguration delay of each CCU using the following
equation:

T Recon =
CCU slices

FPGA slices
· FPGA bitstream

ICAP bandwidth
(3)

where CCU slices is the total number of area slices a CCU
requires, FPGA slices is the total slices available on partic-
ular FPGA. FPGA bitstream is the bitstream size in MBs of
that FPGA and ICAP bandwidth is the ICAP configuration

0
1
2
3
4
5

fx20 fx40 fx60 fx100 fx140R
eu

sa
bi

lit
y 

E
ff

ic
ie

nc
y 

(%
)

FPGAs

CBH RBH AMAP

 
 
 

0%
200%
400%
600%
800%

0
2
4
6
8

XC4VFX20 XC4VFX40 XC4VFX60 XC4VFX100 XC4VFX140

S
pe

ed
up

E
xe

cu
tio

n 
U

ni
ts

 (B
ill

io
ns

)

FPGA

SW CBH RBH
AMAP SpeedUp(CBH-SW) SpeedUp(RBH-SW)

 
 

Figure 2. Comparison of the RBH against CBH and AMAP under different
FPGAs conditions. The RBH performs better than AMAP and CBH under
all FPGA conditions.

speed. We assume that the Processor Local Bus (PLB) is 4
bytes wide and that the ICAP functions at 100 MHz, thus
its configuration speed is considered at 400 MB/sec [18]. As
a final remark, we assume that there is no delay associated
with the runtime mapping such as task migration, context
switching, delay associated with the RMM and the RM.

V. RESULTS AND EVALUATION

We conducted a large variety of experiments on the
proposed heuristic for the Molen reconfigurable architecture
with various FPGAs of different sizes. We also compared the
results of the proposed runtime task mapping heuristic with
two other task mapping heuristics taken from the current
state-of-the-art. As Much As Possible (AMAP) is a very
simple heuristic which tries to map tasks based on area
availability. It is often used for runtime resource management
in various systems especially in OS level. The Cumulative
Benefit Heuristics (CBH) [4] uses the cumulative benefit as a
factor for runtime task mapping. We evaluated and compared
these task mapping heuristics based on two parameters:
execution time and the reusability efficiency.

A. Execution Time

Figure 2 depicts the results of running different task
mapping heuristics for mapping an extended MJPEG ap-
plication model onto the Molen architecture with various
FPGAs of different sizes. The primary y-axis (left) in the
graph represents the application execution time measured for
each heuristic - CBH, AMAP and the proposed hardware
configuration Reuse Based Heuristic (RBH). The software
only execution is measured when all the tasks are mapped
onto the GPP. The secondary y-axis (right) represents the
application speedup compared to software only execution.
The x-axis lists the different FPGAs which are ranked (from
left to right) based on their sizes - XC4VFX20 has the
smallest number of area slices and XC4VFX140 has the
largest number of area slices (see Table II).

A first trivial observation from Figure 2 is that the ap-
plication performance is proportional to the FPGA size:



80%

100%

120%

140%

160%

fx20 fx40 fx60 fx100 fx140

Sp
ee

du
p

FPGAs

RBH-CBH RBH-AMAP

 
 

0.00
0.00
0.01
0.10
1.00
10.00
100.00

CCU2 CCU4 CCU7 CCU9 CCU11 CCU12 CCU14 CCU20 CCU22 CCU24 CCU26 CCU30

CCUs

R
eu

sa
bi

lit
y 

Ef
fic

ie
nc

y 
(%

)

CBH RBH AMAP

 
 

0

1

2

3

4

5

fx20 fx40 fx60 fx100 fx140

FPGAs

R
eu

sa
bi

lit
y 

Ef
fic

ie
nc

y 
(%

CBH RBH AMAP

 
 
 

Figure 3. Performance improvement of the proposed heuristic (RBH) as
compared to CBH and AMAP. The RBH performs better than AMAP and
CBH under all FPGA conditions.

the bigger the available area in the FPGA, the higher the
application performance. In case of XC4VFX20, there is
no significant performance gain by using any heuristic as
compared to the software only execution due to the limited
area. Nevertheless, there is a notable improvement in the
performance with other FPGAs. Furthermore, comparing the
results of the RBH for different FPGAs in the figure, we
notice that there is approximately 69% improvement in the
application performance in case of XC4VFX40 compared to
XC4VFX20, while there is 54% increase in the area in the
former (see Table II). Nevertheless, comparing XC4VFX100
with XC4VFX140, there is only 1.8% improvement in the
application performance with 33% increase in the area. The
performance increase is bounded by the parallelism in the
application. The use of more resources doesn’t give better
performance in all cases. The same conclusion applies for
the other two heuristics as well.

