
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Hardware Design and Implementation of a Network-on-Chip Based Load Balancing Switch
Fabric

Permalink
https://escholarship.org/uc/item/4h05b812

Authors
Karadeniz, T.
Mhamdi, L.
Groossens, K.
et al.

Publication Date
2012

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4h05b812
https://escholarship.org/uc/item/4h05b812#author
https://escholarship.org
http://www.cdlib.org/

978-1-4673-2921-7/12/$31.00 c©2012 IEEE

Hardware Design and Implementation of a
Network-on-Chip Based

Load Balancing Switch Fabric

Turhan Karadeniz∗, Lotfi Mhamdi†, Kees Goossens‡ and J.J. Garcia-Luna-Aceves∗
∗Computer Engineering Department, University of California Santa Cruz

Email: tkaradeniz, jj@soe.ucsc.edu
†School of Electronic and Electrical Engineering, University of Leeds, UK

Email: l.mhamdi@leeds.ac.uk
‡Electrical Engineering Faculty, Technical University of Eindhoven, Netherlands

Email: k.g.w.goossens@tue.nl

Abstract—Network routers rely on an important hardware
component, namely the switch fabric, responsible for forward-
ing incoming packets to their respective output ports according
to a scheduling algorithm. A switch fabric mainly consists of
buffering memories for temporary queuing and the scheduling
unit(s) for forwarding.

In this paper, we revisit our previously proposed Network-
on-Chip (NOC) based switch fabric architecture and: 1)
propose an FPGA based hardware implementation of the
NOC switch; 2) carry out performance tests, both via RTL
simulations and actual execution on FPGA, under uniform
traffic flows; and 3) present results in terms of throughput,
average latency, and average bitrate. Our results show that
our architecture i) performs as good as other buffering
schemes/scheduling algorithms that theoretically achieve 100%
throughput, ii) is at least as scalable as other architectures in
terms of hardware cost, iii) is perfectly implementable and iv)
introduces NOC concepts, which have originally been borrowed
from computer networks, back into computer networks.

Keywords-Switch fabric; computer networks; router; Net-
work on Chip; NOC; FPGA; scheduling

I. INTRODUCTION

In today’s world, billions of users all over the world are
connected through networks of different sizes, purposes and
scopes. It might be a local area network (LAN), the Internet
backbone, infrastructure nodes of a wireless network, or
hosts in an ad-hoc network that act like routers for forward-
ing packets, which connect a number of nodes or networks.

The communication in between the nodes/networks is
realized by a broad and diverse body of electronic and
optical technology. The routers carry out the task of con-
necting two or more nodes/networks, and perform two
important functions: routing path determination, computing
the route of a packet that has been injected in the router, and
packet forwarding, transmitting the packet to the destination
address. The switch fabricis a key building block of a router,
which implements the latter function. When a packet is
injected into the router, it is stored in a buffering memory;
its corresponding output port is computed; and finally the
packet is forwarded through the output port to its next hop,

according to a scheduling algorithm. A switch fabric consists
of buffering memories for temporary storage, scheduling
unit(s) for forwarding, and other computational components
that facilitate these tasks.

The routers need to support high bandwidths, in order not
to become the bottleneck in the communication themselves.
The switch fabric, being the key component in a router,
constitutes an important part of the router design effort,
and therefore it remains to be an open research problem.
The switch fabric design consists of architecture design
and scheduling algorithm design. The architecture design is
about interconnect topology and the buffering memory or-
ganization. The scheduling algorithm carries out the task of
deciding which packet is to be forwarded, in case a number
of packets compete for the same output port, resulting in
contention; one of these packets will be forwarded, whereas
others will need to be stored in the buffering memory, until
later rounds.

The rest of the paper is organized as follows: in Section
2, we present the background information and the related
literature. This section includes the information on various
architectures that historically have been the milestones in the
network switch design. Also, the Network-on-Chip (NOC)
related concepts are described. In Section 3, we present our
switch fabric architecture and its corresponding hardware
implementation; the organization of components such as
the buffering memory, Network Interfaces (NI) and Mini-
Routers (MR); the routing algorithm (among MRs); and
finally the scheduling algorithm. In Section 4, we present
the RTL synthesis, RTL simulation and the actual execution
results on FPGA. Section 5 concludes the paper.

