
A Scalable Evolvable Hardware Processing Array

Angel Gallego, Javier Mora, Andrés Otero, Eduardo de la Torre, Teresa Riesgo

Abstract— Evolvable hardware (EH) is an interesting
alternative to conventional digital circuit design, since
autonomous generation of solutions for a given task permits self-
adaptivity of the system to changing environments, and they
present inherent fault tolerance when evolution is intrinsically
performed. Systems based on FPGAs that use Dynamic and
Partial Reconfiguration (DPR) for evolving the circuit are an
example. Also, thanks to DPR, these systems can be provided
with scalability, a feature that allows a system to change the
number of allocated resources at run-time in order to vary some
feature, such as performance. The combination of both aspects
leads to scalable evolvable hardware (SEH), which changes in
size as an extra degree of freedom when trying to achieve the
optimal solution by means of evolution. The main contributions
of this paper are an architecture of a scalable and evolvable
hardware processing array system, some preliminary evolution
strategies which take scalability into consideration, and to show
in the experimental results the benefits of combined evolution
and scalability. A digital image filtering application is used as use
case.

Keywords—evolvable hardware, scalability, dynamic and
partial reconfiguration, FPGAs

I. INTRODUCTION

Evolutionary algorithms are suitable methods to get
solutions to problems where the quality of the solution can be
measured by a function, typically called fitness function, which
is to be maximized or minimized. Genetic algorithms [1][2] are
types of evolutionary algorithm which, as in biology, propose
iterative candidate solutions whose fitness are evaluated and,
after a selection of the best candidate(s), new offspring is
generated based upon modifications of the previous solutions.
Proper selection of fitness functions, candidate selection and
adequate mutation or crossover rules for generating new
candidates may produce results that are far better than other
space exploration techniques.

If circuit design is the goal of an evolutionary algorithm
and the fitness function is somewhat related to the functionality
to be achieved by the circuit, then the system is referred as
evolvable hardware [3][4]. It may be used off-line, as an
alternative to traditional design tools, although for autonomous
systems, it is far more attractive the on-line version, where the
design is, at its utmost level of autonomy, providing additional
capabilities such as self-adaptiveness or self-healing. One
requirement for these interesting properties is intrinsic
evolution [5], where the device that holds the circuits to
evaluate during evolution is the same device that will be used
for normal operation.

FPGAs and their reconfiguration capability are excellent
candidates for EH systems. The integration levels they achieve
permit to integrate both the reconfigurable device on which to
evolve, and the EA. Some approaches, like Cartesian Genetic
Programming (CGP) [6] use combinations of logic and
interconnects that are geared towards generic design at gate
level, whereas in our approach we use a reconfigurable
processing array composed of tiny processing elements (PEs)
which, all together, perform some computation. The selection
of the library of PEs determines which type of applications is
targeted.

Most evolutionary approaches, as well as most EH systems,
with exceptions like [7], are based on fixed-size systems. One
of the limitations for this is that, this way, the genotype (the
coding of the properties of the system) yields to fixed-size
implementations (also called as phenotypes). In our case, we
are proposing a scalable reconfigurable processing array,
which may grow or shrink in dimensions in order to adapt to
different problems and changing conditions. Some authors
combine the EH with the concept of 'development', as
presented in [8], in the sense that the adaptation process of an
individual can increase skills only achievable by development
of the individual's tissues, growing in size.

However, from a practical point of view, the combination
of both techniques is not straightforward. First, the EA must
accommodate individuals with variable-length genotypes. The
problem is not just how to allocate more room for storing
longer genomes, but, for instance, to accommodate different
mutation rates to different sizes. On the other side, the
scalability on the underlying circuit to be built (the phenotype)
must be based on a well-defined and consistent architecture
which is able to scale up with no problems. Furthermore, the
system should be based on DPR, as the one presented in [9] or
the system used in this work, above other techniques such as
the Virtual Reconfigurable Circuits (VRC) [10], which present
a high area overhead and are not suitable for growing up in the
number of elements.

