
HAL Id: hal-01139181
https://hal.science/hal-01139181

Submitted on 3 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open-Scale: A Scalable, Open-Source NOC-based
MPSoC for Design Space Exploration

Remi Busseuil, Lyonel Barthe, Gabriel Marchesan Almeida, Luciano Ost,
Florent Bruguier, Gilles Sassatelli, Pascal Benoit, Michel Robert, Lionel Torres

To cite this version:
Remi Busseuil, Lyonel Barthe, Gabriel Marchesan Almeida, Luciano Ost, Florent Bruguier, et al..
Open-Scale: A Scalable, Open-Source NOC-based MPSoC for Design Space Exploration. ReConFig
2011 - International Conference on Reconfigurable Computing and FPGAs, Nov 2011, Cancun, Mexico.
pp.357-362, �10.1109/ReConFig.2011.66�. �hal-01139181�

https://hal.science/hal-01139181
https://hal.archives-ouvertes.fr

OPEN-SCALE: A SCALABLE, OPEN-SOURCE NOC-BASED MPSOC FOR
DESIGN SPACE EXPLORATION

Remi Busseuil, Lyonel Barthe, Gabriel Marchesan Almeida, Luciano Ost, Florent Bruguier,

Gilles Sassatelli, Pascal Benoit, Michel Robert, and Lionel Torres
LIRMM – 161 rue Ada, Cedex 05 - 34095 Montpellier, France

{remi.busseuil, lyonel.barthe, marchesan, ost, bruguier, sassatelli, pascal.benoit, michel.robert, lionel.torres}@lirmm.fr

Abstract— As complexity of embedded system increases,
configurable hardware is becoming more attractive because it
provides a fast and efficient basis for design development. As a
consequence, one of the most promising embedded architecture
consists in the replication of Processing Elements (PEs)
connected through a Network-on-Chip (NoC). Such
architectures provide computation parallelism, scalability, and
reduced design time thanks to reusability. This paper describes
the development of a scalable, distributed memory, open-
source NoC-based platform called Open-Scale and its
implementation into FPGA devices. The main objective of this
platform is to provide a complete framework for research
development on NoC-based distributed memory MPSoCs.

Keywords: MPSoCs, RTOS, NoC

I. INTRODUCTION
The increasing complexity of application and higher
performance demand make Multiprocessors System-on-Chip
(MPSoCs) one valuable alternative for dealing with
nowadays embedded requirements, due to their power
efficiency and capability to increase system performance by
using multiple processing elements (PEs).

Traditional communication infrastructure, like shared
busses, will not be able to support the amount of
communication required by such MPSoCs. In this direction
NoC architectures are well-known solutions due to their
scalability and power efficiency. NoC-based MPSoCs have
gathered much attention from industry [1][2][3]. However, to
the best of our knowledge, synthesizable NoC-based MPSoC
architectures with Real-Time Operating System (RTOS)
support are not available under public domain.

In this context, this paper describes the development of
Open-Scale, i.e. an open-source RTL NoC-based MPSoC
that executes a preemptive RTOS. MPSoC design and
implementation is a complex and a time-consuming process.
Further, the need for rapid prototyping and
software/hardware co-design validation make the use of
Open-Scale particularly attractive for detailed design space
exploration of NoC-based MPSoCs, since it was totally
validated in FGPA. Furthermore, Open-Scale provides a set
of functions and services that can be used or even extended
to allow different performance analysis (e.g. impact of using
task migration [4]). The main adopted strategies during the
development phases and the impacts of those decisions in the
overall system performance are described and evaluated, as
well. Performance results using several benchmarks are also

provided according to available components that can be
easily chosen by the system designer.

The remaining of this paper is organized as follows:
Section 2 provides an overview and trends in the field. In
Section 3, hardware components of the proposed NoC-based
MPSoC architecture are described. Section 4 discusses the
available features of the RTOS such as mutexes,
management of FIFOs, communication stack, etc. Finally,
Section 5 draws conclusions and points out directions for
future work.