II. RELATED WORK

A. The Switch Fabric

The switch fabric is one of the most important building
blocks of a network router. Moreover, it requires the imple-
mentation of a scheduling unit, which regulates and grants

permission for the pairing of input-output ports and buffers
in between.

The main design challenges for implementing switch
fabrics include bandwidth, latency, scheduling algorithms,
interfacing, and routing algorithms as in NOC based so-
lutions. Several switch fabric architectures have been pro-
posed, including the crossbar [1], shared-bus [2] and shared-
memory [3] switches, which deal with these design chal-
lenges in various ways. The crossbar switch is the dominant
architecture in today’s high-performance switches, due to
a number of reasons: crossbar switch is more scalable
than the shared-bus and shared-memory; this is due to the
limitations in bus transfer bandwidth and memory access
bandwidth, respectively. Crossbar switch provides point-
to-point connections and non-blocking properties, as well
as supporting multiple simultaneous transactions, increasing
the bandwidth and speed of the router [4].

The FIFO scheduling, perhaps the simplest scheduling
scheme for input buffering suffers head-of-line (HOL) block-
ing, where a packet at the head of the queue cannot be
delivered, and therefore blocks the others behind it, re-
sulting in throughput decrease (58.6%), increased delays,
and congestion. A number of algorithms/architectures were
proposed in order to remediate this shortcoming, including
PIM, RRM, iSLIP [5][6][7], based on virtual output queues
(VOQ), claiming a theoretical 100% throughput.

Another proposal, the load-balancing switch [8], claims
greater scalability. VOQ architectures do not scale optimally
as the number of ports is increased, and therefore become
impractical. The load-balancing switch architecture does not
have a scheduler, at the cost of duplicating the packets within
the switch fabric.

B. Network-on-Chip

1

N

Link Router
Network
Interface

Figure 1. NOC Switch Fabric

Network-on-chip, a relatively new concept that emerged
as a system-on-chip (SOC) communication methodology,
borrows many ideas from the computer networks, the do-
main in which the research on routers and packet switching
has matured. However, they need to be adapted, since there
is no direct translation of these methodologies.

Figure 1 represents a NOC router, in the form of a regular
N-by-N mini-router (MR) mesh. Computational cores in a
SOC are connected to each other via this communication
fabric, composed of network interfaces (NI), and MRs.

The NIs act as an abstraction layer between the compu-
tational cores and MRs. The data to be communicated in
between these cores are packetized in NIs and transmitted
to the next-hop router, in equally sized flits.

An MR might have multiple packets in the buffers com-
peting for the same output port, resulting in contention.
A scheduling algorithm computes which packet has to
be forwarded prior to the other packets. The arbiter, the
hardware embodiment of the scheduling algorithm, makes
a link in between the chosen buffer and output port, such
that the packet is forwarded. In this paper, the scheduling
and arbitration terms are used interchangeably. Round Robin
offers fair scheduling, assigning each resource equal usage
in circular order, which results in a starvation-free system.

The communication through the NOC is pipelined auto-
matically due to the nature of the point-to-point commu-
nication in between MRs. In this way, the critical path is
restricted to the control signals in the switch NOC fabric,
improving the scalability and throughput.

Some other important concepts in NOC are topology, rout-
ing, flow control, buffer management, quality of service and
network interfaces and they have been studied in acclaimed
proposals such as Aetherial [9], Nostrum [10], Xpipes [11],
Intel 80 Core NOC [12], and Mango [13]. They all make
different design decisions, to achieve their design goals.

Mesh-based NOC architectures and NOC routing algo-
rithm have been discussed in various other publications,
including [14], [15], [16], [17].

C. Network-on-Chip Based Switch Fabric

Recently, functional-level designs of two novel Network-
on-Chip (NOC) based switch fabric architectures were pro-
posed: Unidirectional NOC (UDN) and Multidirectional
NOC (MDN) [18][19], as a replacement of the buffered
crossbar switch fabric architecture (Figure 2), targeting
greater scalability and flexibility, as well as greater per-
formance per hardware cost, compared to buffered crossbar
switch fabric.

