
Fault Tolerance Analysis and Self-Healing Strategy
of Autonomous, Evolvable Hardware Systems

Ruben Salvador*, Andres Otero*, Javier Mora*, Eduardo de la Torre*, Lukáš Sekanina**, Teresa Riesgo*
*Centre of Industrial Electronics

Universidad Politécnica de Madrid
Madrid, Spain

e-mail: {ruben.salvador; joseandres.otero;
eduardo.delatorre; teresa.riesgo}@upm.es

**Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic
e-mail: sekanina@fit.vutbr.cz

Abstract—This paper presents an analysis of the fault tolerance
achieved by an autonomous, fully embedded evolvable
hardware system, which uses a combination of partial dynamic
reconfiguration and an evolutionary algorithm (EA). It
demonstrates that the system may self-recover from both
transient and cumulative permanent faults. This self-adaptive
system, based on a 2D array of 16 (4×4) Processing Elements
(PEs), is tested with an image filtering application. Results
show that it may properly recover from faults in up to 3 PEs,
that is, more than 18% cumulative permanent faults. Two fault
models are used for testing purposes, at PE and CLB levels.
Two self-healing strategies are also introduced, depending on
whether fault diagnosis is available or not. They are based on
scrubbing, fitness evaluation, dynamic partial reconfiguration
and in-system evolutionary adaptation. Since most of these
adaptability features are already available on the system for its
normal operation, resource cost for self-healing is very low
(only some code additions in the internal microprocessor core).

Keywords: Evolvable Hardware, Fault Tolerance, Self-
Healing, Autonomous Systems, FPGA, Partial Dynamic
Reconfiguration

I. INTRODUCTION
The use of EAs as a method for finding an optimized

solution to solve algorithmic problems which have complex
or incomplete formulations is nowadays an important field of
research. Additionally, applying evolutionary algorithms
(EA) to the automatic design of circuits which map tasks into
hardware, known as Evolvable Hardware (EHW), is of
special importance.

Circuit evolution can be performed off-line, using
simulators running in powerful computers in order to find an
appropriate solution which is then implemented in the final
hardware. EHW taxonomy classifies this approach as
Extrinsic Evolvable Hardware. By the contrary, if the EA is
included in the final system and every candidate solution is
evaluated in hardware, online evolution is possible. This
approach is known as Intrinsic Evolvable Hardware. The
goal is to create tools and technologies to help systems adapt
to their environment without human intervention. Ideally,
these systems are able to deal with problem specification
changes and respond to unexpected input signals variations,
changes in conditions like energy availability, bandwidth
adaptation and many others. Among them, fault tolerance
could greatly benefit from the EHW approach, which can be

considered as an important technology to provide systems
with self-healing capabilities.

Reconfiguration is a key technique to provide systems
with adaptability, bringing the adaptive hardware chimera
nearer. However, when mux-based Xilinx XC6200 family
was discontinued in the mid 1990s, reconfiguration
technology became not valid for EHW, mainly due to the
change in the internal FPGA connectivity method. As a
consequence, the Virtual Reconfigurable Circuit (VRC) [1]
approach was proposed to overcome hardware
reconfiguration limitations. It is an ad-hoc circuit whose
granularity and configuration schemas are designed to fit the
requirements of a given application. The structure is based
on a directed graph of processing nodes where each of them
contains a set of functions, selectable by multiplexers. The
EA chromosome (candidate solutions) represents the
(virtual) configuration bitstream, which defines the
connectivity and functionality of each node. Reconfiguration
speed is very fast; just writing a regular FPGA register.
However, this approach suffers from a huge area overhead,
since every node needs to have all functions implemented,
and multiplexers produce negative impact on speed.

In [2] and [3] the authors have proposed an alternative to
the VRC implementation, which uses native dynamic partial
reconfiguration (DPR) of SRAM-based FPGAs to evolve a
2D fine-grain array of PEs. Each function to be mapped on
the PEs is defined with a partial bitstream, thus avoiding
VRC’s drawbacks. The architecture has been optimized to
reduce reconfiguration time providing an autonomous, self-
reconfigurable, evolvable embedded system. Fig. 1 shows a
block diagram of the architecture. The library of partial
bitstreams feeds an enhanced HWICAP (Xilinx Hardware
Internal Configuration Access Port) [4] module featuring
block relocation capabilities and over-clocked at 250MHz. It
is used to reconfigure the array according to the candidate
solutions, as encoded in the chromosomes. EA operators
have been defined to minimize the number of
reconfigurations between evaluations.