II. RELATED WORK
NoC-based MPSoCs approaches are studied at different
levels of abstraction that vary in flexibility, accuracy, and
simulation speed. Most of them employ high-level models
(e.g. analytical models) for proposing new mechanisms, such
as dynamic mapping and task migration. However, such
high-level models have to produce accurate results, allowing
early design decisions. Thus, it is fundamental to
adjust/calibrate these model parameters (e.g. task migration
time), by using a reference platform (normally a RTL
implementation).

Due to the number of modeled aspects, these reference
platforms are provided to validate and to explore specific
aspects that can contribute to the efficiency of the system.
For instance, Joven et al. [5] propose the xENOC, which is a
framework that allows exploring the design of NoC-based
MPSoC architectures. The framework comprises a tool,
called NoCWizard, for RTL Verilog NoCs generation, which
uses XML file as input. Such files provide the description of
each system component (e.g. NoC router, PE) and
application-platform mapping. In addition, embedded
message passing interface (eMPI) is adopted to support
parallel task communication.

In turn, in [6] a rapid prototyping MPSoC based on
model-drive approach called LAVA, is presented. The
architecture provides a number of open-source IP cores such
as PEs (Plasma [7], MB-Lite [8], ZPU [9]), a UART, a timer,
and a CAN controller connected to a Wishbone bus [10].
Similar to the Joven’s approach [5], a XML file is used
together with VHDL for describing the architecture.
However, no synthesizable NoC is provided.

Tian [11] et al. present a NoC-based MPSoC design that
comprises 16 MicroBlazes, employed as master PEs and 16
SSRAMs, which are used as slave. PEs are connected by two
NoCs. One is used for data exchange, while a OCP-based

NoC architecture is used to establish a synchronization
between such PEs.

The HeMPS, a homogeneous NoC-based MPSoC
platform, is described in [12]. The HeMPS architecture
comprises MIPS-like processor (Plasma [7]), a local memory
(RAM), a DMA controller and a NoC HERMES-based
Network Interface (NI). This platform employs one Master-
PE that is responsible to manage task mapping and system
debug. In turn, Slave-PEs are responsible to execute
application tasks. HeMPS has a preemptive microkernel that
provides communication primitives such as WritePipe() and
ReadPipe(), which are used to implement message passing
communication.

HeMPS platform is quite similar to the NoC-based
MPSoC proposed in this paper. The main differences
between both hardware architectures are: (i) HeMPS
employs the Plasma processor, while Open-Scale uses the
Microblaze; (ii) HeMPS has a DMA controller, which is
particular advantage for video streaming applications, since
large data blocks can be transferred (cyclic operations)
without CPU overhead. In terms of software, the RTOS
supported in Open-Scale provides a considerable number of
services (see Table I), which are necessary for proposing
new adaptive mechanisms.

III. OPEN-SCALE – HARDWARE DESCRIPTION

A. System Overview
The Open-Scale employs a distributed memory/message

passing approach and its main component is Network
Processing Unit (NPU) [13]. Figure 1 provides a general
overview of the NPU internal architecture, which includes:
(i) a SecretBlaze CPU, (ii) an embedded RAM, (iii) an
interrupt controller, (iv) a timer, a UART, (v) a NI, (vi) a
HERMES-based router [14] and a (vii) Wishbone bus [10].

Figure 1 - NPU architecture overview.

Open-Scale scalability is achieved by replicating as many
NPUs as required. The NPU components are following
described.

B. NPU components description
The SecretBlaze CPU [15] is a configurable open-source

RISC soft-core processor developed by our research group. It
implements the MicroBlaze instruction set architecture with
a five-stage pipeline. Most instructions execute in a single
clock cycle, achieving optimized performance for FPGA
implementations. The development of the processor was
mainly conducted keeping a modular approach to ensure
reliability, efficiency across the whole design, while
providing better design reuse opportunities in various
research and educational projects.

The flexibility is one of the driving aspects of the Secret-
Blaze design. On the one hand, the core provides several
optional logical and integer instructions such as
multiplication, division, and pattern operations, which
balances computing performance and area cost to meet
embedded system requirements. On the other hand, the
SecretBlaze is a MMU less processor with a simplified
memory sub-system that offers optional configurable data
and instruction caches, implementing the pipelined
Wishbone protocol for external memory interfaces [10].
However, no global cache coherency is provided by the
Open-Scale platform.