The crossbar-based switch fabric architectures offer very
high performance and are widely used in high-performance
routers. However, their cost grows quadratically with the
input/output port count, since they require internal cross-
points (and buffers) for every input/output port pair. The
UDN proposal decouples the number of ports from the cost
growth, and therefore is able to achieve subquadratic growth.
The MDN, in return, is quadratic, however it achieves greater
performance/cost ratio, for smaller number of ports. Both of
the proposals introduce load-balancing without duplicating
the packets, which in turn improves the throughput and
latency.

Line Card

Line Card

R
o

u
ter P

h
ysical P

o
rts

Routing
Decision

Switch Fabric

1 1

N N

1

N

1 N

Buffered Crossbar Switch Fabric

Line Card

Line Card

R
o

u
ter P

h
ysical P

o
rts

Routing
Decision

Switch Fabric

1 1

N N

NoC Based Crossbar Switch Fabric

1

N

Figure 2. Buffered Crossbar and NOC Based Crossbar Switch Architec-
tures

NOC, a paradigm of on-chip communications, with its
basic concepts borrowed from computer networks, is pro-
posed to be applied back to its original domain, to remedy
some shortcomings in the switch fabric design. In regard to
this matter, the basic building blocks of NOC, including the
buffers, flow control, arbitration and routing decision units
need to be used in the correct combination of schemes/spec-
ifications, to be able to provide a competitive solution.

III. HARDWARE DESIGN

A. UDN and MDN Architectures & Algorithms

The block diagrams for UDN and MDN switch archi-
tectures are presented in Figure 3 and Figure 4. The main
difference among the two switch fabrics is how their in-
put/output pins are placed in the layout. In UDN, the input
pins are placed on the west side of the layout, whereas the
output pins are on the east side. On the other hand, in the
MDN switch, the pins are placed all around the peripheral,
where input and output pins are next to each other. UDN
MRs have either 2 or 3 I/O ports, whereas MDN MRs have
4 I/O ports.

RInput 1 R R R

R R R R

R R R R

R R R R

NI

NI

NI

NIInput N

Output 1

Output N

NI

NI

NI

NI

M Router Columns

Figure 3. UDN Architecture

RNI

NI

I/O 1

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

NI NI NI

NI NI NI NI

NI

NI

NI

NI

NI

NI

NI

I/O 2

I/O 3

I/O N/4

I/O 3N/4

I/O 3N/4 - 1

I/O N/2 + 1

I/O
N/4 + 1

I/O
N/4 + 2

I/O
N/4 + 3

I/O
N/2

I/O 3N/4 - 2

I/O
N

I/O
N - 1

I/O
N - 2

I/O
3N/4 + 1

Figure 4. MDN Architecture

The UDN and MDN switch architectures have the same
NOC specifications. The switching mode is store and for-
ward. We choose to apply buffered flow control, imple-
mented by FIFO input buffers. Buffered flow control requires
a (buffer management/backpressure) mechanism, which we
choose to be the valid/accept scheme, instead of the credit-
based scheme in the original proposal [18], in order to
decrease inter-MR communication overhead. The buffer size
is four packets. The scheduling is based on iSLIP [7].
XY Modulo Algorithm allows deterministic and adaptive
routing within the MR mesh, where routing path decision
is made in an incremental fashion, at each MR. We choose
to implement our switch fabric for fixed-length packets, for
simplicity.

The size of the UDN switch, as shown in Figure 3,
is defined by the 2-tuple (N, M), where N denotes the
number of input-output ports, and M denotes the number
of MR columns. Some restrictions apply to (N, M) values:
N ∈ N, and N≥ 2; M ≤ N and M = 2m, where m
∈ N0. The restrictions on M are caused by the routing
algorithm involving Modulo M operations (See Section III-F
and [18]). Because Modulo M operation requires division
in case M 6= 2m, but it is a simple bit-selection operation in
case M = 2m, we can avoid the extra cycles caused by the
division operation by applying this restriction. With some
minor modification in the routing algorithm, M = N - 1 ⇒
N = 2n, where n ∈ N1 is also a possible (N, M) combination.
The number of routers in the UDN switch is equal to N ×
M.

