
FPGA-Based Accelerator Development for Non-Engineers

David C. Uliana

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Peter M. Athanas, Chair

Wu-Chun Feng

Krzysztof K. Kępa

Thomas L. Martin

Liqing Zhang

April 15, 2014

Blacksburg, Virginia

Keywords: FPGA, Heterogeneous Computing, HPC, Big-data, Life Sciences

Copyright 2014, David C. Uliana

FPGA-Based Accelerator Development for Non-Engineers

David C. Uliana

(ABSTRACT)

In today’s world of big-data computing, access to massive, complex data sets has reached an

unprecedented level, and the task of intelligently processing such data into useful information

has become a growing concern to the high-performance computing community. However, do-

main experts, who are the brains behind this processing, typically lack the skills required to

build FPGA-based hardware accelerators ideal for their applications, as traditional develop-

ment flows targeting such hardware require digital design expertise. This work proposes a

usable, end-to-end accelerator development methodology that attempts to bridge this gap

between domain-experts and the vast computational capacity of FPGA-based heterogeneous

platforms. To accomplish this, two development flows were assembled, both targeting the

Convey Hybrid-Core HC-1 heterogeneous platform and utilizing existing graphical design

environments for design entry. Furthermore, incremental implementation techniques were

applied to one of the flows to accelerate bitstream compilation, improving design productiv-

ity. The efficacy of these flows in extending FPGA-based acceleration to non-engineers in

the life sciences was informally tested at two separate instances of an NSF-funded summer

workshop, organized and hosted by the Virginia Bioinformatics Institute at Virginia Tech.

In both workshops, groups of four or five non-engineer participants made significant modifi-

cations to a bare-bones Smith-Waterman accelerator, extending functionality and improving

performance.

This work was supported in part by the I/UCRC Program of the National Science Foundation

under Grant Nos. EEC-0642422 and IIP-1161022, and by NSF Award No. OCI-1124123,

High Performance Computing in the Life/Medical Sciences.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Organization . 3

