
1

Hardware Implementation of the GPS authentication
Mickaël Dardaillon, Cédric Lauradoux and Tanguy Risset

Université de Lyon, INRIA,
INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France

Emails: {mickael.dardaillon, tanguy.risset}@insa-lyon.fr, cedric.lauradoux@inria.fr

Abstract—In this paper, we explore new area/throughput trade-
offs for the Girault, Poupard and Stern authentication protocol
(GPS). This authentication protocol was selected in the NESSIE
competition and is even part of the standard ISO/IEC 9798.
The originality of our work comes from the fact that we
exploit a fixed key to increase the throughput. It leads us to
implement GPS using the Chapman constant multiplier. This
parallel implementation is 40 times faster but 10 times bigger
than the reference serial one. We propose to serialize this
multiplier to reduce its area at the cost of lower throughput.
Our hybrid Chapman’s multiplier is 8 times faster but only
twice bigger than the reference. Results presented here allow
designers to adapt the performance of GPS authentication to
their hardware resources. The complete GPS prover side is also
integrated in the network stack of the PowWow sensor which
contains an Actel IGLOO AGL250 FPGA as a proof of concept.

Keywords-GPS, parallel/serial implementation, multiplication
by a constant.

I. INTRODUCTION

A current trend in cryptography is the design of primitives
with a low-cost implementation. Lightweight cryptography [1]
is interested in metrics such as the circuit area, energy
consumption or code size. The Girault, Poupard and Stern
authentication protocol (GPS) is one of the oldest lightweight
primitives which has been recommended by the European
project NESSIE [2] and appeared in the ISO/IEC 9798-5
standard [3]. GPS is a reference in the domain of lightweight
authentication and the existing implementations aim to reduce
as much as possible the area. In this paper, we explore the
trade-off between speed and area in the implementation of
GPS.

Implementing GPS consists in designing an adder and a
multiplier. The latter is the most critical part in a GPS core.
Three typical strategies can be followed to implement this
core: serial, parallel and a trade-off between the previous two
that we designate by hybrid. The serial implementation based
on shift-and-add has been already covered in [4] and is the
baseline for area. The other two strategies have not yet been
studied. The parallel implementation is the traditional method
to achieve the best speed at the drawback of a large area. The
hybrid implementation in our paper is in fact a serialization of
the parallel approach that takes advantage of hardware repeti-
tion. It provides a trade off between serial/parallel approaches
by executing chunks of parallel multiplication.

This work is partially supported by Région Rhône Alpes ADR 11 01302401.

To implement a parallel implementation of GPS, we face
a big challenge: implementing parallel multiplier with large
variable operands is out-of-question. To overcome this limita-
tion, we have specialized our parallel and hybrid implemen-
tations for a specific key. The complexity of our multiplier is
therefore reduced to the implementation of a multiplier by a
constant [5].

We attempt to integrate our different implementations in the
network stack of the wireless sensor platform PowWow. This
platform embeds an Actel IGLOO FPGA with a 8 MHz clock
cycle. Our simulation results for a security level of 128-bit
show that the parallel implementation of GPS with a secret
takes 1µs against 42µs for the existing serial implementation
at 8 MHz. However, it does not fit within the FPGA. The
integration of GPS into our platform is only possible for hybrid
and serial implementation.

We note that the basic GPS protocol requires a 320µs
response time, but McLoone and Robshaw circumvent this
difficulty by using a different protocol in their article [4] with a
18ms latency. Our implementation fulfil the 320µs constraint
for all architectures at 8 MHz, and would help reach this goal
at a lower frequency for parallel and hybrid implementations.

The rest of this paper is organized as follows. The GPS pro-
tocol is reminded in Section II. The Section III describes the
existing serial implementation of GPS. The main contributions
of the paper are given in Section IV and V with the description
of the parallel and hybrid implementation. The performances
are compared and analyzed in Section VII.