The size of the MDN switch, as shown in Figure 4, is
a function of N, which denotes the number of input/output
ports. Because the input/output ports are placed around the
peripheral of the switch, some restrictions apply to N: N =
4 × n, where n ∈ N1 . The input/output ports are placed
counter-clockwise, starting from the West side of the layout.
The ports in between 1 and (N/4) are placed on the West;
(N/4 + 1) and (N/2) on the South; (N/2 + 1) and (3N/4) on
the East; and (3N/4 + 1) and N on the North side of the
layout. The number of routers is equal to (N/4)2.

In the UDN and MDN switch design, the same network
interface, flow control unit, and buffering memory modules
are used. The UDN and MDN MRs are different, due to the
different number of ports.

The UDN is a deadlock-free architecture due to its uni-
directional nature, whereas the possibility of deadlocks in
MDN are avoided with the use of virtual channels [20].

B. Input Buffers (FIFOs)

The input buffer is implemented as a circular queue. The
read/write register positions are marked by the Read Pointer
(RP) and Write Pointer (WP). During a write operation, the
data is written into this register, and the WP is incremented.
In the same way, after a successful read operation, the
RP is incremented to point to the following data. Status
register (SR) is incremented after each write operation and
decremented after each read operation. If SR = 0, then the
buffer is empty (Empty Status Signal is set); therefore there
cannot be made any read operations. If SR = Buffer Size,
then the buffer is full (Full Status Signal is set); therefore no
more write operations are allowed until SR is decremented.
The Empty Status Signal informs the packet forwarding
unit (PFU) in the current module (NI or Routers) about the
availability of a valid packet for a read operation. The Full
Status Signal generates Accept Signal, which informs the
previous module’s (NI or MR) PFU about the availability of
buffer space.

C. Network Interface (NI)

The Network Interface (NI) is the module that acts as
an abstraction layer in between the network protocol and
internal UDN/MDN switch protocols. There are two types
of NI: Input NI (INI) (Figure 5) and Output NI (ONI).
When a packet is injected into the switch, INI encapsulates
(packetizes) them into U(M)DN packets, and transmits them
to the next router, in equally sized flits. ONI, in return,
receives the U(M)DN flits, strips (depacketizes) the original
packet, and ejects it from the switch.

INI Input
BufferATM in

Packetizer

Flit 1

Flit 2

Flit 3

Packet
Forwarding

Unit

Flit Out

Accept In

RdEn

Accept Out

WrEn

ATM U(M)DN

FIFO
Empty

WrEn Out

Figure 5. Input Network Interface Block Diagram

D. UDN 3 I/O MR

The block diagram for a 3 I/O Port Router is given in
Figure 6. There are 3 input ports, West, North and South;
and there are 3 output ports, East, North and South. The

router input buffer modules are placed at each input port,
whereas the PFUs are placed at each output port. At each
round, the arbiter virtually connects input ports to output
ports, according to the scheduling algorithm.

