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Abstract— As complexity of embedded system increases, 
configurable hardware is becoming more attractive because it 
provides a fast and efficient basis for design development. As a 
consequence, one of the most promising embedded architecture 
consists in the replication of Processing Elements (PEs) 
connected through a Network-on-Chip (NoC). Such 
architectures provide computation parallelism, scalability, and 
reduced design time thanks to reusability. This paper describes 
the development of a scalable, distributed memory, open-
source NoC-based platform called Open-Scale and its 
implementation into FPGA devices. The main objective of this 
platform is to provide a complete framework for research 
development on NoC-based distributed memory MPSoCs. 
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I.  INTRODUCTION 
The increasing complexity of application and higher 
performance demand make Multiprocessors System-on-Chip 
(MPSoCs) one valuable alternative for dealing with 
nowadays embedded requirements, due to their power 
efficiency and capability to increase system performance by 
using multiple processing elements (PEs). 

Traditional communication infrastructure, like shared 
busses, will not be able to support the amount of 
communication required by such MPSoCs. In this direction 
NoC architectures are well-known solutions due to their 
scalability and power efficiency. NoC-based MPSoCs have 
gathered much attention from industry [1][2][3]. However, to 
the best of our knowledge, synthesizable NoC-based MPSoC 
architectures with Real-Time Operating System (RTOS) 
support are not available under public domain.  

In this context, this paper describes the development of 
Open-Scale, i.e. an open-source RTL NoC-based MPSoC 
that executes a preemptive RTOS. MPSoC design and 
implementation is a complex and a time-consuming process. 
Further, the need for rapid prototyping and 
software/hardware co-design validation make the use of 
Open-Scale particularly attractive for detailed design space 
exploration of NoC-based MPSoCs, since it was totally 
validated in FGPA. Furthermore, Open-Scale provides a set 
of functions and services that can be used or even extended 
to allow different performance analysis (e.g. impact of using 
task migration [4]). The main adopted strategies during the 
development phases and the impacts of those decisions in the 
overall system performance are described and evaluated, as 
well. Performance results using several benchmarks are also 

provided according to available components that can be 
easily chosen by the system designer.  

The remaining of this paper is organized as follows: 
Section 2 provides an overview and trends in the field. In 
Section 3, hardware components of the proposed NoC-based 
MPSoC architecture are described. Section 4 discusses the 
available features of the RTOS such as mutexes, 
management of FIFOs, communication stack, etc. Finally, 
Section 5 draws conclusions and points out directions for 
future work. 

II. RELATED WORK 
NoC-based MPSoCs approaches are studied at different 
levels of abstraction that vary in flexibility, accuracy, and 
simulation speed. Most of them employ high-level models 
(e.g. analytical models) for proposing new mechanisms, such 
as dynamic mapping and task migration. However, such 
high-level models have to produce accurate results, allowing 
early design decisions. Thus, it is fundamental to 
adjust/calibrate these model parameters (e.g. task migration 
time), by using a reference platform (normally a RTL 
implementation).  

Due to the number of modeled aspects, these reference 
platforms are provided to validate and to explore specific 
aspects that can contribute to the efficiency of the system. 
For instance, Joven et al. [5] propose the xENOC, which is a 
framework that allows exploring the design of NoC-based 
MPSoC architectures. The framework comprises a tool, 
called NoCWizard, for RTL Verilog NoCs generation, which 
uses XML file as input. Such files provide the description of 
each system component (e.g. NoC router, PE) and 
application-platform mapping. In addition, embedded 
message passing interface (eMPI) is adopted to support 
parallel task communication. 

In turn, in [6] a rapid prototyping MPSoC based on 
model-drive approach called LAVA, is presented. The 
architecture provides a number of open-source IP cores such 
as PEs (Plasma [7], MB-Lite [8], ZPU [9]), a UART, a timer, 
and a CAN controller connected to a Wishbone bus [10]. 
Similar to the Joven’s approach [5], a XML file is used 
together with VHDL for describing the architecture. 
However, no synthesizable NoC is provided.  

Tian [11] et al. present a NoC-based MPSoC design that 
comprises 16 MicroBlazes, employed as master PEs and 16 
SSRAMs, which are used as slave. PEs are connected by two 
NoCs. One is used for data exchange, while a OCP-based 



NoC architecture is used to establish a synchronization 
between such PEs.  