II. GPS PROTOCOL

The GPS authentication protocol [2] is an interactive zero-
knowledge authentication protocol initially proposed by Gi-
rault, Poupard, and Stern [6]. It provides provable security
based on the composite discrete logarithm problem. It also
combines short transmissions and minimal on-line computa-
tion, using precomputed “coupons”. This protocol has been
selected in the NESSIE portfolio [7] and it is mentioned in the
ISO/IEC 9798-5 Clause 8 [3] as a reference. Throughout the
paper, we implicitly refer GPS as this variant “with coupons”.

a) Description: The parameters used in this protocol are
the following:
• S, C, D are public integers, where |S| ≈ 180 bits1, |C| =

32 and |D| = |S|+ |C|+ 80,
• n = p × q is a public composite modulus, where p and
q are secret primes, |n| = 1024, |p| = |q| = 512,

1In all the paper we use the notation |X| for the size in bits of number X978-1-4673-2921-7/12/$31.00 c©2012 IEEE

ar
X

iv
:1

30
9.

64
68

v1
 [

cs
.C

R
]

 2
5

Se
p

20
13

2

• g is an element of Z∗n,
• Φ = (C − 1)× (S − 1),
• s ∈ [0, S[and I = g−s mod n,
• a coupon i is a couple (ri, xi = gri mod n), where
ri ∈ [0, D[is a random number.

At the beginning, the prover P has a unique identifier IdP ,
a unique pair of keys (the private s and the public I) and a set
of coupons c computed by a higher trusted entity. The verifier
V knows the prover’s identifier and public key.

Verifier V Prover P
IdV , I IdP , s, I, c

IdP , xi←−−−−−−−−−− (1)

(2) nV−−−−−−−−−−−→
(4)

y←−−−−−−−−−−− (3)

Fig. 1. The GPS protocol.

GPS, depicted in Fig. 1, works as follows.

(1) The prover P chooses a coupon (ri, xi), and sends its
identifier IdP and xi to the verifier R.

(2) The verifier answers a challenge nV randomly chosen
in the interval [0, C[.

(3) The prover computes y = ri + nV × s, and sends y to
the verifier.

(4) The verifier checks if:
• gy × InV mod n = xi,
• y ∈ [0, D + Φ[.

The arguments supporting the security of GPS can be found
in [2], [6]. They are not included because the security of GPS
is not affected by our results.

In the remaining of the paper, s is named the secret, nV is
named the challenge and ri the commitment (see [2]).

b) Existing implementation: GPS authentication has
been designed for constraint embedded systems such as smart
cards, RFID or sensors networks. The critical part for the
implementation is on the prover side assuming that the verifier
(RFID reader or a base station) suffers from less restriction.

Two steps are critical for the prover: the computation of xi
(Step (1)) and y (Step (3)). The computation of xi is the most
expensive one (exponentiation) but the prover has nothing
to do thanks to the coupons (pre-computation). Therefore,
the last remaining cost is the Step (3) which consists of the
multiplication by s and the addition of ri. The multiplication
by s is the most complex due to the size of the multiplicands.

GPS was first designed for smart cards [6]. McLoone and
Robshaw proposed in [4], [8] the first hardware implemen-
tation of GPS. Their solution is based on the shift-and-add
algorithm for multiplication. It offers a very small hardware
footprint. This implementation is described in Section III and
it serves as the reference in our comparison.

Girault and Lefranc [9] proposed a variant of GPS which
exploits low Hamming weight secret s. The multiplication is
transformed in an addition when the secret is chosen properly.
This variant can significantly reduce the cost of GPS. However,

this solution was subsequently attacked in [10], and it is not
considered in this work.

In the following sections, the different architectures for GPS
are explored. Two criteria are examined: area and speed. A
cryptographic design can be tuned for a specific key or support
any value for the key. Throughout this paper, fixed-key and
variable-key implementation are considered.

III. SERIAL IMPLEMENTATION

101001
× 110

1× 101001× 100 → + 101001 . .
1× 101001× 10 → + 101001 .
0× 101001 → 000000

11110110

Fig. 2. Shift-and-add classical binary multiplication.