The SecretBlaze uses an embedded RAM as local
memory. The interrupt controller can handle up to 8
interrupts with masking, arming, and polling mechanisms.
The timer is a 32-bit counter that can generate an interrupt
according to a configurable time window. Besides, a UART
interface, which is adjustable via software, can be used for
debugging purposes. These components are interconnected
by a standard open-source Wishbone bus [10]. The
communication between the NPU and the NoC router is
implemented in the NI, which defines HW/SW integration
(e.g. bus width, bandwidth), as well as packing/unpacking
the packets from/to the NoC.

The adopted NoC router uses XY router based on the
HERMES infrastructure [14]. The NoC employs packet
switching of wormhole type: the incoming and outgoing
ports used to route a packet are locked during the entire
packet transfer. The routing algorithm is an XY engine that
allows deterministic routing. Each router processes one
incoming FIFO per port. The size of FIFOs can be tuned for
balancing area and performance.

C. Open-Scale area evaluation
Due to the numerous parameters that can be tuned on the

platform, the evaluation of the implementation will not be
given exhaustively. Indeed, both instruction and data cache
sizes can be adjusted, as well as the size of NoC FIFOs. In
addition, the processor can optionally include hardware
multiplier, divider and/or barrel shifter.

To highlight the scalability of the proposed system, the
size of the whole MPSoC has been measured as a function of
the number of NPUs. The development platform is based on
a Virtex 5 LX 110T FPGA, using optional multiplier,
divider, and barrel shifter instructions [15]. These
instructions are present into the Integer Unit (IU) of the
SecretBlaze instance. The cache size was set to 8KB for both
instruction and data. NoC FIFOs was defined to 256 32- bits

SECRETBLAZE
(MICROBLAZE CPU)

HERMES
NOC

NPU

INTERRUPT
CONTROLLER TIMERL1 ICACHE L1 DCACHE

NOC
INTERFACERAM

WISHBONE BUS

UART

words. Furthermore, each NPU possesses an internal RAM
of 64KB. The area occupation results are given in Figure 3.
The area occupation is almost linear, with an increasing
number of slices with order of magnitude of 2.3 and number
of 6-input Look-Up Tables (LUTs) of 2.12 in average when
the number of cores doubles.

Figure 2 - Open-Scale hardware area occupation.

IV. OPEN-SCALE – SOFTWARE DESCRIPTION
In order to keep the distributed memory structure and to
preserve the scalability of the system, each NPU operates
asynchronously and uses a MPI-like API for message
passing communication. Global decisions are performed in a
distributed fashion and no global shared-memory is used.

Due to the distributed memory characteristic of Open-
Scale, applications are described using a Kahn Process
Network (KPN) formalism [16], which allows parallel
computation of the tasks. The KPN computation model
allows deterministic behavior of the application in an
asynchronous way. Furthermore, tasks placement can be
optimized depending on the user requirements (e.g.
computation time, energy consumption).

MPI provides a comprehensive number of primitives that
relate to general-purpose distributed computing; a number of
works have devised lightweight implementations supporting
only a subset of MPI mechanisms for embedded processors
and systems. This makes sense since KPN formalism offers a
sufficient support that requires only blocking read
operations, which are necessary to model, for instance, data
flow (e.g. video and audio) applications. Some MPI
implementations are layered, and advanced communication
synchronization primitives (e.g. collective) found in the
upper layers make use of the simple point-to-point primitives
such as MPI Send() and MPI Receive(). This enables using
these collective mechanisms in an application-specific basis
in case they prove necessary.

Each NPU runs a tiny preemptive RTOS that was further
extended from Steve Roads Plasma RTOS [7]. Such RTOS
structure is depicted in Figure 3, which comprises 4
categories: (i) basic RTOS services (e.g. function calls), (ii)
communication, (iii) drivers, and (iv) libraries.