Router Input
Buffer

Flit 1

Flit 2

Flit 3

Flit Out

Shift

Accept Out

R
o

u
ter In

p
u

t
B

u
fferSh

ift

A
cc

ep
t

O
u

t

R
o

u
ter In

p
u

t
B

u
fferSh

ift

A
cc

ep
t

O
u

t

Fl
it

 1

Fl
it

 2

Fl
it

 3

Fl
it

 O
u

t

Flit 1

Flit 2

Flit 3

Fl
it

 O
u

t

Routing
Decision &
Forwarding

EA
ST

NORTH

SOUTH

W
ES

T Flit In

Fl
it

 In

Fl
it

 In

W
rE

n
 O

u
t

A
cc

ep
t

In

W
rE

n
 In

WrEn Out

Accept In

W
rE

n
 O

u
t

A
cc

ep
t

In

W
rE

n
 In

WrEn In

Figure 6. 3 I/O Port UDN Router, Top-Level Block Diagram

E. MDN 4 I/O MR

The MDN architecture is based on UDN; therefore, most
of the UDN modules are also being used in the MDN switch,
including NIs, PFUs and Input Buffer. The arbiter is also
very similar in terms of basic principles, however it is more
complex due to handling the connectivity between four input
buffers and four PFUs. Moreover, MDN requires virtual
channels to avoid deadlocks: WEST, NORTH and SOUTH
input ports of the WEST-most MR column; EAST, NORTH
and SOUTH input ports of the EAST-most MR column; and
NORTH and SOUTH ports of the other MDN MRs have a
pair of buffers, demuxed at their input and muxed at their
output (Figure 7). In the functional-design proposal [18], the
virtual channels are not muxed; however this results in the
arbiter handling seven pairings, rather than four, and thus
not feasible in terms of an actual hardware implementation.

F. Modulo XY Routing Algorithm

Both UDN and MDN routing algorithms are based on
modulo operation. The algorithms make a balanced distri-
bution of the traffic over the columns or rows, thus earning
its name XY Modulo; this means that the modulo operation
is applied if the communication is on the X axis (from MR’s
West Input Port to MR’s East Output Port as in UDN and
MDN, or from MR’s East Input Port to MR’s West Output
Port or vice versa as in MDN) or on the Y axis (from MR’s

Flit 1

Flit 2

Flit 3

Packet
Forwarding

Unit

Flit Out

Accept In

RdEn

Accept Out

WrEn

U(M)DN

FIFO
Empty

WrEn Out

Flits in

MDN Router
Virtual Channel

Arbiter

Figure 7. Virtual Channel for an Input Ports of MDN Router

M N O P

I J K L

E F G H

A B C D o0

o1

o2

o3

i0

i1

i2

i3

Figure 8. XY Modulo Routing

North Input Port to MR’s South Output Port, or vice versa, as
in MDN). In Figure 8, we exemplify the XY Modulo routing
on the X axis, where packets are injected into the switch
from i0 input port, with destinations to the o0 - o3 output
ports. The packets are routed on different router columns per
input/output port pairs, distributing the load on the switch.

G. Scheduling Algorithm

INPUT PORTS OUTPUT PORTS

W

N

S

E

N

S

Figure 9. Bipartite Graph Matching Problem in UDN

The scheduling unit resolves the contention among the
input buffers of a router, competing for the same output
port, as well as controlling the arbiter to virtually connect
the chosen input buffer to the output port.

The scheduling of the UDN switch is a bipartite graph
matching problem. This can be formulated as G = (I, O, E)
where I denotes input ports (W, N, S), O denotes output
ports (E, N, S) and E denotes the edges. The graph is
a directed graph. The unmatched graph is presented in
Figure 9. Similarly, MDN scheduling is a H = (I’, O’, F); I’
= (W, E, N, S), O’ = (W, E, N, S) and F denotes the edges.
The scheduling is based on the iSLIP algorithm [7] running
a single round.

Table I
SYNTHESIS RESULTS FOR INDIVIDUAL UDN/MDN MODULES

Module Name Size (# of Slice LUTs) Max Frequency

as LUTs as Regs (MHz)
NI Buffer 1278 853 734.7
Input NI 359 857 597.229
Output NI 450 857 510.843
XY MODULO 2 - -
Router Buffer 531 1016 508.414
Virtual Channel 532 1016 508.414
Router (2 I/O Port) 1679 2045 269.485
Router (3 I/O Port) 3073 3073 257.107
Router (4 I/O Port) 6197 4112 255.115

IV. SIMULATIONS, EXECUTION & RESULTS

A. RTL Synthesis

The RTL synthesis is carried out on Xilinx ISE 11.1, using
Xilinx Synthesis Technology (XST) tool, with the settings
‘Optimization Goal: Speed’, ‘Optimization Effort: Normal’
and ‘Keep Hierarchy: No’. The specific FPGA device is
Virtex 5 - XC5VTX240T, FF1759, -2.