Another observation that can be made from Figure 2 is
that the RBH outperforms the other two heuristics in terms of
performance under all resource conditions. The performance
improvement of the RBH compared to CBH and AMAP
under different resource conditions is depicted in Figure
3. The best improvement of RBH compared to CBH is
obtained in case of XC4VFX100 which is approximately
40%. Moreover, when comparing RBH against AMAP, we
can see that the best improvement is obtained when us-
ing XC4VFX40, which is approximately 45%. Nonetheless,
the performance improvement of the RBH compared to
AMAP shows an irregular behavior. The RBH performs
10% lower compared to AMAP in XC4VFX20. However,
the improvement significantly increases in XC4VFX40. In
XC4VFX60, the improvement suddenly decreases to 10%
and stays identical in XC4VFX100 and XC4VFX140 (see
Figure 3). AMAP performs task mapping based on the area
availability in an ad-hoc manner However, the RBH performs
a selective task mapping based on the task speedup and the
hardware configuration reuse. When the area is limited as in
case of XC4VFX20, configuration reuse cannot be exploited
with the RBH as many configurations cannot be saved. As a
result, AMAP performs better than the RBH. With the area
increase, many configurations can be saved in the FPGA, and
the RBH performs better.

B. Reusability Efficiency

A CCU execution on FPGA has two phases: the configu-
ration phase, where the bitstream of tasks is loaded onto the
FPGA, and the running phase, where the CCU is actually

0.00
0.00
0.01
0.10
1.00
10.00

CCU2 CCU4 CCU7 CCU9 CCU11 CCU12 CCU14 CCU20 CCU22 CCU24 CCU26 CCU30

R
eu

sa
bi

lit
y 

Ef
fic

ie
nc

y 
(%

)

CCUs

CBH RBH AMAP

 
 

Figure 4. REtask of CCUs mapped onto XC4VFX100 based on the proposed
heuristics. Tasks other than shown in the figure are either mapped onto the
software or have RE value zero.

processing data. In an ideal case, a CCU is configured on
the FPGA only once and executed in all other cases. We
define, the Reusability Efficiency (RE) as the ratio of the
reconfiguration overhead that is saved due to the hardware
configuration reuse to the total execution time of any task.
The RE of a CCU can be defined as follows:

REtask (%) =
(#HWEx− #Recon) · TRecon

#HWEx · THW + #Recon · TRecon + #SWEx · TSW
· 100

(4)
where #HWEx, #SWEx and #Recon are the number of HW
executions, SW executions and reconfigurations of a CCU
respectively. Similarly, THW, TSW and TRecon are the corre-
sponding hardware, software and reconfigurable latencies.

RE indicates the percentage of the total time saved by
a CCU when multiple reconfigurations are avoided, or in
other words, a CCU is reused. In the above expression, the
numerator represents the time that is saved by a task when
the mapping of a CCU is reused and the denominator gives
the total execution time. The total RE for an application can
be calculated as the summation of the numerator in Equation
4 for all N tasks divided by the total execution time for the
whole application as follows:

REapp (%) =

N�

i=1

(#HWEx− #Recon) · TRecon

Total Execution Time
· 100 (5)

Note that the REapp calculated in this way for the whole
application can only be given here as an upper bound, since
the execution of tasks on the reconfigurable hardware can
be performed in parallel. A higher RE can obtain a higher
speedup. To study this relation, we use the REtask as an
evaluation parameter to study the behavior of each CCU.
We also use REapp to study this relation at the application
level.

Figure 4 depicts the REtask recorded using Equation 4 for
a selection of CCUs for the experiment using XC4VFX100.
The REtask is zero when the task is always mapped onto
the GPP (#HWEx=0 in Equation 4) or when it has to be
reconfigured every time it is mapped onto the FPGA (#HWEx
= #Recon in Equation 4). For comparison purposes, Figure
4 only shows the CCUs that are mapped onto the FPGA
according to the RBH. AMAP and CBH have different set
of CCUs mapped onto the FPGA. In case of AMAP, all CCUs
are mapped onto the FPGA: the ones not shown in Figure 4
have REtask value zero because they are always configured.



0
1
2
3
4
5

fx20 fx40 fx60 fx100 fx140R
eu

sa
bi

lit
y 

E
ff

ic
ie

nc
y 

(%
)

FPGAs

CBH RBH AMAP

 
 
 

0.0
2.0
4.0
6.0
8.0

0
2
4
6
8

XC4VFX20 XC4VFX40 XC4VFX60 XC4VFX100 XC4VFX140E
xe

cu
tio

n 
U

ni
ts

 (B
ill

io
ns

)

FPGA

SW CBH RBH
AMAP SpeedUp(CBH-SW) SpeedUp(RBH-SW)

 
 

Figure 5. REapp computed for different heuristics for different FPGAs. The
proposed heuristic (RBH) has better better RE compare to CBH and AMAP.

The same is true for CBH for the following CCUs: CCU2,
CCU6, CCU8, CCU10 and CCU24.