Furthermore, the RTOS provides multi-threaded
preemptive execution, using a scheduler based on thread

priorities that is executed periodically according to a fixed
timeslot, which can be defined by the user. A round robin
scheduling algorithm is executed when all tasks have the
same priority.

Figure 3 - Structure of Open-Scale RTOS.

The RTOS allows the use of semaphores and mutexes,
communication between local and remote tasks, and
dynamic memory allocation, as well. Further, it also provides
the standard C library together with a compact math library
that allows floating point operations as well as software
multiplications/divisions. Timer and UART drivers are also
available in the platform.

A. Open-Scale RTOS development
The Open-Scale RTOS was implemented in such a way

that users can easily choose which features are needed in
their implementation in order to either save memory or meet
performance requirements. In this scenario, new services and
features were implemented in order to be compliant with the
SecretBlaze architecture, while providing more efficiency in
terms of management and QoS support (Table I).

Table I summarizes some services that were included in
Open-Scale RTOS. As mentioned before, one of the goals of
Open-Scale is to explore adaptive mechanisms (e.g. dynamic
frequency scaling, task migration). For instance, to enable
dynamic load balancing, the system has to be able to migrate
running tasks from one to another NPU. For that reason, a
run-time loading mechanism was included to allow compiled
separately applications from the RTOS being dynamically
uploaded at run-time.

Besides, a preemptive round-robin scheduler based on
thread credits has been implemented, avoiding task
execution starvation. Intra/extra-NPU communications were
extended to provide more flexibility and system
performance. For example, the RAW protocol was
implemented in order to achieve better performance when
compared to TCP/UDP (as shown in Figure 6). Further, three
online system-monitoring mechanisms were included: (i)
CPU utilization, (ii) FIFO filling, and (iii) CPU frequency.
Once monitored information is provided, online decisions

t1
t2

t3 t4
Application
tasks

Kernel

Scheduler

Dynamic
Task

Loader

Routing
Table

Adaptation

MP API

Exception Manager

Memory
Management

Task
Management

API I/O

Interrupt Manager

Hardware UART

t1
t2

FIFOTimerRAM

t1
t2
t3

can be taken by decision-making mechanisms, like a run-
time control system used for regulating NPU frequency that
were added [18]. Furthermore, an API, new drivers (e.g.
UART, frequency scaling and timer), as well as dynamic
mapping heuristics were included to provide more design
space exploration alternatives

TABLE I. SERVICES INCLUDED INTO THE OPEN-SCALE RTOS

Steve Roads Plasma RTOS Newly Supported in Open-Scale
1- generation of a single object file;

2- preemptive round-robin sheduler
based on thread priorities;

3- intra-NPU communication based
on local FIFOs;

4- Extra-NPU communication (e.g
TCP protocol) through ethernet;

5- interrupt and exception handling;

6- dynamic memory allocation and
deallocation;

7- queues, semaphores, mutexes.

1- run-time dynamic applications
loading;
2- preemptive round-robin scheduler
based on thread credits;
3- intra-NPU communication based
on messages exchanged by software
FIFOs;
4- Extra-NPU communication (RAW
protocol was included), as well as
MPI_Send and MPI_Receive;
5- run-time monitoring support;
6- decision-making mechanisms;
7- a run-time control system used for
regulating NPU frequency;
8- API with new primitives, etc;
9 – development of new drives;
10- dynamic mapping heuristics.

B. Memory Management
As explained in Section III.B, the Open-Scale hardware
architecture does not include a memory management unit
(MMU). This design choice is crucial in the development of
the RTOS, once memory management in software must be
carefully handled. Two major issues have been faced
concerning memory management: the heap control and the
dynamic task loading.

The first strategy to deal with memory management is the
use of paging. In such a scenario, each task has its own
virtual memory, and address translations are performed at
run-time in order to access physical memory. However, a
Translation Logic Buffer (TLB) provided by the MMU
usually executes this process. A software run-time address
translation has a heavy cost in term of computational time as
translation has to be performed for each memory access. For
this reason we have not adopted this solution in our design.