The XST tool reports the area results in terms of ‘Number
of Slice LUTs’ and ‘Number of Slice Registers’, unlike the
results for older platforms like Virtex 4, which reported a
single value for slice usage; therefore, all the performance
& cost analysis will be reported in 2-tuple. We do not
present the results in metrics such as logic cell count, gate
count or ASIC area size, since the design is made for the
reconfigurable platforms, and the conversions from FPGA
metrics are not meaningful, even in terms of providing
estimates.

The modules that constitute the UDN/MDN switches
have different tasks and therefore different weights on the
combinational and sequential circuits. This can be observed
by comparing the weights of the number of LUTs and
Registers for any module. The synthesis results of the
individual modules are given in Table I.

Synthesis results show that the frequency of the UDN
switch fabric is independent of M. In Table II we present
frequency results for various (N, 1) UDN and (N) MDN
switches. (N, N-1) UDN has higher operational frequencies
than the corresponding (N) MDN switch, at the expense of
greater cost per port number. UDN arbiter is responsible for
three I/O ports, whereas MDN’s is responsible for four ports,
resulting in longer critical path. The (8, 7), (16, 15), (32, 31)
UDN switches require more than 100% of the resources on a
Virtex-5 (XC5VTX240T, FF1759, -2), and therefore cannot
be placed on the FPGA. On the other hand, only (32) MDN
switch cannot be placed on the FPGA.

The UDN vs. MDN switches comparison is tabulated in
Table III. The cost of the UDN switch is a function of the
product of N and M, with M varying from any small number
to N-1. The UDN cost growth is only quadratic in the worst
case of M = N-1 (yielding the greatest throughput); however
keeping M small, it’s possible to keep the growth sub-

Table II
COMPARISON OF SYNTHESIS RESULTS, I

Switch Sizes # of Slice LUTs # of Slice REGs

UDN MDN UDN MDN UDN MDN
(4, 3) 4 31759 8933 37590 10969
(8, 7) 8 179978 30387 171508 30153

(16, 15) 16 762421 108996 734114 93203
(32, 31) 32 3137269 410697 3039532 318016

Switch Sizes Frequencies

UDN MDN UDN MDN
(4, 3) 4 290.252 250.591
(8, 7) 8 283.168 240.667

(16, 15) 16 252.139 212.227
(32, 31) 32 220.146 173.214

quadratic, unlike the crossbar switch fabric, while achieving
acceptable throughputs. The MDN yields quadratic growth
of (N/4)2. Even though the 4 I/O Port MDN MR consumes
twice the amount of resources as the 3 I/O Port UDN MR,
and 3.5 times as the 2 I/O Port UDN MR, the comparison of
the overall UDN and MDN switch fabrics show that MDN
is more cost efficient, for small N values. On the other
hand, the operational frequencies of the MDN switches of
various sizes are below the operational frequencies of the
UDN switches, which would affect the performance.

Table III
COMPARISON OF SYNTHESIS RESULTS, II

Arbiter Size MR Size MRs Cost Increase
(LUTs/REGs)

UDN 3 3073/3073 N×M Subquadratic
MDN 4 6197/4112 (N / 4)2 Quadratic

B. Simulation

The simulations were carried out on RTL descriptions
of hardware components, with functional models of traffic
generators/sinks. For the UDN, M=N-1 yields the greatest
throughput for all N values; therefore, in this section M
is always chosen to be N-1. The throughput for (N, N-
1) UDN switches, under uniform traffic, is 99.54% and
97.34%, where N=4 and N=32 respectively. The throughput
for (N) MDN switches, under uniform traffic, is 98.23% and
96.12%, where N=4 and N=32 respectively. The average
latency for (N, N-1) UDN switches, under uniform traffic,
is 10.8 and 94.7 cycles/‘Number of flits a packet is divided
to’, where N=4 and N=32 respectively. The average latency
for (N) MDN UDN switches, under uniform traffic, is 14.2
and 126.7 cycles/‘Number of flits a packet is divided to’,
where N=4 and N=32 respectively.