The aim of this paper is to show the architecture designed
for scalability, which is the main contribution to the state-of-
the-art evolvable hardware systems, laid within the complete
SEH architecture, which has been entirely mapped on an
FPGA. EA adaptations as well as architectural transformations
to enable scalability are shown. Some details on the tool that
helps on building up such system are also presented. Finally,
experimental results will show the added benefits of combining
such techniques.

I I . ARCHITECTURE OF THE SCALABLE PROCESSING ARRAY

The system described in this work corresponds to the
evolution of a previous one that was presented in [11], which is
briefly described in the next sub-section. The final architecture
that results when scalability is introduced is described in detail
afterwards.

A. Initial evolvable non-scalable system

The initial system is composed of three main elements: an
embedded microprocessor (a MicroBlaze) that is in charge of
running the evolutionary algorithm (EA) and selecting a proper
configuration for the filter; the reconfiguration engine, an
enhanced version of Xilinx’s HWICAP, able to configure the
same bitstream in different positions, and in charge of
changing by D P R the candidate circuit according to the
configuration obtained by the E A ; and the evolvable hardware
circuit, that consist of a systolic array of processing elements
(PEs), each of one performs a simple operation per clock cycle
(such as addition, subtraction, logic shift of bits, maximum,
minimum, average, and others). The processing array is the
dynamic or reconfigurable part of a peripheral, which includes
in its static part all the logic for the control of the process,
several FIFOs that prepare the inputs of the array, and an
evaluation unit in charge of calculating the fitness value, which
measures the quality of the solution and is used in the
evolutionary algorithm when evolving the circuit. In this case,
the fitness function is the summation, pixel by pixel, of the
absolute errors (SAE) between the filtered output image and a
reference noise-free image, so the lower the fitness, the better
the configuration for that task. Finally, the system includes a
Compact Flash memory that stores the different configurations
of the reconfigurable elements and the training images. Al l this
architecture is shown in Fig. 1 .

Fig. 1 Architecture of the evolvable hardware system.

The processing array is more deeply detailed in Fig. 2. As
can be observed, each PE has two inputs (north and west) and
two outputs (south and east), that allow them to be connected
in a tiled form. In order to feed the processing array, there are
several input multiplexers that select one out of nine possible
input pixels stored in a 3x3 window which slides over the
whole image going pixel by pixel each clock cycle, and
corresponds to the circuit shown in Fig. 3. The selection of the
input multiplexers is changed by the EA, and they are part of
the configuration of the candidate circuit. The selection of the
output is done by a multiplexer placed at the east side of the
array. This selection is also determined by the EA.

Fig. 2 Structure of the non-scalable processing array, with the input
multiplexers, the output selector, and the processing elements.

Fig. 3 Circuit implemented to create the sliding window, with the 9 available
input pixels, and the representation of the window sliding over the image.

Regarding the evolutionary algorithm, an algorithm based
on Cartesian Genetic Programming (CGP) is used, fol lowing a
(1+X) Evolution Strategy with 1 parent and I (set to 8 in this
case) offspring per generation. The offspring are generated by
mutating the parent, which is the best candidate of the previous
generation (the circuit with lower fitness). More details can be
found in [12].

B. Scalable system

In order for the array to be scalable, several modifications
had to be done in the architecture, all of them related with the
reconfigurable peripheral and the processing array in particular,
while keeping the rest of the system as before. On one hand,
the structure of the PEs makes them suitable to be scaled, as
they can be connected one after the other in a tiled way without
any difficulty. But, on the other hand, the input and output data
multiplexers, which were easily reconfigured in the previous
design just by changing the value of the control signal stored in
an internal register, now become an obstacle. Regarding the
input multiplexers, i f the size is increased in any direction, the
new row or column w i l l need new input multiplexers. This is
not a problem for the data input signals, but i t is a problem for
the selection signals, since an extra set of selection signals is
required for every new row or column. The output multiplexer
has a similar but not equal problem, since it is only affected
when rows are increased, and it implies adding a new input for
this multiplexer and, i f needed, an extra control bit.