McLoone and Robshaw have proposed in [4] the reference
serial implementation of GPS. This architecture is based on
the classical shift-and-add multiplication (Fig. 2). The core of
the design is a 16-bit adder. The product nV ×s is decomposed
into a succession of 16-bit additions. The same 16-bit adder
is re-used to perform the final addition nV × s+ ri in 16-bit
chunks.

nV

ri

control logic/
32

s

000
/
16

/
16

/
16

y/
16

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

011011 . . .

/1
/
15

/
16

Figure 1: Serial architecture

1

Fig. 3. GPS serial implementation for a 128-bit secret and a 16-bit adder
(from [4]).

The architecture of McLoone and Robshaw is presented
on Fig. 3. The control logic block process the challenge
nV bitwise and drives the multiplexers. The first multiplexer
selects 16 bits of the secret s or 0, depending on the challenge

3

bit. The adder sums the multiplexer data with the previous
results stored in the shift register. The final addition of ri with
the result is controlled by the second multiplexer. The same
hardware is re-used for this addition. The data is processed
sequentially by 16-bit blocks to obtain a serial architecture.
The balance between occupied area and execution time is
set by the data bus size. Doubling the data bus size halve
the required run cycles, while increasing the adder and the
multiplexer size.

We have implemented the serial architecture of McLoone
and Robshaw independently, and we get area results close
to their original article for the different security parameters
(see Table I). However, McLoone and Robshaw results only
take into account the computing hardware. We give results for
a complete implementation of the serial multiplier, including
memories for nV , ri, s and y.

IV. PARALLEL IMPLEMENTATION

A multiplier can be implemented using lookup tables
(ROM). Let us consider two variable operands nV and s, of
size |nV | and |s|. The product nV × s has a |nV | + |s| bits
width. A lookup table approach requires to store:

2|nV |+|s| × (|nV |+ |s|) bits.

While being attractive for small values of nV and s, lookup
tables are clearly not practicable for GPS, i.e. |nV | ≥ 32.

A first attempt to reduce this cost consists in fixing s. This
hypothesis implies that our implementation is dedicated to a
given key. In most cryptographic implementations, the key can
be updated. To our knowledge, there are two exceptions. FPGA
supplier provides encryption scheme with fixed key to protect
the users bit-stream. White-box cryptography [11] also uses
implementation with fixed key but to obfuscate the key into
the code. Our goal is to show that implementation with fixed
key can provide benefits in term of throughput.

Using this assumption, the cost of a table lookup multiplier
can be reduced to:

2|nV | × (|nV |+ |s|) bits.

This approach is still not reasonable for GPS.
To further reduce the memory size, Chapman proposed

in [12] the KCM method (for k constant multiplier) to de-
compose the computation into partial products. Let us explain
Chapman’s KCM method in decimal basis (Fig. 4) for the
multiplication of 953 × x. If one can store in look-up tables
(LUT) the nines values 1 × 953, 2 × 953,. . . , 9 × 953, then
one can compute the whole product by simply adding stored
values as indicated in the Fig. 4 for 953× 482.

953
× 482

4× 953× 100 → + 3812 . .
8× 953× 10 → + 7624 .
2× 953 → 1906

459346

Fig. 4. Chapman KCM principle for multiplication by 953 in decimal basis.

For an hardware design, KCM uses 2` basis rather than
the decimal basis. The choice of ` depends on the trade-off
between the cost (memory and adder) and the technology char-
acteristics (number of inputs per lookup table). For example, a
classic Xilinx Virtex 4 as 4-input LUT, and our Actel Igloo as
3-input LUT. First, 2` values need to be stored in each table,
hence for a total memory size of:

|nV |
`
× 2` × (|s|+ `) bits.

The results obtained from these tables are combined by |nV |
` −

1 adders of |s|+ ` bits.

nV (0 : 3)
nV (4 : 7)

nV (8 : 11)

s× nV (0 : 3)

Fig. 5. KCM constant multiplier (adapted from [5]).

This architecture is illustrated on Fig. 5 for |s| = 8, |nV | =
12 and ` = 4. Each lookup table takes one part of nV as
an input. The partials results are combined using 2 adders
to produce the final result. Note that the left shifts are done
by positioning the partial results and have no gate cost. Note
also that the result is obtained in a single cycle, with a very
long critical path that could slow down the clock cycle of the
circuit. To cope with this clock cycle problem, the designer
can pipeline the circuit, increasing latency but maintaining a
throughput of 1 result per clock cycle.