For the bitrate computations, we use both the frequency
results of the RTL synthesis, as well as the RTL simulation
results. The UDN offers 6.56 and 42.12 Gbytes/sec aggre-
gate bandwidth for (4, 3) and (32, 31) UDN switches; which

imply 1.64 and 1.32 Gbytes/sec bandwidth per port, respec-
tively. On the other hand, the MDN offers 5.22 and 21.36
Gbytes/sec aggregate bandwidth for (4) and (32) switch
sizes; which imply 1.31 and 0.67 Gbytes/sec bandwidth
per port, respectively. High performance Ethernet cables
offer 1.25 Gbytes/sec bandwidth; therefore, the UDN switch
proves to be a competitive architecture to comply with
the market products, whereas MDN’s performance does not
match this bandwidth, as the number of input/output ports
is increased.

C. Validation on FPGA

The UDN switch (N, M) = (4, 3) has been validated on
Virtex 5-XC5VTX240TFF1759-2. Each input port of the
switch fabric is connected to a linear feedback shift register
(LFSR) based pseudo-random packet generators.

The packet generators and switch fabric are initially idle.
Once the PowerPC CPU is initiated and our validation soft-
ware starts to run, a trigger register is set to 1, which starts
the packet generation. The headers of the incoming packets
are written on a dual port RAM, which can be accessed
by the CPU. When the packets are transmitted through the
destination output port, their headers are also written to the
dual port RAM. In this way, the validation software can
compare the inbound and outbound packets, and verify if the
system works correctly. With this approach, we were able
to validate that all the packets have been switched correctly
and that the simulation results hold correct.

Using this system, we also carried out some performance
analysis. Once the system has been run a certain period
of time, the trigger register was reset, stopping the packet
generation. Measuring the time period (in terms of cycles) in
between the set and reset of the trigger register, it has been
observed that the performance on the FPGA matches the
simulation results. The error percentage is ˜9%, for latency
and throughput measurements, which are mainly due to: 1)
pseudo-random generation based on LFSR is not uniform,
therefore number of generated 1 and 0s are not equal; and
2) measurement of time period is not accurate.

V. CONCLUSION

In this paper, we proposed the hardware design and imple-
mentation of the two NOC based switch fabric architectures
(UDN and MDN) for FPGA. We further improved the
routing and scheduling algorithms, for the feasibility of their
hardware design. The synthesis and RTL simulations are
carried out over a range of switch sizes. The simulation re-
sults are also validated on FPGA, with packets generated by
LFSR based pseudo-random traffic generators. The results
show that UDN outperforms MDN in terms of throughput,
whereas MDN offers greater performance-cost ratio. UDN’s
high performance makes it suitable for performance critical
cases, whereas MDN is a better solution for cases that
require cost efficiency. Both architectures offer scalability,

flexibility and high performance, confirming the ideas in the
original proposal [18].

The results show that our architecture 1) performs as
good as other buffering schemes/scheduling algorithms that
theoretically achieve 100% throughput, 2) is at least as
scalable as other architectures in terms of hardware cost,
3) is perfectly implementable, 4) implements load-balancing
by nature and 5) introduces NOC concepts, which have
originally been borrowed from computer networks, back into
computer networks.

The UDN and MDN NOC switches would benefit from
fault-tolerance, which can be implemented by exploiting
FPGAs’ property of dynamic reconfigurability. In case of
a malfunctioning MR, other UDN and MDN MRs could
be reconfigured to route the packets through an alternative
path. This is left as future work, to improve the systems’
performance, reliability and service capability further.

REFERENCES

[1] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and
M. Horowitz, The Tiny Tera: A Packet Switch Core. 1996.

[2] D. Torres, J. Gonzalez, M. Guzman, and L. Nunez, “A new
bus assignment in a designed shared bus switch fabric,” in
Circuits and Systems, 1999. ISCAS ’99. Proceedings of the
1999 IEEE International Symposium on, vol. 1, pp. 423–426
vol.1, 1999.