The HeMPS, a homogeneous NoC-based MPSoC 
platform, is described in [12]. The HeMPS architecture 
comprises MIPS-like processor (Plasma [7]), a local memory 
(RAM), a DMA controller and a NoC HERMES-based 
Network Interface (NI). This platform employs one Master-
PE that is responsible to manage task mapping and system 
debug. In turn, Slave-PEs are responsible to execute 
application tasks. HeMPS has a preemptive microkernel that 
provides communication primitives such as WritePipe() and 
ReadPipe(), which are used to implement message passing 
communication. 

HeMPS platform is quite similar to the NoC-based 
MPSoC proposed in this paper. The main differences 
between both hardware architectures are: (i) HeMPS 
employs the Plasma processor, while Open-Scale uses the 
Microblaze; (ii) HeMPS has a DMA controller, which is 
particular advantage for video streaming applications, since 
large data blocks can be transferred (cyclic operations) 
without CPU overhead. In terms of software, the RTOS 
supported in Open-Scale provides a considerable number of 
services (see Table I), which are necessary for proposing 
new adaptive mechanisms.  

III. OPEN-SCALE – HARDWARE DESCRIPTION 

A. System Overview 
The Open-Scale employs a distributed memory/message 

passing approach and its main component is Network 
Processing Unit (NPU) [13]. Figure 1 provides a general 
overview of the NPU internal architecture, which includes: 
(i) a SecretBlaze CPU, (ii) an embedded RAM, (iii) an 
interrupt controller, (iv) a timer, a UART, (v) a NI, (vi) a 
HERMES-based router [14] and a (vii) Wishbone bus [10].  

 

 
Figure 1 - NPU architecture overview. 

Open-Scale scalability is achieved by replicating as many 
NPUs as required. The NPU components are following 
described.  

B. NPU components description 
The SecretBlaze CPU [15] is a configurable open-source 

RISC soft-core processor developed by our research group. It 
implements the MicroBlaze instruction set architecture with 
a five-stage pipeline. Most instructions execute in a single 
clock cycle, achieving optimized performance for FPGA 
implementations. The development of the processor was 
mainly conducted keeping a modular approach to ensure 
reliability, efficiency across the whole design, while 
providing better design reuse opportunities in various 
research and educational projects. 

The flexibility is one of the driving aspects of the Secret- 
Blaze design. On the one hand, the core provides several 
optional logical and integer instructions such as 
multiplication, division, and pattern operations, which 
balances computing performance and area cost to meet 
embedded system requirements. On the other hand, the 
SecretBlaze is a MMU less processor with a simplified 
memory sub-system that offers optional configurable data 
and instruction caches, implementing the pipelined 
Wishbone protocol for external memory interfaces [10]. 
However, no global cache coherency is provided by the 
Open-Scale platform. 

The SecretBlaze uses an embedded RAM as local 
memory. The interrupt controller can handle up to 8 
interrupts with masking, arming, and polling mechanisms. 
The timer is a 32-bit counter that can generate an interrupt 
according to a configurable time window. Besides, a UART 
interface, which is adjustable via software, can be used for 
debugging purposes. These components are interconnected 
by a standard open-source Wishbone bus [10]. The 
communication between the NPU and the NoC router is 
implemented in the NI, which defines HW/SW integration 
(e.g. bus width, bandwidth), as well as packing/unpacking 
the packets from/to the NoC.  

The adopted NoC router uses XY router based on the 
HERMES infrastructure [14]. The NoC employs packet 
switching of wormhole type: the incoming and outgoing 
ports used to route a packet are locked during the entire 
packet transfer. The routing algorithm is an XY engine that 
allows deterministic routing. Each router processes one 
incoming FIFO per port. The size of FIFOs can be tuned for 
balancing area and performance. 

C. Open-Scale area evaluation 
Due to the numerous parameters that can be tuned on the 

platform, the evaluation of the implementation will not be 
given exhaustively. Indeed, both instruction and data cache 
sizes can be adjusted, as well as the size of NoC FIFOs. In 
addition, the processor can optionally include hardware 
multiplier, divider and/or barrel shifter. 

To highlight the scalability of the proposed system, the 
size of the whole MPSoC has been measured as a function of 
the number of NPUs. The development platform is based on 
a Virtex 5 LX 110T FPGA, using optional multiplier, 
divider, and barrel shifter instructions [15]. These 
instructions are present into the Integer Unit (IU) of the 
SecretBlaze instance. The cache size was set to 8KB for both 
instruction and data. NoC FIFOs was defined to 256 32- bits 
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words. Furthermore, each NPU possesses an internal RAM 
of 64KB. The area occupation results are given in Figure 3. 
The area occupation is almost linear, with an increasing 
number of slices with order of magnitude of 2.3 and number 
of 6-input Look-Up Tables (LUTs) of 2.12 in average when 
the number of cores doubles. 