The lack of scalability was solved by making these
elements reconfigurable. Every multiplexer is replaced by a
H W block, compatible in size with the PEs, which hardwires
the selected signal into the input ports of the associated PE.
This implies to design nine new reconfigurable modules, one
for every selected input (these are the nine pixels of the sliding
window). Candidate generation becomes slower since the
former multiplexer configuration by just writ ing in a register,
and is replaced by a module reconfiguration However, it makes
the candidate generation process more homogeneous, since

every gen in the genotype corresponds to a module being
configured in the corresponding positions in the phenotype.

With this modification of the blocks, the structure of the
scalable processing array is the shown one in Fig. 4.

Fig. 4 Structure of the scalable processing array, with the reconfigurable input
multiplexers (blue), the output selector (green), the array connector element

(orange), and the PEs (yellow).

In order to reduce the routing logic inside each hardwired
multiplexer, the circuit that implements the sliding window has
been modified (Fig. 5) and some elements are now inside the
hardwired blocks, so just 3 pixels are fed to the system.

Fig. 5 New circuit to implement the sliding window (a), and the resulting
hardwired multiplexers that allow the system to be fed by one of the 9

traditional window pixels (b).

The output selector consists of three blocks, which take the
output from the desired element and send it back to the static
part of the peripheral. To be sent back without extra elements,
the horizontal multiplexers at the top have a return path for the
output pixel. To join the array with the static part, an extra
connector element needs to be reconfigured (just once, the first
time), and it sends the three generated pixels from the window
to the vertical and horizontal multiplexers, and collects the
output pixel.

I I I . DESIGN CONSIDERATIONS FOR SCALABILITY

As it can be seen, the architecture for scalable evolvable
hardware requires designing a relatively large amount of tiny
re-allocable modules that need to maintain compatibility in
their connections, allowing a tiled arrangement, basic to
achieve scalability. Modules can be reallocated in different
positions, and this mandates to have a reconfiguration

controller able to reallocate bitstreams, by manipulating the
frame addresses of the bitstream.

Another challenge in the design of these modules,
especially in the case of very small ones (as in this case, where
PEs have only 5 CLBs), is that it is not possible to use bus
macros, and specific routing skills are required in order to
achieve size-efficient routing constrained designs, with
placement restrictions in all I/Os. At this point is where our
D R E A M S tool, introduced in [13], is a great productivity
enhancement. It allows defining ‘virtual borders’ which are
definitions of boundaries which keep compatibility between
different elements, either the static part or the reconfigurable
modules which are to be placed into compatible positions.
Starting from a G U I which produces an X M L description of
the system: areas, modules, connections, etc., a complete script
is produced in order to synthesize and place and route all
required elements, ending up with a collection of bitstreams to
be used either offline at design time or in an offline application.
The D R E A M S tool is based on RapidSmith [14], and contains
a custom router than handles restrictions and ensures that
routing wil l be compatible between any pair of adjacent
compatible modules.

The architecture presented in the previous section is of
utmost importance to achieve scalability. The D R E A M S tool,
on the other side, permits to speed up designs so that,
compared with hand-made designs, may reduce design time
from several days to a couple of hours. There is still a third
element to be modified in order to permit scalability: the
evolutionary algorithm. It must be designed such that it
supports variable genomes, so all storage elements must keep
track of the size of the processing array and all its
corresponding genes (PEs in every array position, input
multiplexers and output multiplexer). However, the main
problem is not this one, but to find a coherent evolution
strategy that accommodates to variable size elements. There
are some critical factors, derived from the growth of the design
exploration which may impact negatively on the performance
of the evolvable system. Some of these considerations are
shown in the next section.

I V . RUN-TIME DESIGN SPACE EXPLORATION

While it is clear that scalability gives an extra degree of
freedom in the evolvable system, it also has to be tackled
appropriately. Evolutionary algorithms are normally tuned to
accommodate to different design space sizes, and the problem
is that scalable hardware has a scalable design space to explore.
Accordingly, some parameters like the number of generations
to stop evolution, or the mutation rate may differ importantly
from simple systems than for complex ones, where
convergence may occur at much higher number of generations.
In the experimental results section, an analysis of the number
of generations and a scalable-compatible dynamic stop-
criterion technique are shown. By some extra experimentation,
it has been observed that variable mutation rate along evolution
may improve results (either converge faster or reach better
quality). This analysis is left for future research.