The second way of managing memory is using dynamic
memory allocation/deallocation: whenever a new space is
required, the RTOS searches for a contiguous available space
in the memory large enough for storing the information.
Once the information is not required any more, the memory
space is deallocated. This approach creates memory
fragmentation, but leads to smaller computation cost
compared to software paging. Moreover, some techniques
exist to defragment the memory efficiently [17].

One possible solution for enabling the loading of tasks
without MMU relies on a feature that is partly supported by
the GCC compiler that enables to emit relocatable code (PIC:
Position Independent Code). This feature, generally used for
shared libraries, generates only relative jumps and accesses
data locations and functions using a Global Offset Table

(GOT), which is embedded into a generated ELF file. A
specific post-processing tool, which operates on this format,
was used for reconstructing a completely relocatable
executable. Experiments show that both memory and
performance overheads remain under 5% for this solution
which is clearly acceptable [13].

C. Communication Services
Open-Scale supports two types of communication: (i) Intra-
NPU communication, and (ii) Inter-NPU communication.

Intra-NPU communications are handled through software
FIFOs. Whenever a packet is sent to a specific task, an
exception is raised to notify the receiving task that there is an
incoming data. The receiving task is then scheduled for
execution in order to process the received packet. In turn,
inter-NPU communications are more difficult to handle due
to the globally asynchronous network management that is
required. A communication stack, based on classical
TCP/UDP and IP standard has been adopted in [19]. Each
service (e.g. task communication, task loading) is linked to a
particular port. For each incoming packet of the NPU, the
appropriated service associated to the destination port is
executed. Concerning reliability issues, the communication
stack also provides optional re-routing and CRC error
checking.

Figure 4 illustrates the four layers of the RTOS
communication protocol. At the physical level, the packet
reception is handled by both interrupt and polling methods.
The interrupt occurs when the number of elements inside the
incoming FIFO reaches a given threshold, while the polling
procedure is triggered at fixed timeslot from a timer
interrupt.

Figure 4 - RTOS communication stack protocol.

D. Open-Scale RTOS evaluation
1) Memory Occupation
The compiled operating system is 57KB big. Users can

easily choose on using or not particular features in order to
reduce the RTOS size. If communication between remote
tasks is not required, the RTOS size can be reduced down to
47KB. Table II shows the resulting RTOS size considering
different hardware/software optimizations.

APPLICATION LAYER OS_ReceiveTaskNPU() OS_MPISend()
OS_MPIReceive()

OS_MPISend()
OS_MPIReceive()

TRANSPORT LAYER TCP PROTOCOL:
IP_ProcessTCPPacket()

UDP PROTOCOL:
IP_ProcessIOPacket()

NETWORK LAYER IP PROTOCOL:
IPReceive() / IPSendPacket()

PHYSICAL LAYER HERMES NOC:
FIFO Interruptions + Polling

USUAL LINK OPTIONAL LINK

TABLE II. RTOS SIZE

 with HD
optimization

without HD
optimization

with communication layer 57.4 KB 65.4 KB
without communitcation layer 47.6 KB 55.4 KB

2) Time Performance
To enhance the overall computing performance, each NPU

must have the capability to process incoming data regarding
the available bandwidth of the NoC. Although this
assumption is completely dependent of the application’s
nature with its mapping onto the platform, two kinds of
results can be expected when evaluating the performance.
The first is the service performance provided by the RTOS
while the second concerns the computation time of well-
known applications. The performance of basic RTOS
operations has been measured and results are shown in Table
III.

TABLE III. RTOS OPERATION PERFORMANCE

 Start Rescheduling System Latency
Time

(clock cycles) 237,845 487 - 1307 305

The RTOS takes 237,000 clock cycles to boot (i.e. about

4.7ms at 50MHz). This time is required to initialize all
services including the communication stack. The scheduler
operation that consists on searching the task to be executed
has been optimized. Hence, the rescheduling of a running
task takes less than 500 clock cycles, while scheduling a
different task takes around 1300 clock cycles since context
switching is necessary. The system call latency is measured
by the time that the RTOS service takes to handle an
application request.