This paper explores fault recovery in evolvable systems
using our own platform. Results are shown which illustrate
its capability to recover from hardware faults. We show that,
after some modifications with respect to the original
architecture, fault-tolerance is improved, enabling self-
healing capabilities against both transient and permanent
faults. A quite good response to cumulative faults is also
demonstrated, showing its robustness against permanent

2011 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-4551-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ReConFig.2011.37

164

continuous circuit degradation. A detailed fault tolerance
analysis of the architecture is conducted, considering
different complexity fault models, prior to propose a self-
healing strategy inspired by evolution and DPR. Autonomy
is kept intact, as we will show there is no need for external
decisions or commands in order to have circuit adaptation
and self-healing.

The rest of the paper is structured as follows. Section II
presents related work, focusing on evolvable hardware
systems and its fault tolerance implications. Section III
shows the original architecture, while section IV contains
both a preliminary fault tolerance experiment which shows
some promising results and a key architecture modification.
Section V presents detailed fault tolerance analysis results,
while the self-healing approach is described in Section VI.
Conclusions and future lines appear in Section VII.

II. RELATED WORK
A recent survey on autonomous fault recovery in FPGAs

[5] analyzes different passive and active fault handling
techniques to recover from faults. The analysis of the state of
the art described in this section deals with active techniques
which involve the online allocation of spare resources or the
modification of the device configuration to avoid the faulty
resource. Within these active techniques, just offline
recovery methods are considered, which means the device
cannot hold data throughput while healing itself. Online
techniques, such as redundancy-based ones like TMR or
some online BIST techniques are not considered here.
Therefore, the analysis of related work is focused on the use
of EAs and reconfiguration techniques to provide the system
with dynamic, offline, fault recovery capabilities, which is
the approach followed in our work.

Although not self-healing, probably the first attempt to
evolve systems inherently insensitive to faults was [6].
Similarly, [7] demonstrates the inherent fault tolerance
capability of EHW, able to create useful redundancy on its
own. In [8], two methods for achieving fault tolerance in a
design previously evolved with a Genetic Algorithm (GA)
are compared; one based on including explicit fault
information on the fitness definition, and the other based on
the evolved population which uses the implicit information
accumulated during generations by the GA. Preliminary
experiments for more complex circuits were reported using
ad-hoc simulators and stuck-at fault models. Evolutionary
recovery of one module in n-voting system is shown in [9]
for a 4-bit multiplier using a relatively simple FPGA
computer simulator. Also, functional recovery at CLB/LUT
configuration bitstream level (up to 1000 bits long) of a
quadrature decoder after injection of a stuck-at-zero fault
was accomplished in [10], but just preliminary results for
intrinsic evolution were shown.

Regarding the use of performance information for the EA
at resource or configuration level, a method using the
configuration performance information is reported in [11]. A
refinement on both these last two references is shown in
[12]. It presents a GA-based evolution schema using
Combinatorial Group Testing [13] to show the benefits of
utilizing location information of the faulty resources to

reduce the search space. Besides, evolution is shown to be
expedited if previous populations of partially or fully
functional individuals are used instead of beginning from
scratch. Test case is a 3×2-bit multiplier using a simulator at
CLB/LUT level. In [14], a 1-bit full adder and a 2-bit
multiplier are used as test circuits for the VRC case at logic
function level, considering faults only in the configuration
memory. Again, a heuristically seeded EA exhibits more
stable behavior than a randomly seeded one.

Analog circuit self-recovery for reconfigurable analog
and mixed-signal circuits was investigated in [15], [16] and
lately in [17]. Authors report a custom self-reconfigurable
analog array (SRAA) with continuous temperature
compensation able to adjust system parameters as well as
evolving new connections when faults occur. In [18], direct
bitstream manipulation of a VirtexII Pro device, with a GA
running on a PC, was proved valid for full design and repair
of a 4-bit adder. Garvie [19] extended TMR+Scrubbing
(periodical refresh of the configuration memory) with
Jiggling. The intention is to repair permanent damage in one
module using the two healthy ones in TMR as a healthy
reference signal for the evolutionary design of the faulty one.
Autonomous self-repair for evolvable image filtering was
also investigated for VRC-based circuits in [20]. DeMara
[21] used DPR with a PC-implemented GA to restore a
configuration of 8 LUTs that were preselected as the most
important ones in an implementation of Sobel edge detector.