Apart of the need of tuning the E A , it is required to decide
when and how to scale up or down. Resource occupation
obviously indicates that smaller circuits are better, and they

even converge faster, but resulting quality, fault tolerance and
other factors are worsened. This trade-off may be solved by
two generic possibilities: a) to use multi-objective evolution,
where size is included in the fitness function with a coefficient
that balances weights between size and functionality; or b) to
use the concept of development, starting from a small size and
growing up in order to accommodate to better performance.

Among the aforementioned possibilities, we have used the
second option, development based, since handling different
sizes from one generation into the next one, or even between
candidates of the same generation, might have an important
impact on reconfiguration time, which would slow down the
evolution importantly.

Thus, development is used in the proposed approach.
Starting from small size arrays, if the fitness value is not of
sufficient quality, size is increased and evolution is restarted.
Here, one possibility is to start from scratch, not reusing the
previous evolved circuits of smaller size, or to adapt them as
the starting point of evolution for the new size. The adapted
candidate to resume evolution with bigger size is obtained by
filling the new column with pass-through blocks (one of the
PEs is exactly that, extending data one column) or by just
adding one row at the bottom (since the output is on the east
side, there is no need to extend to the south). In the
experimental results, a comparison of both types of
development will be done, showing that one technique or the
other one are more effective depending on the array size.

V . EXPERIMENTAL RESULTS

The validation of the proposed architecture has been carried
out considering the three parameters mentioned above: the area
or resource utilized by the system depending on the size; the
performance of the different possible sizes; and the time that
the circuit needs to self-adapt at run-time. Those results lead to
different evolutionary strategies that can be used depending on
the complexity and the requirements of the tasks. The
experimental results provided in this paper were obtained with
the system implemented in a medium size Xilinx Virtex-5 L X -
110T F P G A , with the MicroBlaze, the reconfiguration engine,
and the systolic array working at 100 MHz.

In all the experiments carried out in this paper, an input
image with 5% salt and pepper noise has been used. With this
image the median filter obtains a S A E fitness of 89345, which
is higher than the fitness obtained with our system (for any size
with the exception of a 1x1 filter). This comparison was made
in [12], and since the subject of the paper is the scalability of
the system, the results are no longer compared with the median
filter output, but they are compared with the results with
different sizes.

A. Area and resources utilization

In Fig. 6, a snapshot of the floor-planning of the system can
be seen, with an empty reconfigurable area where the systolic
array can grow up and down. The elements of the array have
different sizes, depending on the type. Thus:

• The array connector element, which feeds the array with
the input pixels and collects the output pixel, employs

two CLB columns wide by half clock region height (10
CLBs), with a total utilization of 20 CLBs.

• The horizontal muxes, which feed the first row of PEs,
occupy one CLB column wide by half clock region
height each one (10 CLBs).

• The vertical muxes, in charge of feeding the first
column of PEs, use two columns of CLBs in width by a
fourth of the clock region in height each one (10 CLBs).

• Each of the PEs and any of the elements that compose
the output selector occupy 5 CLBs, one CLB column by
a fourth of the clock region.

Regarding these values, the next formula specifies the total
number of CLBs occupied by an N height by M width
processing array.

Total CLBs = 20 + (¿V + M) x 10 + N x (M + 1) x 5

The reconfigurable area has been limited to a maximum
array size of 7x7 PEs, which means a total number of 440
CLBs reserved for the systolic array. The static part of the
peripheral utilizes 1231 slices, 2766 FFs and 3158 LUTs, while
the whole system (including the static part) employs 5116
slices, 11475 FFs and 10691 LUTs, corresponding to the 29%,
16% and 15% of the total available ones respectively.

Fig. 6 Layout of the implemented system, with the reconfigurable area
highlighted in white.