[3] H. Kuwahara, N. Endo, M. Ogino, T. Kozaki, Y. Sakurai,
and S. Gohara, “A shared buffer memory switch for an ATM
exchange,” in Communications, 1989. ICC ’89, BOSTON-
ICC/89. Conference record. ’World Prosperity Through Com-
munications’, IEEE International Conference on, pp. 118–122
vol.1, 1989.

[4] L. Mhamdi, “PBC: A partially buffered crossbar packet
switch,” IEEE Transactions on Computers, vol. 50, pp. 1568–
1581, November 2009.

[5] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker,
“High-speed switch scheduling for local-area networks,” ACM
Transactions on Computer Systems, vol. 11, pp. 319–352,
Nov. 1993.

[6] N. McKeown and T. E. Anderson, “A quantitative comparison
of iterative scheduling algorithms for input-queued switches,”
COMPUTER NETWORKS AND ISDN SYSTEMS, vol. 30,
pp. 2309—2326, 1998.

[7] N. McKeown, “The iSLIP scheduling algorithm for input-
queued switches,” IEEE/ACM Transactions on Networking,
vol. 7, pp. 188–201, Apr. 1999.

[8] I. Keslassy, C.-S. Chang, N. McKeown, and D.-S. Lee,
“Optimal load-balancing,” in Proceedings IEEE INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 3, pp. 1712– 1722 vol.
3, IEEE, Mar. 2005.

[9] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal net-
work on chip: concepts, architectures, and implementations,”
Design & Test of Computers, IEEE, vol. 22, no. 5, pp. 414–
421, 2005.

[10] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed
bandwidth using looped containers in temporally disjoint
networks within the nostrum network on chip,” in Design,
Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, vol. 2, pp. 890–895 Vol.2, 2004.

[11] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and
L. Benini, “Xpipes: a latency insensitive parameterized
network-on-chip architecture for multiprocessor SoCs,” in
Computer Design, 2003. Proceedings. 21st International Con-
ference on, pp. 536–539, 2003.

[12] T. Mattson, R. Van der Wijngaart, and M. Frumkin, “Program-
ming the intel 80-core network-on-a-chip terascale processor,”
in High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. International Conference for, pp. 1–
11, 2008.

[13] T. Bjerregaard and J. Sparso, “A router architecture for
connection-oriented service guarantees in the MANGO clock-
less network-on-chip,” in Design, Automation and Test in
Europe, 2005. Proceedings, pp. 1226–1231 Vol. 2, 2005.

[14] D. Wiklund, A. Ehliar, and D. Liu, “Design of an internet
core router using the SoCBUS network on chip,” in Signals,
Circuits and Systems, 2005. ISSCS 2005. International Sym-
posium on, vol. 2, pp. 513 – 516 Vol. 2, July 2005.

[15] A. Ehliar and D. Liu, “An FPGA based open source network-
on-chip architecture,” in Field Programmable Logic and
Applications, 2007. FPL 2007. International Conference on,
pp. 800 –803, Aug. 2007.

[16] G. Luo-Feng, D. Gao-ming, Z. Duo-Li, G. Ming-Lun,
H. Ning, and S. Yu-Kun, “Design and performance evaluation
of a 2D-mesh network on chip prototype using FPGA,” in
Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific
Conference on, pp. 1264 –1267, Dec. 2008.

[17] S. Asghari, H. Pedram, and M. Khademi, “A flexible design of
network on chip router based on handshaking communication
mechanism,” in Computer Conference, 2009. CSICC 2009.
14th International CSI, pp. 225 –230, Oct. 2009.

[18] K. Goossens, L. Mhamdi, and I. Senin, “Internet-router
buffered crossbars based on networks on chip,” in Digital
System Design, Architectures, Methods and Tools, 2009. DSD
’09. 12th Euromicro Conference on, pp. 365–374, 2009.

[19] L. Mhamdi, K. Goossens, and I. V. Senin, “Buffered crossbar
fabrics based on networks on chip,” in Communication Net-
works and Services Research Conference (CNSR), pp. 74–79,
11-14 May 2010. 10.1109/CNSR.2010.18.

[20] W. Dally and C. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” Computers, IEEE
Transactions on, vol. C-36, no. 5, pp. 547–553, 1987.