Contrary to all these works, our approach is to the best of
author’s knowledge, the first EHW-based autonomous, self-
healing processing architecture embedded in a SoPC.
Therefore, fault tolerance analysis is just focused in the
processing array, which is compatible with other fault
tolerance techniques for other system elements.

III. AUTONOMOUS SELF-ADAPTIVE PLATFORM
The platform is based on an FPGA SoC architecture

whose main components are a Reconfigurable Core (RC)
and a Reconfiguration Engine (RE). RC is the processing
array, which is (re)configured by the RE during the
adaptation process exploiting DPR. The combination of self-
reconfiguration by using the internal ICAP configuration
port and an embedded EA provides the system with the
required autonomy. The embedded MicroBlaze processor
runs the EA and issues the required reconfiguration
commands to the RE, which configures the RC to the
candidate solutions, as can be seen in Fig. 1. RE features a
HWICAP enhanced with read-back/reallocation capabilities.
A peripheral for fitness evaluation in hardware can also be
observed, as well as a tightly coupled on-chip RAM
memory, which also serves in the acceleration of the
individuals’ evaluation.

The RC architecture is a highly regular and parallel two
dimensional mesh-type array of PEs organized as a systolic
structure where inter-node connectivity is restricted to the 4
closest neighbors. The output of the array is obtained from
the bottom right PE. Internally, each PE can be dynamically
configured to have different functionality and input mapping.

165

Figure 1. Overview of the self-adaptive platform

Therefore, although inter-node connections are fixed, certain
flexibility in the adaptation of data transmission flow is
achieved. This feature is essential in terms of fault tolerance,
as it will be demonstrated afterwards. Each combination of
functions and connections is pre-synthesized and stored as an
independent module in the PE library [2], [3], which is
copied from a CompactFlash memory to the DDR2 memory
during system startup. Unlike VRCs, fixed connections and a
single function are implemented in each PE at a time,
eliminating the area and timing penalties. The proposed
architecture is a generic evolvable processing framework,
and its suitability for different processing tasks depends on
the chosen set of PEs available in the PE library.

Reconfiguration time is kept low because low mutation
rates in the EA produce few PEs to reconfigure. Besides, fast
hardware-based readback-reallocation allows reducing
external memory accesses when moving/copying one
element from one position to another. Also, the ICAP was
overclocked at up to 250MHz and attached to an external
DDR2 memory through a Xilinx NPI (Native Protocol
Interface) to accelerate the process.

With respect to the evolutionary framework, the EA
implemented on the embedded processor is inspired by
similar VRC-based Cartesian architectures. Adaptation is
driven through a simple (1+�) Evolution Strategy (ES) with
1 parent and � offspring. From a random initial population,
selection chooses the fittest individual as parent for the next
population, which consists of the selected parent and its λ
offspring. For each offspring, mutation operator modifies k
randomly selected genes from the parent. Fitness function
selected (1) so that evolution finds its way to the required
goal is Mean Absolute Error (MAE):

 () ()��
−

=

−

=

−=
1

0

1

0

,,1 R

r

C

c
crKcrI

RC
MAE (1)

where R, C are the rows and columns of the image and I,
K the original and transformed images respectively.

The platform was implemented in a Virtex-5 LX110T
FPGA included in Digilent’s XUPV5 Evaluation Platform
for a 4×4 array of PEs. Each PE occupies a rectangle of two
CLBs by one clock region. Measured reconfiguration time is
12 μs per PE, which, for a maximum mutation rate of 20% (5
PEs) means 60 μs per candidate. Evaluation involves

filtering a 128×128 image and computing its fitness, which is
done in parallel. The calibration image used is a standard
128×128 Lena image. All tests were done 80 times to get
valid statistical results. At 250 MHz operating frequency,
evaluation time is 65.5 μs. Time consumed by the EA itself
can be disregarded, since its operation is overlapped with the
evaluation of previous candidates. For the selected (1+8)-ES,
an average of 50000 generations, i.e. 400000 circuit
evaluations, was measured to be enough as shown in [2].
This means a total time of 46 seconds is needed to evolve a
working circuit [3].

IV. PRELIMINARY FAULT ANALYSISIS
If the system can autonomously adapt and reconfigure

itself, it might be able to recover from faults. This behavior
would be extremely interesting in applications such as
unmanned space flights. This was the initial motivation for
this preliminary analysis using a simple fault model.