For our GPS implementation of the parallel approach, we
used a KCM operator generated by the FloPoCo library2. This
library is an open source project for non-standards arithmetic
operators. It provides in particular several integer constant
multipliers [13]. All operators are pipelined to run at high
frequency (default setting at 300 MHz on Virtex FPGA).

nV KCM32,4(s) y

ri

/
32

/
160

/
240

/
240

Figure 2: Parallel architecture

nV

ri

control logic/
32

KCM4,4(s) /
132

/
4

/
240

/
240

y/
240

. . .

0

1

2

157

158

159

’0’/4

/ 160/164

Figure 3: Hybrid architecture

2

Fig. 6. Parallel implementation of GPS (128 bits).

The Fig. 6 illustrates the parallel implementation of GPS
used in our design. The notation KCM32,4(s) stands for
Chapman constant multiplier of a 32-bit number with the
constant s, using 4-input LUT. The product is computed by
the constant multiplier core generated with FloPoCo, with the
secret s as a constant. The result s× nV is added to ri.

This architecture is the fastest in terms of speed using the
property that the secret s is constant to reduce the size of
the implementation. The performance results of the parallel
approach are presented further in the paper, but the design
could not fit on a small embedded FPGA such as the IGLOO

2http://flopoco.gforge.inria.fr

http://flopoco.gforge.inria.fr

4

AGL250 used in PowWow, hence the need of a trade-off
between the serial and parallel approach.

V. HYBRID IMPLEMENTATION

nV KCM32,4(s) y

ri

/
32

/
160

/
240

/
240

Figure 2: Parallel architecture

nV

ri

control logic/
32

KCM4,4(s) /
132

/
4

/
240

/
240

y/
240

. . .

0

1

2

157

158

159

’0’/4

/ 160/164

Figure 3: Hybrid architecture

2

Fig. 7. Hybrid KCM architecture (128 bits).

The idea of the hybrid implementation is to serialize the
KCM architecture of Fig. 5 horizontally. Indeed, each hori-
zontal row of LUT is the same: it contains all the values of s
multiplied by 0, 1, . . . , 2` − 1. Hence if we sequentialize the
addition of one row with the others we may use a single LUT
of size 2` × |s| + `. The challenge nV is sent by blocks of
four bits to drive the LUT, the output of the LUT is added to
the accumulation register and then shifted by four bits for the
next addition.

The architecture, illustrated on Fig. 7, uses one KCM table
of 2` × (|s| + `) bits to compute the product between ` bits
of the challenge and the constant s. The result is accumulated
and shifted by ` bits each cycle. The adder is reused to sum
the result of the multiplication with ri. All the computation
is done using a parallel adder. To further reduce the critical
path, the adder could also be sequentialized with a sequence
of smaller adders as it was done for the serial approach in
section III.

VI. EXPERIMENTAL PLATFORM

We performed our implementation on the wireless sensor
platform PowWow3. This platform is specifically designed
to be energy efficient [14], and offers a constraint hardware
platform in terms of area and time. It uses the Actel IGLOO
AGL250 FPGA for control and a Texas Instrument CC2420
chip for RF communications. Actel IGLOO uses non volatile
flash technology for FPGA dedicated to low power.

We integrated the GPS authentication into the network stack
of the platform. The physical layer is based on the 802.15.4
standard with a CSMA/CA access provided by the CC2420
and controlled by the FPGA. It supports a simple point to
point access with the verifier in order to process the whole

3http://powwow.gforge.inria.fr

GPS authentication (see Fig. 1 for details). In our set-up, the
verifier is a computer interfaced with a Senslab4 node for
telecommunications.

The implementation was verified by authenticating the
prover to the verifier 8 times in a row, and with different keys
on separate synthesis, using vectors generated by GMP5 as
reference. The serial architecture was evaluated with several
challenge and key sizes (|s| = {128, 256, 512}, |nV | =
{16, 20, 32}). The hybrid architecture could be implemented
on the platform for a key size up to 256 bits. The experimental
set-up is illustrated on Fig. 8.