2 Background 5

2.1 Big Data . 5

2.2 Heterogeneous Computing . 6

2.2.1 FPGAs . 7

2.2.2 Convey Hybrid-Core . 8

2.2.3 Usability Challenges . 13

2.3 FPGA Design Productivity . 14

2.3.1 Contributors to Productivity . 14

2.3.2 Non-Engineer Usability . 15

2.4 Non-Traditional Development Flows . 15

2.4.1 High Level Synthesis . 16

iii

2.4.2 Graphical Environments . 17

2.4.3 Role . 19

2.5 Azido . 20

2.5.1 System Descriptions . 23

2.6 LabVIEW . 24

2.7 Summary . 27

3 Approach 28

3.1 Azido Flow (bFlow) . 29

3.1.1 System Description . 30

3.1.2 Software Routines . 35

3.1.3 Incremental Compilation . 36

3.2 LabVIEW Flow (ConVI) . 37

3.2.1 VI Compilation . 38

3.2.2 Front-Panel Control . 39

3.3 Smith-Waterman . 40

3.3.1 Overview . 41

3.3.2 Implementation . 44

3.4 VBI Workshops . 48

4 Results & Analysis 52

4.1 Workshop Results . 52

iv

4.1.1 2012 Workshop (bFlow) . 53

4.1.2 2013 Workshop (ConVI) . 54

4.2 Usability Challenges . 55

4.2.1 bFlow . 55

4.2.2 ConVI . 56

4.3 Compilation Performance . 57

4.3.1 bFlow . 57

4.4 Resource Utilization . 59

5 Conclusions 61

5.1 Summary of Results . 62

5.2 Future Work . 63

Bibliography 65

A CPLib Software Library 71

B MPIP Server Emulator 80

C Smith-Waterman in bFlow 86

D Smith-Waterman in ConVI 89

v

List of Figures

2.1 Convey HC-1 system architecture . 11

2.2 HC-1 Application Engine (AE) architecture 12

2.3 Convey’s Personality Development Kit (PDK) process for developing custom

personalities . 13

2.4 Screenshots of four graphical hardware development environments used to

describe a multiply-accumulate operation . 18

2.5 Screenshot of the Azido desktop environment 21

2.6 Recursive self-instantiation of an object using Azido’s I2ADL syntax 22

2.7 Azido widget window displayed at runtime for stimulation and diagnostic

purposes . 23

2.8 Azido system description-based implementation flow 23

2.9 LabVIEW block diagram . 26

2.10 LabVIEW front panel . 26

3.1 High-level development process of the bFlow and ConVI flows 29

3.2 bFlow development process . 30

vi

3.3 Integration of the top-level Azido I2ADL design into the existing HC-1 HDL

framework . 31

3.4 Azido top-level control and indicator widgets 32

3.5 Overview of the Azido ↔ HC-1 runtime communication implementer 32

3.6 HC-1 AE dispatch interface functionality as Azido library objects 34

3.7 HC-1 AE memory controller interface functionality provided as Azido library

objects . 35

3.8 Integration of the top-level LabVIEW VI into the existing HC-1 HDL framework 39

3.9 LabVIEW compilation window during a ConVI build 40

3.10 Architecture of the register access framework that enables front-panel control

during runtime or simulation . 41

3.11 Example of Smith-Waterman (SW) algorithm used to compare two DNA se-

quences . 42

3.12 Smith-Waterman scoring matrix data dependencies (a) and systolic array

mapping (b) . 43

3.13 Diagram of the Smith-Waterman systolic array processing element used in

this work . 45

3.14 Top-level architecture of the HC-1 accelerator for the Smith-Waterman matrix

fill operation . 46

3.15 Recursive definition of the Smith-Waterman processing element in Azido . . 47

3.16 Implementation of the Smith-Waterman processing element in Azido 49

3.17 Implementation of the Smith-Waterman processing element in LabVIEW . . 50

vii

3.18 LabVIEW script that automates VI replication and interconnection to gener-

ate systolic arrays . 51

4.1 Smith-Waterman pipeline logic in Azido . 53

4.2 Build times (mean of three runs) for Convey’s standard flow and the Partitions-

and qFlow-based flows for the Smith-Waterman accelerator 59

viii

List of Tables

2.1 Comparison of multicore CPUs, GPUs, and FPGAs. MIPS/W refers to the

typical power efficiency—energy consumed per meaningful computation . . . 8

3.1 List of software routines provided to the host app developer 36

4.1 Build times (mean of three runs) for Convey’s standard flow and the Partitions-

and qFlow-based flows for the Smith-Waterman accelerator 58

4.2 Resource utilization of a single Smith-Waterman processing element described

using handwritten Verilog, LabVIEW FPGA, and Verilog 60

ix

Chapter 1

Introduction

From measurements of physical phenomena at CERN’s Large Hadron Collider (LHC) to

the sequences of billions of nucleotides in the human body’s DNA, we have access to an

unprecedented amount of stored data. The world we live in is saturated with it, and while,

at one point in time the production of sufficient data was a primary challenge, the problem

has now shifted to its consumption and intelligent processing at reasonable rates. Petabytes

of sensor data from the LHC and the three billion base-pair genomes of every human on

the planet are just two of many examples of fast-growing, complex data sets that have been

generating concern for the high-performance computing (HPC) community.

The task of compiling such massive data sets into useful information falls to domain-

experts, scientists with domain-specific knowledge of algorithms needed for such analysis.

Due to the size of the data sets, these algorithms often have extensive computational re-

quirements, and such experts resort to the use of large, data-center class computing systems

for algorithm acceleration. The rigid, coarse-grain architecture of such systems, however, is

intended for high-performance over a general mix of problems, and cannot take advantage of

many application-specific optimizations. FPGA-based, heterogeneous platforms, such as the

Convey Hybrid-Core series, provide the fine-grain flexibility needed to provide optimizations

specific to an application’s architecture.