The array to perform normal operation is the same as the
hardware used for evolution. It is thus an advantage, since
candidate solutions are generated, configured and evaluated
very fast, so hardware fault emulation, rather than simulation
is possible. Therefore, doing many experiments in short time,
even a systematic fault analysis, is possible. Fault injection
was performed using a modified RE, where original
bitstreams prepared to reconfigure a faulty position are
replaced by another one that models the fault. As a first
approach, a simple PE-level fault model was used: a fault in
any element inside a PE produces a modified result in that
PE, no matter what the function to be placed in that position
is. Two simple models were considered: to use a PE with
“all-1”s at the outputs (as in a stuck-at-1 fault), or a random
value. Results in terms of adaptability were similar but, since
the “all-1s” function is one of the 16 original functions, it
was decided to use a random-generator function instead. This
model will be referred to as the ‘PE-level model’ in all
subsequent steps. Besides, configuring a faulty PE should
cover any fault in the routing structure, since it means an
altered input will also appear in the neighbor PEs.

A systematic fault analysis, injecting faults in each of the
4×4 array positions showed that the system was able to
recover from faults injected in any PE, except for the output
itself (bottom right PE). The system was able to evolve
unevenly, depending on the PE where the fault was injected,
but the resulting system was always able to improve the
MAE of a conventional median filter, in every experiment.

A modified architecture was then proposed, where a
simple 4 to 1 multiplexer was attached to the four outputs on
the right side, letting the control of this MUX depend on
evolution. This means genotype length increased two bits,
but the flexibility achieved by letting the system select its
own output made evolution faster. Besides, a single fault
injected in the right bottom output PE is now recoverable.
Fig. 2 shows a diagram of the modified RC architecture. All
subsequent experiments are referred to this architecture. In
addition of the array, the rest of the system (except for the
MicroBlaze and associated peripherals) occupies 2148 slices
(1615 for the HWICAP) out of 17280 (12.44 %) and 21
BRAMs out of 148 (14.2%).

166

Figure 2. Modified architecture of the reconfigurable core (RC)

V. FAULT TOLERANCE EXPERIMENTS
Realistic faults in FPGAs, especially those affected from

their use in harsh conditions are difficult to model. The PE-
level model used in the previous experiments is very simple
to implement, but it is far from being realistic, since a single
fault invalidates a complete PE. Therefore, if the system is
able to recover from this pessimistic faulty situation, it is
likely that it will also recover from more realistic faults.

In order to improve the model, a CLB-level model is also
proposed: since a fault in a CLB affects only those functions
which use that specific CLB. A faulty block is injected by
the RE only in case the function uses the faulty CLB
position. CLB usage is determined by a function occupation
analysis performed off-line. Results hereafter show
comparisons between both PE and CLB faults models.

A. Single fault injection results
Single fault injection recovery tests are useful to see how

the system reacts against permanent faults. Transient faults,
like SEUs do not need another evolutionary run, since they
are solved by a regular scrubbing process. Table I shows the
results of the single fault tolerance analysis for a series of 80
independent runs, summarizing the MAE fitness values
obtained (average, minimum and maximum) as well as the
number of generations until stagnation. MAE values are
given for both fault models (CLB and PE columns), and
considering that the evolution starts from the last working
individual, or from a new random seed.

Results show that the PE fault model is more pessimistic
than the CLB one, and exhibits worse MAE values, requiring
more generations to stagnate. As expected, evolution from
the last individual performs much better than from random
seed. All MAEs obtained are much smaller than the median
filter, whose MAE is 5.62.

Additionally, a systematic analysis was done to
investigate how faulty PEs, block by block, affect array
performance. 10 independent runs per PE were executed,
accumulating (and averaging at the end) the fitness values
obtained in each run. Fig. 3 shows the results obtained,
which demonstrate that there is no PE position which may
produce unrecoverable errors for the target filter design,
although fault resistance is uneven for each PE position.