Prover

Verifier

Fig. 8. PowWow running a wireless authentication.

In order to validate our work, we have implemented inde-
pendently the serial approach of GPS to check that our results
were compatible with those of McLoone and Robshaw in [4].
The synthesis was done on the Cadence ATL Compiler and
normalized to a NAND size to be consistent with [4]. The
Table I compares our area results with the existing ones. The
difference is below 5 % for a serial implementation with an
8-bit adder and below 10 % with an 16-bit adder. We consider
these differences as acceptable: our serial implementation can
be used as a benchmark to compare the different architectures.

TABLE I
AREA COMPARISON BETWEEN OUR SERIAL IMPLEMENTATION AND THE

ONE OF MCLOONE AND ROBSHAW [4].

Secret Challenge Area (NAND) Difference
(bits) (bits) [4] our work

8 bits adders
160 32 1541 1505 2.31%
128 32 1327 1320 0,54%
160 20 1486 1413 4,89%
128 20 1286 1231 4,28%
160 8 1371 1341 2,21%
128 8 1167 1163 0,37%

16 bits adders
160 32 1642 1594 2,90%
128 32 1411 1403 0,54%
160 20 1642 1502 8,53%
128 20 1411 1314 6,90%
160 8 1511 1395 7,65%
128 8 1298 1205 7,16%

4http://www.senslab.info
5http://gmplib.org

http://powwow.gforge.inria.fr
http://www.senslab.info
http://gmplib.org

5

VII. IMPLEMENTATION RESULTS

From Section III to V, three different approaches to imple-
ment GPS have been described to obtain a low area footprint,
an high throughput or a trade-off between them. We now
aim to verify these expectations, compare our implementations
quantitatively and determine the influence of the secret size.

The three approaches discussed above were written in
VHDL and different synthesis were made. All the results are
given for a synthesis and a mapping performed using Actel
tools and targeting Actel IGLOO AGL250. The targeted clock
cycle was fixed for all impementations at 8 MHz, frequency
used on the PowWow platform. During our experiments, we
have aligned systematically the bus size on the adder size.
Moreover, we evaluated the overall footprint, including all the
required memories. This is an important point, as it turns out
that memories are occupying much more space than computing
parts. It also permits to illustrate the gains obtained by using
a constant multiplier, which includes the constant memory.

1000

100

10

1

0.1

0.01

T
hr

ou
gh

pu
t

10000

Parallel

Serial

100000
Area

Hybrid
512

512256128

128 256

128
256

512

Fig. 9. Area vs throughput for a 32-bit challenge (log scale) and different
secret sizes (|s| = {128, 256, 512}).

We plotted the area and throughput for the three implemen-
tations on Fig. 9. This illustrates the three different balances
between area and throughput achieved by the three imple-
mentations. Moreover, these balances are maintained for the
different levels of security, and both the area and throughput
can be represented by a linear approximation in function of
the secret size (y = a ∗ |s| + b). We observe that the area is
increasing with the security size for the serial (a = 5, 6), the
parallel (a = 89, 8) and the hybrid (a = 11, 3) implementa-
tion, with the best scaling for the serial approach in regards of
the area. In terms of throughput, the serial implementation
as a negative slope (a = −46, 3 ∗ 10−6), contrary to the
parallel (a = 125 ∗ 10−3) and hybrid (a = 61, 9 ∗ 10−6)
implementations, which gets a better throughput by using a
larger secret |s|.

The results shown in Table II compares the three implemen-
tations in terms of hardware area, run cycles and throughput (in
cycles per byte of result). We use the serial implementation as
a reference for our comparison. The parallel implementation
has an area 10 times larger than the serial implementation.

TABLE II
AREA, LATENCY AND THROUGHPUT COMPARISON BETWEEN

IMPLEMENTATIONS FOR A 32-BIT CHALLENGE AND DIFFERENT SECRET
SIZES.