 

 
Figure 2 - Open-Scale hardware area occupation. 

IV. OPEN-SCALE – SOFTWARE DESCRIPTION 
In order to keep the distributed memory structure and to 
preserve the scalability of the system, each NPU operates 
asynchronously and uses a MPI-like API for message 
passing communication. Global decisions are performed in a 
distributed fashion and no global shared-memory is used.  

Due to the distributed memory characteristic of Open-
Scale, applications are described using a Kahn Process 
Network (KPN) formalism [16], which allows parallel 
computation of the tasks. The KPN computation model 
allows deterministic behavior of the application in an 
asynchronous way. Furthermore, tasks placement can be 
optimized depending on the user requirements (e.g. 
computation time, energy consumption). 

MPI provides a comprehensive number of primitives that 
relate to general-purpose distributed computing; a number of 
works have devised lightweight implementations supporting 
only a subset of MPI mechanisms for embedded processors 
and systems. This makes sense since KPN formalism offers a 
sufficient support that requires only blocking read 
operations, which are necessary to model, for instance, data 
flow (e.g. video and audio) applications. Some MPI 
implementations are layered, and advanced communication 
synchronization primitives (e.g. collective) found in the 
upper layers make use of the simple point-to-point primitives 
such as MPI Send() and MPI Receive(). This enables using 
these collective mechanisms in an application-specific basis 
in case they prove necessary.  

Each NPU runs a tiny preemptive RTOS that was further 
extended from Steve Roads Plasma RTOS [7]. Such RTOS 
structure is depicted in Figure 3, which comprises 4 
categories: (i) basic RTOS services (e.g. function calls), (ii) 
communication, (iii) drivers, and (iv) libraries.  

Furthermore, the RTOS provides multi-threaded 
preemptive execution, using a scheduler based on thread 

priorities that is executed periodically according to a fixed 
timeslot, which can be defined by the user. A round robin 
scheduling algorithm is executed when all tasks have the 
same priority. 

 
Figure 3 - Structure of Open-Scale RTOS. 

The RTOS allows the use of semaphores and mutexes, 
communication between local and remote tasks, and 
dynamic memory allocation, as well. Further, it also provides 
the standard C library together with a compact math library 
that allows floating point operations as well as software 
multiplications/divisions. Timer and UART drivers are also 
available in the platform. 

A. Open-Scale RTOS development  
The Open-Scale RTOS was implemented in such a way 

that users can easily choose which features are needed in 
their implementation in order to either save memory or meet 
performance requirements. In this scenario, new services and 
features were implemented in order to be compliant with the 
SecretBlaze architecture, while providing more efficiency in 
terms of management and QoS support (Table I).  

Table I summarizes some services that were included in 
Open-Scale RTOS. As mentioned before, one of the goals of 
Open-Scale is to explore adaptive mechanisms (e.g. dynamic 
frequency scaling, task migration). For instance, to enable 
dynamic load balancing, the system has to be able to migrate 
running tasks from one to another NPU. For that reason, a 
run-time loading mechanism was included to allow compiled 
separately applications from the RTOS being dynamically 
uploaded at run-time.  

Besides, a preemptive round-robin scheduler based on 
thread credits has been implemented, avoiding task 
execution starvation. Intra/extra-NPU communications were 
extended to provide more flexibility and system 
performance. For example, the RAW protocol was 
implemented in order to achieve better performance when 
compared to TCP/UDP (as shown in Figure 6). Further, three 
online system-monitoring mechanisms were included: (i) 
CPU utilization, (ii) FIFO filling, and (iii) CPU frequency. 
Once monitored information is provided, online decisions 
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can be taken by decision-making mechanisms, like a run-
time control system used for regulating NPU frequency that 
were added [18]. Furthermore, an API, new drivers (e.g. 
UART, frequency scaling and timer), as well as dynamic 
mapping heuristics were included to provide more design 
space exploration alternatives 

TABLE I.  SERVICES INCLUDED INTO THE OPEN-SCALE RTOS  

Steve Roads Plasma RTOS Newly Supported in Open-Scale  
1- generation of a single object file; 
 
2- preemptive round-robin sheduler 
based on thread priorities; 
 
3- intra-NPU communication based 
on local FIFOs; 
 
4- Extra-NPU communication (e.g 
TCP protocol) through ethernet; 
 
5- interrupt and exception handling; 
 
6- dynamic memory allocation and 
deallocation; 
 
7- queues, semaphores, mutexes. 