TABLE I. FAULT TOLERANCE ANALYSIS FOR SINGLE FAULTS

 Fitness (MAE) Avg. #Gen Avg. Min. Max.
Fault model CLB PE CLB PE CLB PE CLB PE
Last indiv. 0.89 1.58 0.58 0.58 2.87 4.75 10877 16989
Random 2.27 2.39 0.77 0.60 6.56 6.56 18784 19549

Figure 3. Faulty PE influence on the array performance

B. Degradation analysis
Permanent faults, if accumulated, degrade the system,

and it seems reasonable to further investigate what is the
behavior of the array with an accumulated number of faults.
A systematic double-error injection analysis was done at PE
level, since this implies only 120 different experiments. Fig.
4a shows relative average fitness results for faults injected in
the i-th column and the j-th row. For each PE fault, summing
up the fitness values for all other faults from Fig. 4a gives an
indication on how well the system responds to extra
accumulated faults. Fig. 4b shows a colorized diagram of the
array, where light yellow elements show better resistance
than the darker red ones.

The analysis shows that worse results are produced when
faults are close one to the other, forming a kind of barrier
which makes data streams difficult to surround. For the
chosen problem, horizontal barriers behave worse than
vertical ones, and diagonal barriers shaped as ‘\’ behave
better than ‘/’ diagonals, which are the worst combination.

Nevertheless, it is important to note that even worst case
combinations of any two ‘hot’ PEs yield better results than
the median filter reference value. If analysis of randomly
selected faults at PE level, or random CLBs within a random
PE for the CLB level fault models are performed, the
progress of evolutions with both fault models has similar
behavior than with single fault injections. The CLB level
model yields lower fitness values than the PE-level model.

Injections of three faults cannot be done systematically in
a reasonable time, so 80 random experiments were
performed. It is interesting to see how data dependencies are
set on the array to avoid the faults. Fig. 5 shows this effect
for two different three-fault distributions. Data flow is
extracted from the genome, since PE unary or binary
functions clearly mark this data dependency. As it can be
seen, the multiplexing scheme at the output contributed
importantly to find some of these solutions. Values below
each graph represent the MAE achieved.

 (a)

(b)
Figure 4. a) Systematic two faults analysis; b) Block criticality

167

2.52 4.65

Figure 5. Data dependencies in two three-faults cases and MAE achieved.
Tags inside PE are acronyms for its funcionality.

Fig. 6 shows a statistical summary of all the experiments
performed, using boxplots for the 80 independent runs for 1,
2, and 3 faults, with both fault models, and triggering
evolution from both the last working individual or from a
random seed. Graphs show that the system recovers from
induced faults most of the times, yielding better fitted
circuits if evolution is seeded with the last working
chromosome. It can be derived that spare PEs available in
the array can be used to recover from multiple permanent
faults by re-evolving. The reason why average values for
one-fault tests seem to be better than for fault-free ones is
misleading. It can be explained because the fittest individual
(the one active before the fault occurs) is the seed for the
next evolution phase (repair phase), so it contains all
previous genetic information accumulated during thousands
of generations of previous evolution.

VI. SELF-HEALING STRATEGY
Self-healing is the capability of autonomous recovering

from a fault or a series of faults, trying to minimize
degradation effects. It can be achieved by native architecture
features, or by the application of specific fault recovery
procedures. These procedures typically consist of
supervision tasks which are applied periodically. The system
should be able to recover from both transient or permanent
and cumulative faults.

Systems may self-heal with or without precise fault
diagnosis. Strictly speaking, the method we propose does not
require fault diagnosis, although we will see that, if the
fault(s) is(are) known, extra advantages are obtained.

A. Self-Healing strategy with no fault diagnosis.
The following procedure defines the self-healing

strategy:

a) Run initial evolution and select working circuit.
b) Keep track of the fitness value using calibration image.
c) Run normally until until next scrubbing.
d) Re-evaluate fitness (pattern_image)
e) If fitness b) = fitness d), then no error is detected. Go back to c)
f) If not, rewrite last reconfiguration, that is, perform scrubbing.
g) Reevaluate fitness with pattern image
h) If fitness from g) and b) are equal, then fault was a transient one �

already recovered. Go back to c).
i) If fitness from g) > fitness from b) � fault is a permanent one. Go to

step a) for adaptation.

This strategy is based on the following factors: first, the
fitness evaluation against a pattern image is used as a fault
diagnosis scheme, which is combined with the scrubbing

activity to periodically recover from SEUs. If, after a
reconfiguration there is indication of a permanent fault,
another evolutionary run is executed, so that the new evolved
circuit can avoid the faults accumulated in the matrix. SEU
detection is fast, since it only requires the fitness evaluation
of a pattern image. This can replace (or reinforce) typical
scrubbing based on configuration memory read-back.