Secret Implementation
(bits) Serial Parallel Hybrid

Area (core cells)
128 1546 10676 2243
256 2253 21171 3467
512 3698 44978 6553

Latency (cycles)
128 339 8 48
256 603 12 72
512 1131 20 120

Throughput (cycles/byte)
128 0,088 30 0,625
256 0,076 46 0,639
512 0,069 76 0,650

For that cost, its pipeline structure provides a new result
each cycle and a 40 times smaller latency when using multi-
authentication. The hybrid implementation offers a middle
ground with an area less than doubled, and an 8 times smaller
latency.

We also explored the impact of the adder size on the area for
the serial implementation in the Table III. To reduce the area,
it would seems logical to choose the smallest adder. However,
it impacts also the bus size and how the memory is addressed.
Therefore, choosing the smallest adder is not necessarily the
best solution because it can imply an addressing overhead.
The gain for the adder can be offset by the memory cost. This
effect is highly dependent on the underlying technology. In
our case, the 16-bit adder has a lower area than the 8-bit one.

TABLE III
IMPACT OF THE ADDER ON THE SERIAL IMPLEMENTATION AREA FOR A

32-BIT CHALLENGE.

Adder Secret (bits)
(bits) 128 256 512

Area (core cells)
8 1542 2270 3745

16 1546 2253 3698
32 1934 2632 4034

In order to be complete on the implementation footprint,
we should also add the coupon footprint. By using a PRNG
as suggested in the McLoone and Robshaw article [4], one
can reduce the footprint to 1000 NAND equivalent for storing
20 coupons, with another 1000 NAND for the PRNG. This
would require about 2300 core cells, and is compatible with
the serial and hybrid implementation for 128-bit and 256-bit
secret size.

VIII. CONCLUSION

Several architectures for GPS are presented in this work
offering different balances between area and throughput. With
respect to this goal, our contribution is three-fold. First, we
have shown that using a fixed key can enable new implementa-
tions possibilities. Second, we have serialized KCM to reduce
its area cost. To our knowledge, this is the first time that such
a trade-off is proposed for KCM. Third, we have integrated
our GPS cores into a real platform (PowWow) to enable nodes

6

authentication in a wireless sensor network. By integrating the
memory cost, we have a better view of the overall area needed
for GPS. Two of our cores are compatible with the platform
constraints.

We have shown the benefits of having a fixed key for the
implementation of GPS. In return, an adversary may exploit
these features to mount side-channel attacks (SPA, DPA. . .).
While not considered in this work, it will be interesting to
analyze how resistant are our implementations to these attacks.

We focused on GPS but our results impact the implementa-
tion of more cryptosystems. In term of hardware architecture,
GPS is very similar to WIPR [15] and BlueJay [16]. These
two cryptosystems are based on an early paper of Shamir [17]
which introduced randomized multiplication cryptosystem.
The cores of these proposals are an adder and a multiplier as
for GPS. Our solutions can be adapted to implement WIPR,
BlueJay and Shamir’s scheme. In a future work, we will
compare the implementations of these different schemes.

ACKNOWLEDGMENTS

The authors wants to thank Florent de Dinechin from
Aric INRIA team for his help on constant multiplication and
Romain Fontaine from the CAIRN INRIA team for his help
on the RF-communication of PowWow platform.

REFERENCES

[1] T. Eisenbarth, S. S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A
Survey of Lightweight-Cryptography Implementations,” IEEE Design &
Test of Computers, vol. 24, no. 6, pp. 522–533, 2007.

[2] O. Baudron, F. Boudot, P. Bourel, E. Bresson, J. Corbel, L. Frisch,
H. Gilbert, M. Girault, L. Goubin, J.-F. Misarsky, P. Nguyen, J. Patarin,
D. Pointcheval, G. Poupard, J. Stern, and J. Traor, “GPS - An Asym-
metric Identification Scheme for on the Fly Authentication of Low
Cost Smart Cards,” A proposal to NESSIE, 2001, https://www.cosic.
esat.kuleuven.be/nessie/updatedPhase2Specs/gps/GPS-Bv2.pdf.

[3] International Organization for Standardization, “ISO/IEC 9798 – Infor-
mation technology – Security techniques – Entity authentication,” ISO,
1997 – 2008, http://www.iso.org.