1- run-time dynamic applications 
loading;  
2- preemptive round-robin scheduler 
based on thread credits;  
3- intra-NPU communication based 
on messages exchanged by software 
FIFOs;  
4- Extra-NPU communication (RAW 
protocol was included), as well as 
MPI_Send and MPI_Receive;  
5- run-time monitoring support;  
6- decision-making mechanisms; 
7- a run-time control system used for 
regulating NPU frequency;  
8- API with new primitives, etc;  
9 – development of new drives;  
10- dynamic mapping heuristics. 

  

B. Memory Management 
As explained in Section III.B, the Open-Scale hardware 
architecture does not include a memory management unit 
(MMU). This design choice is crucial in the development of 
the RTOS, once memory management in software must be 
carefully handled. Two major issues have been faced 
concerning memory management: the heap control and the 
dynamic task loading.  

The first strategy to deal with memory management is the 
use of paging. In such a scenario, each task has its own 
virtual memory, and address translations are performed at 
run-time in order to access physical memory. However, a 
Translation Logic Buffer (TLB) provided by the MMU 
usually executes this process. A software run-time address 
translation has a heavy cost in term of computational time as 
translation has to be performed for each memory access. For 
this reason we have not adopted this solution in our design. 

The second way of managing memory is using dynamic 
memory allocation/deallocation: whenever a new space is 
required, the RTOS searches for a contiguous available space 
in the memory large enough for storing the information. 
Once the information is not required any more, the memory 
space is deallocated. This approach creates memory 
fragmentation, but leads to smaller computation cost 
compared to software paging. Moreover, some techniques 
exist to defragment the memory efficiently [17]. 

One possible solution for enabling the loading of tasks 
without MMU relies on a feature that is partly supported by 
the GCC compiler that enables to emit relocatable code (PIC: 
Position Independent Code). This feature, generally used for 
shared libraries, generates only relative jumps and accesses 
data locations and functions using a Global Offset Table 

(GOT), which is embedded into a generated ELF file. A 
specific post-processing tool, which operates on this format, 
was used for reconstructing a completely relocatable 
executable. Experiments show that both memory and 
performance overheads remain under 5% for this solution 
which is clearly acceptable [13]. 

C. Communication Services 
Open-Scale supports two types of communication: (i) Intra-
NPU communication, and (ii) Inter-NPU communication. 

Intra-NPU communications are handled through software 
FIFOs. Whenever a packet is sent to a specific task, an 
exception is raised to notify the receiving task that there is an 
incoming data. The receiving task is then scheduled for 
execution in order to process the received packet. In turn, 
inter-NPU communications are more difficult to handle due 
to the globally asynchronous network management that is 
required. A communication stack, based on classical 
TCP/UDP and IP standard has been adopted in [19]. Each 
service (e.g. task communication, task loading) is linked to a 
particular port. For each incoming packet of the NPU, the 
appropriated service associated to the destination port is 
executed. Concerning reliability issues, the communication 
stack also provides optional re-routing and CRC error 
checking. 

Figure 4 illustrates the four layers of the RTOS 
communication protocol. At the physical level, the packet 
reception is handled by both interrupt and polling methods. 
The interrupt occurs when the number of elements inside the 
incoming FIFO reaches a given threshold, while the polling 
procedure is triggered at fixed timeslot from a timer 
interrupt. 

 

 
Figure 4 - RTOS communication stack protocol. 

D. Open-Scale RTOS evaluation  
1) Memory Occupation 
The compiled operating system is 57KB big. Users can 

easily choose on using or not particular features in order to 
reduce the RTOS size. If communication between remote 
tasks is not required, the RTOS size can be reduced down to 
47KB. Table II shows the resulting RTOS size considering 
different hardware/software optimizations.  
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IPReceive() / IPSendPacket()

PHYSICAL LAYER HERMES NOC:
FIFO Interruptions + Polling
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TABLE II.  RTOS SIZE 

 with HD 
optimization 

without HD 
optimization 

with communication layer 57.4 KB 65.4 KB 
without communitcation layer 47.6 KB 55.4 KB 
 

2) Time Performance 
To enhance the overall computing performance, each NPU 

must have the capability to process incoming data regarding 
the available bandwidth of the NoC. Although this 
assumption is completely dependent of the application’s 
nature with its mapping onto the platform, two kinds of 
results can be expected when evaluating the performance. 
The first is the service performance provided by the RTOS 
while the second concerns the computation time of well-
known applications. The performance of basic RTOS 
operations has been measured and results are shown in Table 
III.  