As it can be clearly seen from Figure 4, the REtask of the
RBH is better than the REtask of AMAP and CBH for all
CCUs that are shown in the figure. In case of AMAP and
CBH, several CCUs are configured every time they are exe-
cuted, and they have RE value zero, such as CCU2, CCU20,
CCU22 and CCU24. Note that, AMAP and CBH do not
perform task mapping based on the hardware configuration
reuse. The reuse obtained in case of AMAP and CBH is
due to the resource management of the rSesame framework.
The resource management in the rSesame framework is
implemented in such a way that it avoids the reconfiguration
of CCUs every time they are executed on the FPGA. The
RBH actually reuses more hardware configurations on top of
the default resource management provided by the framework.
The reusability obtained in case of CBH and AMAP is the
default reusability of the framework. This can also explain
the same value for REtask in case of AMAP and CBH.
While evaluating these heuristics stand-alone or with other
frameworks, the RE value for all CCUs in case of AMAP
and CBH will be zero.

Similarly, Figure 5 depicts the total REapp recorded using
Equation 5 for different heuristics under different resource
conditions. As it can be inferred from the figure, the
reusability increases when using larger FPGAs. The RBH
has better REapp value than AMAP and CBH in all resource
conditions except XC4VFX20 where all the heuristics have
approximately same value for REapp. In case of AMAP and
CBH, all CCUs have the same value for REtask. This implies,
the time saved because of avoiding reconfiguration is same
for CBH and AMAP. As a result, the total REapp value in
case of AMAP and CBH depends on the corresponding total
execution time (see Figure 5).

Based on the above evaluation, we can summarize the
following observations:

• in case of limited resource conditions (small FPGAs),
many hardware configurations cannot be saved, thus, the
configuration reuse cannot be fully exploited. In such
cases, AMAP performs better than RBH.

• the configuration reuse can be well exploited in case of
sufficient resource conditions (medium to large FPGAs).
In such cases, many hardware configurations can be
preserved in the FPGA, thus, the reuse of the hardware
configuration is better, and the RBH provides better
application performance than AMAP and CBH.

• in case of abundant resource conditions (very large

FPGAs), the performance saturates due to application
constraints. Under such scenarios, all the heuristics have
similar performance.

VI. CONCLUSIONS

In this paper, we proposed a new heuristic for the runtime
task mapping of application(s) onto reconfigurable architec-
tures. The heuristic is based on hardware configuration reuse,
which tries to avoid reconfiguration overhead of some se-
lected tasks by efficiently reusing the hardware configurations
already available in the FPGA. We evaluated the heuristic for
a reconfigurable architecture with different FPGA resources
using an extended MJPEG application. We also compared
the heuristic with two heuristics from the state-of-the-art.
The results suggest that the proposed heuristic outperforms
existing heuristics for all the FPGAs considered with an
increase in performance up to 45%.

REFERENCES

[1] W. Fu et al., “An execution environment for reconfigurable
computing,” in Proc. of the FCCM‘05, 2005.

[2] F. Ghaffari et al., “Dynamic and on-line design space explo-
ration for reconfigurable architectures,” Trans. on HiPEAC, pp.
179–193, 2007.

[3] C. Haubelt et al., “A system-level approach to hardware recon-
figurable systems,” in Proc. of the ASP-DAC‘05, 2005.

[4] C. Huang et al., “Dynamic coprocessor management for fpga-
enhanced compute platforms,” in Proc. of the CASES‘08, 2008.

[5] G. Kahn, “The semantics of a simple language for parallel
programming,” in Proc. of the IFIP Congress, 1974.

[6] M. Kaul et al., “Design-space exploration for block-processing
based temporal partitioning of run-time reconfigurable sys-
tems,” Journal of VLSI Signal Processing Systems, vol. 24, pp.
181–209, 2000.

[7] P. V. Knudsen et al., “Pace: A dynamic programming algorithm
for hardware/software partitioning,” in CODES‘96, 1996.

[8] L. Lanying et al., “Software-hardware partitioning strategy
using hybrid genetic and tabu search,” in Proc. of the CSSE’08,
2008.

[9] B. Miramond et al., “Design space exploration for dynamically
reconfigurable architectures,” in Proc. of the DATE‘05, 2005.

[10] V. Nollet et al., “Run-time management of a mpsoc containing
fpga fabric tiles,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 16, no. 1, pp. 24–33, 2008.

[11] K. Sigdel et al., “A generic system-level runtime simula-
tion framework for reconfigurable architectures,” in Proc. the
FPT’09, December 2009.

[12] V. M. Sima et al., “Runtime decision of hardware or software
execution on a heterogeneous reconfigurable platform,” in Proc.
of the IPDPS’09, 2009.

[13] L. T. Smit et al.,“Run-time mapping of applications to a
heterogeneous reconfigurable tiled system on chip architecture,”
in Proc. of the FPT’04, 2004.

[14] G. Still et al., “Dynamic hardware/software partitioning: A
first approach,” in Proc. of the DAC‘03, 2003.

[15] S. Vassiliadis et al., “The molen polymorphic processor,” IEEE
Transactions on Computers, pp. 1363– 1375, November 2004.

[16] G. Wang et al., “Application partitioning on programmable
platforms using the ant colony optimization,” Journal of Em-
bedded Computing, vol. 2, no. 1, pp. 119–136, 2006.

[17] Xilinx Corporation, “Virtex-4 family overview (V3.0).”
[18] ——, “LogiCORE IP XPS HWICAP (v5.00a),” July 2010.