The execution performance has been measured based on
three applications: (i) an advanced encryption standard
application (AES), (ii) a classical integer benchmark
application (Dhrystone 2.1 [20]), and (iii) a video decoder
(MJPEG). Processing time for these applications are shown
in Figure 5.

Figure 5 - Execution time for 3 applications for a standalone and Open-Scale
RTOS.

The standalone method shows results of an optimized
execution without RTOS services and cache misses. RTOS
execution presents a performance decrease of about 1.8
times. This can be mainly explained by the fact that there are
cache misses, while RTOS services consist in less than 3%
of the execution time. Furthermore, memory allocation
(Section IV.B), leads to misaligned applications that produce
several cache misses.

3) Communication
To measure the communication performance, a simple

application consisting of two tasks (sender/receiver) that
exchange packets of 200 bytes continuously. Figure 6 depicts
the communication delay (in clock cycles) between two
send/receive calls considering three protocols: (i) RAW, (ii)
UDP, and (iii) TCP. Note that the results are classified in
four categories: (i) SEND-START that represents the
number of necessary clock cycles to open the socket and to
send the first packet, (ii) SEND that comprises the remaining
packets sending, (iii) RECEIVE-START that is used to
defined the socket opening and the receiving of the first
packet, and (iv) RECEIVE that comprises the time of the
remaining received packets.

Figure 6 - Communication delay between send and receive calls regarding

three protocols.

The RAW protocol consists in bypassing the services
provided by the communication stack in order to produce the
highest bandwidth. For that reason, the RAW protocol
provides lower communication latency results for the
analyzed communication. For instance, regarding the SEND-
START communication scenario is observed a reduction of
59% and 88%, respectively, when comparing the RAW to the
UDP and the TCP protocols. In turn, the TCP protocol
achieves the highest latency in the four send/receive
communication scenarios.

In general, sending functions are more time consuming
than receiving functions, except for the beginning of
transactions. This phenomenon can be explained by the
latency caused by the FIFOs: receiving functions must be in
blocking-mode waiting for the incoming packet before
receiving and processing it. In this context, the RAW
protocol achieves the highest bandwidth with 1.3MB/s at

1000#

21000#

41000#

61000#

81000#

101000#

121000#

141000#

161000#

181000#

SEND#,#START# SEND# RECEIVE#,#START# RECEIVE#

N
U
M
BE

R'
O
F'
CL
O
CK

'C
YC

LE
S'

RAW#
UDP#
TCP#

50MHz while UDP and TCP protocols achieve 476KB/s and
147KB/s respectively.

However, it is important to mention that the RAW
protocol does not provide any reliability once there is no
checksum or CRC implementation. On the other hand, the
UDP/TCP communication protocols provide the basic
services such as opening/closing sockets, handshaking, and
CRC error detection.

V. CONCLUSION AND FUTURE WORK
This work described a complete Open-Source framework

for academic research and development of NoC-based
MPSoC. Open-Scale join different features inherent to the
state-of-the-art in MPSoCs design, which include: (i)
customized RTOS implementation, covering important
aspects like inter-task communication primitives, dynamic
loader; (ii) NoC-based platform development; and (iii)
hardware-software integration. These features were
described and their design decisions were made targeting a
scalable distributed memory MPSoC platform.

Open-Scale brings important advantages in the MPSoC
design field like run-time monitoring that allows optimized
decisions distribution for different NPU at software level.
Therefore, making it possible to explore the use of dynamic
mechanisms (e.g. dynamic task mapping not explored in this
work), while assessing performance figures using different
benchmark applications together with a RTOS.

Future works on this platform will include load balancing
through task migration or frequency scaling, memory
management and global cache-coherency, security
development and reliability issues. More information about
Open-Scale platform, as well as the open-source is available
at: http://www2.lirmm.fr/openscale

REFERENCES
[1] Tilera processors. [Online]. Available at: http://www.tilera. com/
[2] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe,

and T. Yamazaki, “Synergistic processing in cell’s multicore
architecture”. IEEE Micro, vol. 26(2), 2006, pp. 10 – 24.