B. Evolution time for fixed size arrays

For fixed size systems as the initial one, a predefined fixed
number of generations is typically used. But when dealing with
different sizes, the higher the height or the width of the array,
the larger the chromosome, and that means the search space
becomes larger. This makes the evolution stage longer, and
determining the optimal number of generations for each size is
not trivial. In order to determine an appropriate duration of the
evolutions, it was decided to stop evolution after 25000 or
50000 generations with no fitness improvement. The average
of the results obtained from 100 independent evolution runs for
all the possible square array was obtained, corresponding to
Fig. 7.

As it can be seen, when the number of processing elements
is low, the search space is quite small, and a solution can be
obtained in a few generations. But with the biggest sizes (6x6
and 7x7), the number of generations increases significantly,

which means it is harder for the system to find a proper
configuration of PEs.

(a)

(b)

tfl

"

Average generations (25000 stalled)

- • - H

<
•

l x l 2x2 3x3 4x4 5x5 6x6

Size
7x7

Fig. 7 Average number of generations needed to evolve until the result does
not change in 50000 consecutive generations (a) and 25000 consecutive

generations (b).

In Fig. 8 the statistical fitness distribution of a 7x7 array
evolution are represented at the generation 75000 (average
generation obtained with the 25000 non-varying experiment)
and at the generation 150000 (average generation obtained
with the 50000 non-varying experiment). Since stopping the
evolution at 150000 would last twice compared with evolving
until 75000 generations, and also considering that the
improvement provided in those extra generations is not
significant, the average generation obtained with the
experiment with 25000 non-changing generations has been
selected to be the duration of each evolution. In the case of a
rectangular array, the duration is the one as the square array
that can contain it, i.e. the square array size
max (height,width)x max (height, width), oversizing the
needed amount of evolution time in some cases.

Fig. 8 Fitness comparison between the stop generations obtained with the
experiments with 25000 non-changing generations (75000 generations) and

with the 50000 one (150000 generations).

C. Performance analysis for different sizes

Fig. 9 shows the 3D representation of the average fitness
value of 50 independent evolutions, starting from a random
chromosome in each evolution, and evolving the system for the
aforementioned size-dependent number of generations. As can
be seen, the scaling of the array in height, width, or both,
makes the performance of the system increase.

Fig. 9 Tridimensional surface formed by the average fitness of 50 independent
evolutions with every possible array size.

It can be observed that arrays 1xN or Nx1 do not produce a
big improvement when scaling up, apart from the case of 1x1,
due to the lack of possibilities of interaction between the
different input pixels of the array. In the case of either a 2x3 or
a 3x2 array, the fitness obtained is better than the 1x6 or 6x1
arrays, which use the same number of processing elements, but
as they are disposed in a line, there is only one propagation
path, limiting thus the complexity in the processing. The
resulting images of the best case for every square array and the
original noise-free image are shown in Fig. 10.

a) b) c) d)

Fig. 10 Output image of the best filter configuration for every square array:
the original image (a), and from 1x1 to 7x7 (from (b) to (h) respectively). The
1x1 result also corresponds to the noisy input image, as the best configuration

obtained in that case is a copy filter.

D. Evolutionary strategies for scalability

Another thing to consider is the development strategies that
can be applied in this system. In this work the development is
carried out by evolving the system sequentially, from lower
sizes to larger ones, in order to guide the evolutionary
algorithm in the bigger arrays, where the search space is
bigger. In Fig. 11 the average fitness of 50 independent

evolutions using this sequential evolution and with the classical
evolution starting from a random chromosome are shown.

Fig. 11 Traditional vs. incremental evolution. Average fitness values for 50
independent runs.

It can be seen how the smaller arrays obtain better results
starting from scratch rather than evolving sequentially.
Considering also the accumulated times spent in the case of the
sequential evolution, it seems better to evolve sizes up to 5x5
from zero. But, for 6x6 and 7x7, the results obtained are better
than in the traditional approach. That means that the guidance
provided by starting from a working configuration works with
larger search spaces.