The recovery from a transient fault is also fast, since it
only requires an additional full matrix reconfiguration, which
is in the order of a few hundreds of μs. Only after a new
permanent fault, which affects the present circuit, is
adaptation (re-evolution) needed. Starting with the previous
valid circuit as the initial individual, produces new circuits
which recover from the new fault in a not too large number
of generations. This yields a recovery time for self-
adaptation in the order of less than a minute.

B. Self-Healing strategy with fault diagnosis
By identifying the point where faults are produced, either

by memory read-back to detect faults in the configuration
memory, or by any other method, fault tolerance may be
enhanced due to the intrinsic spare CLB availability in the
functions mapped into PEs. Function mapping may have
several placement alternatives. So, the method can be
modified so that when a permanent fault in a block is
detected and diagnosed, the function in the corresponding PE
can be replaced by another functionally-equivalent one
which does not make use of the faulty CLB. Although in the
set of functions selected, all functions have similar
complexity, block occupancy is uneven, and there is a
chance to use this fact as a spare part availability resource.
Complementary functions should then be placed in the
functions library, together with the CLB usage footprint of
each function. The procedure should be modified so that
when a permanent fault is detected and diagnosed, a search
in the footprints is done to see if the fault can be recovered
by replacing the faulty PE by another function which does
not use the CLB in the fault position, and run again the EA if
there is no such replacement function.

Another improvement is to consider that the bits in the
genotype that correspond to the diagnosed faulty PEs can be
removed from evolution, thus reducing the search space.
Consequently, running the EA for the same number of
generations as before would increase the chance to obtain
better circuits. For instance, three diagnosed permanent
faults in our 4x4 array mean a reduction of 3 integer values
out of 26 (11.5% reduction).

VII. CONCLUSIONS AND FUTURE LINES
We have presented a fault analysis applied to our

previously proposed evolvable hardware self-reconfigurable
system. Results show that the adaptability of this type of
systems to varying faulty conditions, even at moderate
cumulative levels is really good. Besides, self-healing
properties that just use a simple fitness-based fault detection
strategy have been demonstrated. Therefore, not only extra
resource requirements are minimal, but also a recovery time
of less than a minute is demonstrated. We are also proposing
a modified architecture, with just a multiplexer at the output

168

to select amongst several array outputs, with better fault
tolerance than the previously proposed one. Additionally, we
show two fault models. First, a simple one at PE-level, which
seems to upper bound system evolvability with respect to an
increasing number of faults, is used. And finally, a more
realistic one, yet simple enough to implement in hardware, is
introduced, demonstrating that the system is able to evolve
better than with the simplest fault model.

ACKNOWLEDGMENT
This work was supported by the Spanish Ministry of

Science under the project DR.SIMON (Dynamic
Reconfiguration for Scalability in Multimedia Oriented
Networks) with number TEC2008-06486-C02-01. Lukas
Sekanina has been supported by MSMT under research
program MSM0021630528 and by the grant of the Czech
Science Foundation GP103/10/1517.

REFERENCES
[1] L. Sekanina, "Virtual Reconfigurable Circuits for Real-World

Applications of Evolvable Hardware", Int. Conf. on Evolvable
Systems, ICES 2003, LNCS, Vol. 2003, No. 2606, pp.186-197.

[2] A. Otero, R. Salvador, J. Mora, E. de la Torre, T. Riesgo, and L.
Sekanina, “A Fast Reconfigurable 2D HW Core Architecture on
FPGAs for Evolvable Self-Adaptive Systems” Proc. of the 2011
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS 2011),
IEEE Computer Society, 2011, pp. 336-343.

[3] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L.
Sekanina, “Evolvable 2D computing matrix model for intrinsic
evolution in commercial FPGAs with native reconfiguration support”
Proc. of the 2011 NASA/ESA Conf. on Adaptive Hardware and
Systems (AHS 2011), IEEE Computer Society, 2011, pp. 184-191.

[4] “Xilinx LogiCORE IP XPS HWICAP”, Manual, online:
http://www.xilinx.com/support/documentation/ip_documentation/xps
_hwicap.pdf

[5] M.G. Parris, C.A. Sharma, and R.F. DeMara, “Progress in
Autonomous Fault Recovery of Field Programmable Gate Arrays”
ACM Computing Surveys, 2010.