[3] J. Rattner, “Intel single-chip cloud computer,” 2009. [On- line].
Available at: http://techresearch.intel.com/ProjectDetails. aspx?Id=1

[4] G. Marchesan Almeida, et al. “Evaluating the impact of task
migration in multi-processor systems-on-chip”. In: Symposium on
Integrated Circuits and System Design (SBCCI’10), 2010, pp. 73–78.

[5] J. Joven, et al. “xENOC – An eXperimental Network-on-Chip
Enviroment for Parallel Distributed Computing on NoC-based
MPSoC Archtectures”. In: Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP’08), 2008, pp. 141-
148.

[6] M.Meier, M.Engel, M.Steinkamp, and O.Spinczyk, “Lava: An open
platform for rapid prototyping of mpsocs”. In : Field Programmable
Logic and Applications Conference (FPL’10), 2010, pp. 452 – 457.

[7] S. Rhoads, “Plasma - most mips i(tm)” [Online]. Available at:
http://www.opencores.org/project,plasma

[8] T. Kranenburg and R. van Leuken, “Mb-lite: A robust, light- weight
soft-core implementation of the microblaze architec- ture”. In :
Design, Automation Test in Europe Conference Exhibition
(DATE’10), 2010, pp. 997 –1000.

[9] Ø. Harboe, “Zylin – zcpu,” 411 W Miner St., West Chester, PA,
19382, 2010. [Online]. Available at: http:
//opensource.zylin.com/zpu.htm

[10] O. O. Richard Herveille, “Wishbone System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores“, Revision B.4,
OpenCores, 2010. [Online]. Available at: http://www. opencores.org/

[11] G. Tian, G Hammami, O. “Performance measurements of
synchronization mechanisms on 16PE NOC based multi-core with
dedicated synchronization and data NOC”. In: International
Conference on Electronics, Circuits, and Systems (ICECS’09), 2009,
pp. 988 – 991.

[12] Carara, E.; et al. “HeMPS - A Framework for NoC-Based MPSoC
Generation”. In: IEEE International Symposium on Circuts and
Systems (ISCAS'09), 2009, pp. 1345 – 1348.

[13] G. M. Almeida, G. Sassatelli, P. Benoit, N. Saint-Jean, S. Varyani, L.
Torres, and M. Robert, “An adaptive message passing mpsoc
framework”. International Journal of Reconfigurable Computing, vol.
2009, p. 20.

[14] F. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost, “Hermes: an
infrastructure for low area overhead packet- switching networks on
chip”. Integration VLSI Journal, vol. 38(1), 2004, pp. 69–93.

[15] L. Barthe, L. V. Cargnini, P. Benoit, and L. Torres, “The secretblaze:
A configurable and cost-effective open-source soft-core processor”.
In : IEEE International Parallel & Distributed Processing Symposium,
Workshops and Phd Forum IPDPS/RAW 2011. [Online]. Available:
http://www.ipdps.org/

[16] G. Kahn and D.B. MacQueen. “Coroutines and networks of parallel
programming”. In IFIP Congress, 1977, pp. 993–998.

[17] J. E. et al., “File system defragmentation technique via write
allocation”. U.S. Patent 6 978 283, 2005.

[18] Almeida, G.; Busseuil, R.; Ost, L.; Bruguier, F.; Sassatelli, G.;
Benoit, P.; Torres, L.; Robert, M.; , "PI and PID Regulation
Approaches for Performance-Constrained Adaptive Multiprocessor
System-on-Chip" Embedded Systems Letters, IEEE , vol. 99(1),
2011, pp.1.

[19] R. Busseuil, G. M. Almeida, S. Varyani, P. Benoit, and G. Sassatelli,
“A self-adaptive communication protocol allowing fine tuning
between flexibility and performance in homogeneous mpsoc
systems”. In : Reconfigurable Communication-centric Systems on
Chip (ReCoSoC’10), 2010.

[20] R. P. Weicker, "Dhrystone benchmark: rationale for version 2 and
measurement rules”. In ACM SIGPLAN Notices, vol. 23 (8), 1988,
pp. 49 – 62.