TABLE III.  RTOS OPERATION PERFORMANCE 

 Start Rescheduling System Latency 
Time 

(clock cycles) 237,845 487 - 1307 305 

 
The RTOS takes 237,000 clock cycles to boot (i.e. about 

4.7ms at 50MHz). This time is required to initialize all 
services including the communication stack. The scheduler 
operation that consists on searching the task to be executed 
has been optimized. Hence, the rescheduling of a running 
task takes less than 500 clock cycles, while scheduling a 
different task takes around 1300 clock cycles since context 
switching is necessary. The system call latency is measured 
by the time that the RTOS service takes to handle an 
application request. 

The execution performance has been measured based on 
three applications: (i) an advanced encryption standard 
application (AES), (ii) a classical integer benchmark 
application (Dhrystone 2.1 [20]), and (iii) a video decoder 
(MJPEG). Processing time for these applications are shown 
in Figure 5. 

 

Figure 5 - Execution time for 3 applications for a standalone and Open-Scale 
RTOS. 

The standalone method shows results of an optimized 
execution without RTOS services and cache misses. RTOS 
execution presents a performance decrease of about 1.8 
times. This can be mainly explained by the fact that there are 
cache misses, while RTOS services consist in less than 3% 
of the execution time. Furthermore, memory allocation 
(Section IV.B), leads to misaligned applications that produce  
several cache misses. 

 
3) Communication 
To measure the communication performance, a simple 

application consisting of two tasks (sender/receiver) that 
exchange packets of 200 bytes continuously. Figure 6 depicts 
the communication delay (in clock cycles) between two 
send/receive calls considering three protocols: (i) RAW, (ii) 
UDP, and (iii) TCP. Note that the results are classified in 
four categories: (i) SEND-START that represents the 
number of necessary clock cycles to open the socket and to 
send the first packet, (ii) SEND that comprises the remaining 
packets sending, (iii) RECEIVE-START that is used to 
defined the socket opening and the receiving of the first 
packet, and (iv) RECEIVE that comprises the time of the 
remaining received packets.  

 
Figure 6 - Communication delay between send and receive calls regarding 

three protocols. 
 

The RAW protocol consists in bypassing the services 
provided by the communication stack in order to produce the 
highest bandwidth. For that reason, the RAW protocol 
provides lower communication latency results for the 
analyzed communication. For instance, regarding the SEND-
START communication scenario is observed a reduction of 
59% and 88%, respectively, when comparing the RAW to the 
UDP and the TCP protocols. In turn, the TCP protocol 
achieves the highest latency in the four send/receive 
communication scenarios.  

In general, sending functions are more time consuming 
than receiving functions, except for the beginning of 
transactions. This phenomenon can be explained by the 
latency caused by the FIFOs: receiving functions must be in 
blocking-mode waiting for the incoming packet before 
receiving and processing it. In this context, the RAW 
protocol achieves the highest bandwidth with 1.3MB/s at 
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50MHz while UDP and TCP protocols achieve 476KB/s and 
147KB/s respectively. 

However, it is important to mention that the RAW 
protocol does not provide any reliability once there is no 
checksum or CRC implementation. On the other hand, the 
UDP/TCP communication protocols provide the basic 
services such as opening/closing sockets, handshaking, and 
CRC error detection.  

V. CONCLUSION AND FUTURE WORK 
This work described a complete Open-Source framework 

for academic research and development of NoC-based 
MPSoC. Open-Scale join different features inherent to the 
state-of-the-art in MPSoCs design, which include: (i) 
customized RTOS implementation, covering important 
aspects like inter-task communication primitives, dynamic 
loader; (ii) NoC-based platform development; and (iii) 
hardware-software integration. These features were 
described and their design decisions were made targeting a 
scalable distributed memory MPSoC platform. 

Open-Scale brings important advantages in the MPSoC 
design field like run-time monitoring that allows optimized 
decisions distribution for different NPU at software level. 
Therefore, making it possible to explore the use of dynamic 
mechanisms (e.g. dynamic task mapping not explored in this 
work), while assessing performance figures using different 
benchmark applications together with a RTOS.      

Future works on this platform will include load balancing 
through task migration or frequency scaling, memory 
management and global cache-coherency, security 
development and reliability issues. More information about 
Open-Scale platform, as well as the open-source is available 
at: http://www2.lirmm.fr/openscale 
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