A proper application of this methodology in order to save
time is combine both approaches, i.e. evolve from a random
chromosome a 5x5 array, and from that array obtain the 6x6
and 7x7 arrays with the sequential evolution applying the
development strategy. In Fig. 12 the results of going from a
5x5 to a 7x7 with this combined methodology are compared
with the previous presented ones, and it can be seen how it
behaves better than in the other cases, due to the fact that the
sequential evolution starts from a configuration with better
performance, and also the evolution lasts less number of
generations than with the sequential evolution from a 1x1
array.

Fig. 12 Average fitness obtained in 50 independent evolutions with the
traditional evolutionary strategy, the sequential strategy, and the combination
of both (evolving the 5x5 array from a random chromosome, and the 6x6 and

7x7 applying the development strategy).

E. Comparison between multiple arrays versus scalable array

As was presented in [15], the total performance of the filter
can be enhanced by having multiple processing arrays arranged

in series or cascaded. In that case, the output image of one
array is the input image of the next one, and based on the
adaptability of the system, if the cascaded filters are evolved in
that configuration, each one adapts to the behavior of the
previous one, getting a higher quality output image. So
regarding just the performance, Fig. 13 shows the fitness
obtained in the case of different sizes of the array (scalable
array) following the evolutionary strategy based on
development explained before.

Fig. 13 Average fitness of 50 independent evolutions for every square array.

In Fig. 14, it can be seen more in detail how, for the 4x4
array, the results are more or less the same value as at the first
stage of the multiple arrays, since the processing arrays
implemented in that work were size 4x4. As shown, similar
fitness value is obtained with two stages of the cascaded filter
and with a 5x5 PEs array, and in the rest of the cases the fitness
is always much lower in the case of the scalable array. The
result of three 4x4 cascaded arrays is clearly improved by the
scalable 7x7 array, with similar number of PEs (48 vs. 49 PEs)

Fig. 14 Comparison between multiple arrays (stages 1, 2 and 3) evolved with
two adaptive techniques, and the fitnesses obtained with scalable arrays, form

size 4x4 to 7x7.

However, the total amount of generations needed to obtain
two 4x4 arrays is 2 × 31000 = 62000 generations, which is
lower than the number of generations that are needed in the
case of the scalable array with the sequential evolution, which

is 102000, due to the accumulation by evolving smaller size
arrays.

If we compare real resource occupation rather than number
of PEs, the comparison is more in favor of the scalable
solution. For instance, the number of CLBs used by a 5x5 array
is 270, while the number of CLBs used in the processing arrays
(if they were implemented with this new architecture), would
be 2 × 200 = 400, which is a 48% more of CLBs used, and
that is without considering the extra logic needed in the static
part of the controller for each array. But on the other hand,
having several arrays can be used to perform several different
tasks at one time, as for instance noise removal and edge
detection.

V I . CONCLUSIONS AND FUTURE WORK

Along this paper, a scalable evolvable hardware processing
array has been introduced, giving some details and hints about
the usability and the possibilities of the system. It has been
shown how bigger arrays lead to qualities never obtained until
now, but with a penalization in the time needed to adapt the
system at run-time, which is bigger with the largest arrays.
Also an evolutionary strategy has been proposed, based on the
concept of development, which obtains better results by
evolving sequentially the system from one size to a bigger one.
But there are more parameters to analyze, such as the
complexity of the task, for instance with more noisy input
images, and the fault tolerance of the system, that was explored
in [16] for the case of the non-scalable architecture, and now it
is expected to be enhanced due to the extra degree of freedom
introduced. Another trend to work in is the integration of the
scalable array with the multiple processing arrays system
presented in [15], obtaining a fully scalable architecture, and
also the development of the proper evolutionary algorithm in
charge of deciding when it is needed to scale, and how to do it,
whether increasing the number of processing arrays or the size
of one of them.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of
Economy and Competitiveness under the project D R E A M S
(Dynamically Reconfigurable Embedded Platforms for
Networked Context-Aware Multimedia Systems) with number
TEC2011-28666-C04-02.

REFERENCES

[I] de Garis, H.; "Evolvable hardware genetic programming of a Darwin
machine," Artificial neural nets and genetic algorithms. Springer
Vienna, 1993.