[6] A. Thompson, “Evolving fault tolerant systems” 1st International
Conf. on Genetic Algorithms in Engineering Systems: Innovations
and Applications (GALESIA), IEE, 1995, pp. 524-529.

[7] A.M. Tyrrell, G. Hollingworth, S.L. Smith, “Evolutionary strategies
and intrinsic fault tolerance” Proc. 3rd NASA/DoD Workshop on
Evolvable Hardware. EH-2001, IEEE Comput. Soc, pp. 98-106.

[8] D. Keymeulen, R.S. Zebulum, Y. Jin, and A. Stoica, “Fault-Tolerant
Evolvable Hardware Using Field-Programmable Transistor Arrays”
IEEE Trans. On Reliability, vol. 49, 2000, pp. 305-316.

[9] S. Vigander, “Evolutionary Fault Repair of Electronics in Space
Applications” MSc Thesis, Dept. Computer and Information Science,
Norwegian Univ. of Science and Technology (NTNU), 2001.

[10] J. Lohn, G. Larchev, and R.F. DeMara, “Evolutionary Fault Recovery
in a Virtex FPGA Using a Representation That Incorporates Routing”
Proc. 17th International Parallel and Distributed Processing
Symposium (IPDPS), 2003, p. 172.

[11] DeMara, R.F.; Kening Zhang; , "Autonomous FPGA fault handling
through competitive runtime reconfiguration" Proc. NASA/DoD
Conf. on Evolvable Hardware, 2005, pp. 109- 116

[12] R. Oreifej, C. Sharma, and R.F. DeMara, “Expediting GA-Based
Evolution Using Group Testing Techniques for Reconfigurable
Hardware,” Int. Conf. on Reconfigurable Computing and FPGA s
(ReConFig 2006), IEEE, 2006, pp. 1-8.

[13] D. Du and F. K. Hwang, "Combinatorial Group Testing and its
Applications," World Scientific, vol. 12 of Series on Applied
Mathematics, 2000.

[14] L. Sekanina, “Evolutionary functional recovery in virtual
reconfigurable circuits,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 3, Jul. 2007, pp. 1-22.

[15] R.S. Zebulum, D. Keymeulen, M.I. Ferguson, and A. Stoica,
“Experimental results in evolutionary fault-recovery for field
programmable analog devices” NASA/DoD Conf. on Evolvable
Hardware, Proc.., IEEE Comput. Soc, 2003, pp. 182-186.

[16] A. Stoica, D. Keymeulen, T. Arslan, R.S. Zebulum, and I. Ferguson,
“Circuit self-recovery experiments in extreme environments” Proc.
2004 NASA/DoD Conf. on Evolvable Hardware, IEEE, pp. 142-145.

[17] D. Keymeulen, A. Stoica, R.S. Zebulum, S. Katkoori, P. Fernando, H.
Sankaran, M. Mojarradi, and T. Daud, “Self-Reconfigurable Mixed-
Signal Integrated Circuits Architecture Comprising a Field
Programmable Analog Array and a General Purpose Genetic
Algorithm IP Core” Evolvable Systems: From Biology to Hardware,
Springer Berlin Heidelberg, 2008, pp. 225-236.

[18] R.S. Oreifej, R.N. Al-Haddad, H. Tan, and R.F. DeMara, “Layered
Approach to Intrinsic Evolvable Hardware using Direct Bitstream
Manipulation of Virtex II Pro Devices” 2007 Int. Conf. on Field
Programmable Logic and Applications, IEEE, 2007, pp. 299-304.

[19] M. Garvie, “Reliable Electronics through Artificial Evolution” , PhD
Thesis, University of Sussex, 2005.

[20] Reddy A.G. et al.: Autonomously Restructured Fault Tolerant Image
Enhancement Filter. Graphics, Vision, and Image Processing. Vol. 8.,
No. 3, 2008, p. 35-40

[21] R.F. DeMara, J. Lee, R. Al-haddad, R. Oreifej, R. Ashraf, B.
Stensrud, and M. Quist, “Dynamic Partial Reconfiguration Approach
to the Design of Sustainable Edge Detectors,” Proc. of 2010
International Conference on Engineering of Reconfigurable Systems
& Algorithms, CSREA Press, 2010, pp. 49-58.

Seed: last individual Seed: random individual

(a) (b) (c) (d)

Figure 6. Statistical summary of the experiments

169