[4] M. McLoone and M. J. Robshaw, “Public Key Cryptography and RFID
Tags,” in The Cryptographers’ Track at the RSA Conference – CT-RSA,
ser. Lecture Notes in Computer Science 4377. San Francisco, CA,
USA: Springer-Verlag, February 2007, pp. 372–384.

[5] M. J. Wirthlin, “Constant Coefficient Multiplication Using Look-Up
Tables,” The Journal of VLSI Signal Processing, vol. 36, no. 1, pp.
7–15, Jan. 2004.

[6] M. Girault, G. Poupard, and J. Stern, “On the Fly Authentication and
Signature Schemes Based on Groups of Unknown Order,” Journal of
Cryptology, vol. 19, no. 4, pp. 463–487, 2006.

[7] NESSIE consortium, “Portfolio of recommended cryptographic prim-
itives,” Tech. Rep., 2003, https://www.cosic.esat.kuleuven.be/nessie/
deliverables/decision-final.pdf.

[8] M. McLoone and M. J. B. Robshaw, “New Architectures for Low-Cost
Public Key Cryptography on RFID Tags,” in International Symposium
on Circuits and Systems - ISCAS 2007. New Orleans, LO, USA: IEEE,
May 2007, pp. 1827–1830.

[9] M. Girault and D. Lefranc, “Public Key Authentication with One
(Online) Single Addition,” in Cryptographic Hardware and Embedded
Systems - CHES 2004, ser. Lecture Notes in Computer Science 3156.
Cambridge, MA, USA: Springer, August 2004, pp. 413–427.

[10] J.-S. Coron, D. Lefranc, and G. Poupard, “A New Baby-Step Giant-Step
Algorithm and Some Applications to Cryptanalysis,” in Cryptographic
Hardware and Embedded Systems - CHES 2005, ser. Lecture Notes in
Computer Science 3659. Edinburgh, UK: Springer, August 2005, pp.
47–60.

[11] B. Wyseur, “White-Box Cryptography,” in Encyclopedia of Cryptogra-
phy and Security (2nd Ed.), H. C. A. van Tilborg and S. Jajodia, Eds.
Springer, 2011, pp. 1386–1387.

[12] K. D. Chapman, “Constant Coefficient Multipliers for the XC4000E,”
Tech. Rep., 1996.

[13] N. Brisebarre, F. de Dinechin, and J.-M. Muller, “Integer and floating-
point constant multipliers for FPGAs.” Leuven, Belgium: IEEE
Computer Society, July 2008, pp. 239–244.

[14] O. Berder and O. Sentieys, “PowWow : Power Optimized Hard-
ware/Software Framework for Wireless Motes,” in International Con-
ference on Architecture of Computing Systems - ARCS ’10. Hannover,
Germany: VDE Verlag, February 2010, pp. 229–234.

[15] Y. Oren and M. Feldhofer, “A low-resource public-key identification
scheme for RFID tags and sensor nodes,” in ACM Conference on
Wireless Network Security - WISEC 2009. Zurich, Switzerland: ACM,
March 2009, pp. 59–68.

[16] M.-J. O. Saarinen, “The BlueJay Ultra-Lightweight Hybrid Cryptosys-
tem,” in Workshop on Special Aspects of Cyber Physical Systems -
TRUSTED 2012. San Francisco, CA, USA: IEEE, May 2012, p. To
appear.

[17] A. Shamir, “Memory Efficient Variants of Public-Key Schemes for Smart
Card Applications,” in Advances in Cryptology - EUROCRYPT ’94, ser.
Lecture Notes in Computer Science 950. Perugia, Italy: Springer, 1994,
pp. 445–449.

https://www.cosic.esat.kuleuven.be/nessie/updatedPhase2Specs/gps/GPS-Bv2.pdf
https://www.cosic.esat.kuleuven.be/nessie/updatedPhase2Specs/gps/GPS-Bv2.pdf
http://www.iso.org
https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf
https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf

	I Introduction
	II GPS protocol
	III Serial implementation
	IV Parallel implementation
	V Hybrid implementation
	VI Experimental platform
	VII Implementation results
	VIII Conclusion
	References