[2] Oreifej, R.; Sharma, C.; DeMara, R.F.; “Expediting GA-Based
Evolution Using Group Testing Techniques for Reconfigurable
Hardware,” Int. Conf. on Reconfigurable Computing and FPGAs
(ReConFig 2006), IEEE, 2006, pp. 1-8.

[3] Sakanashi, H.; Iwata, M. ; Keymulen, D.; Murakawa, M. ; Kajitani, I.;
Tanaka, M. ; Higuchi, T.; " IEEE International Conference on Evolvable
hardware chips and their applications," 1999, vol.5, no., pp.559-564.

[4] Zdenek, V . ; Sekanina, L.; "An evolvable hardware system in Xilinx
Virtex II Pro FPGA," International Journal of Innovative Computing
and Applications 1.1 (2007): 63-73.

[5] A.M. Tyrrell, G. Hollingworth, S.L. Smith, “Evolutionary strategies and
intrinsic fault tolerance” Proc. 3rd NASA/DoD Workshop on Evolvable
Hardware. EH-2001, IEEE Comput. Soc, pp. 98-106.

[6] Miller, Julian F., and Peter Thomson. "Cartesian genetic programming."
Genetic Programming. Springer Berlin Heidelberg, 2000. 121-132.

[7] Torresen, J., "Scalable evolvable hardware applied to road image
recognition," Evolvable Hardware, 2000. Proceedings. The Second
NASA/DoD Workshop on , vol., no., pp.245,252, 2000.

[8] Torresen, J.; " A scalable approach to evolvable hardware," Genetic
programming and evolvable machines 3.3 (2002): 259-282.

[9] Torresen, J.; Senland, G.A.; Glette, K., "Partial Reconfiguration Applied
in an On-line Evolvable Pattern Recognition System," NORCHIP, 2008.
, vol., no., pp.61-64, 16-17 Nov. 2008.

[10] L. Sekanina, “Virtual Reconfigurable Circuits For Real-World
Applications Of Evolvable Hardware” Proc. of the 5th international
Conf. on Evolvable systems: from biology to hardware. ICES 2003, vol.
2606, pp. 186-197.

[I I] Otero, A . ; Salvador, R.; Mora, J.; de la Torre, E.; Riesgo, T.; Sekanina,
L.; " A fast Reconfigurable 2D H W core architecture on FPGAs for
evolvable Self-Adaptive Systems," NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), 2011.

[12] Salvador, R.; Otero, A . ; Mora, J.; de la Torre, E.; Riesgo, T.; Sekanina,
L.; "Self-Reconfigurable Evolvable Hardware System for Adaptive
Image Processing," Computers, IEEE Transactions on , vol.62, no.8,
pp.1481,1493, Aug. 2013.

[13] Otero, A . ; de la Torre, E.; Riesgo, T., "Dreams: A tool for the design of
dynamically reconfigurable embedded and modular systems,"
Reconfigurable Computing and FPGAs (ReConFig), 2012 International
Conference on , vol., no., pp.1,8, 5-7 Dec. 2012.

[14] Lavin, C.; Padilla, M. ; Lamprecht, J.; Lundrigan, P.; Nelson, B.;
Hutchings, B., "RapidSmith: Do-It-Yourself C A D Tools for Xilinx
FPGAs," Field Programmable Logic and Applications (FPL), 2011
International Conference on , vol., no., pp.349,355, 5-7 Sept. 2011.

[15] Gallego, Á . ; Mora, J.; Otero, A . ; de la Torre, E.; Riesgo, T.; Salvador,
R; " A Novel FPGA-based Evolvable Hardware System based on
Multiple Processing Arrays," Reconfigurable Architectures Workshop
(RAW), International Parallel & Distributed Processing Symposium,
IPDPS, 2013.

[16] Salvador, R.; Otero, A . ; Mora, J.; de la Torre, E.; Sekanina, L.; Riesgo,
T.; "Fault Tolerance Analysis and Self-Healing Strategy of Autonomous,
Evolvable Hardware Systems," International Conference on
Reconfigurable Computing and FPGAs (ReConFig), 2011.