1

David C. Uliana Chapter 1. Introduction

1.1 Motivation

Despite the benefits that heterogeneous computing has to offer domain experts, the existing

tools that enable development for FPGA-platforms are highly dependent on digital design

expertise, i.e. an excellent understanding of a hardware description language (HDL) and

fine-grain digital hardware architecture. This impedes the ability of non-engineers to ex-

plore acceleration on such platforms, and creates a wide gap between the domain expert’s

knowledge of the algorithm and the vast computational capacity of FPGAs.

In addition to poor usability, most traditional flows are characterized by a lack of high

productivity. Reasons for this include primitive support for IP reuse, which often results

in redundant effort in the design phase, as well as limited interactivity throughout the

development process which lengthens the time to solution by constraining the number of

meaningful design iterations explored and verified by the user each day. These problems

raise the already high barrier to entry for application development targeting FPGA-based

platforms for digital designers and non-engineers alike.

While many non-traditional, text-based syntaxes have emerged in an attempt to bridge

the gap between domain experts and FPGA-based, heterogeneous acceleration, they have

yet to consistently produce efficient implementations without designer input of a nature

requiring hardware design expertise. Some existing graphical tools present a more intuitive

approach to hardware design, constraining the user to describe functionality on an inherently

concurrent graphical canvas. This work takes advantage of such tools.

1.2 Contributions

This thesis attempts to address the problems stated above through the assembly of end-to-

end development environments targeting FPGA-based, heterogeneous platforms, and utiliz-

ing existing, highly abstracted graphical syntaxes usable by non-engineer domain experts

2

David C. Uliana Chapter 1. Introduction

without digital hardware design experience. Specifically, two development flows were cre-

ated, one using the Data I/O Azido graphical environment as the flow’s design front-end,

and the second using the National Instruments LabVIEW FPGA platform as the front-end.

Both flows are seamlessly integrated into Convey’s Personality Development Kit for creating

accelerators on the Convey HC-1 platform, including integration of the system simulation

framework into the front-ends. To aid in the hardware/software co-design portions of de-

velopment, abstractions of the Convey HC memory and custom instruction interfaces were

provided in the front-end environments. Furthermore, the productivity of the Azido-based

flow was improved through the use of two incremental compilation techniques for the accel-

eration of the flow’s bitstream compilation phase.

To demonstrate the efficacy of the two flows, an informal evaluation of their usability was

conducted during two summer workshops, one in 2012 and one in 2013. Each workshop, a

small group of students and professionals with were given a bare-bones, systolic array-based

implementation of the Smith-Waterman sequence alignment algorithm, which made heavy

use of the interface abstractions provided with the flows. In these experiments, the group

members were tasked with extending the functionally and performance of the implementation

using one of the two flows, with limited involvement of technical experts.

1.3 Organization

This thesis is organized as follows. Chapter 2 discusses the growing concern of big-data

science to the field of HPC, and how heterogeneous computing with FPGAs can address these

concerns. Also discussed is the current state of development tools targeting these platforms,

and the lack of such tools intended for use by non-engineer domain experts. Chapter 3

presents bFlow and ConVI, seamless, end-to-end development flows targeting the Convey

HC-1 heterogeneous platform, and using Azido and LabVIEW FPGA as design front-ends.

The chapter describes two informal usability experiments, in which these tools are given

3

David C. Uliana Chapter 1. Introduction

to non-engineer domain experts with the task of improving a skeleton implementation of

a widely-used bioinformatics algorithm. Chapter 4 contains the qualitative and quantitate

results of this experiment—a discussion of the usability of the two flows, as well as the

runtime results for compilation acceleration. Finally, Chapter 5 provides a summary of the

motivation of this thesis, its contributions, and its various results.

4

Chapter 2

Background

This chapter is structured as follows. It begins with an overview of the challenge big-data

science poses to the high performance computing (HPC) community, and discusses how

heterogeneous computing, especially the use of FPGA-based systems, can help address this

problem. Consideration is given to the poor usability and productivity of development flows

targeting such systems, and the current state of non-traditional development flows, including

those used heavily in this work, is described.

2.1 Big Data

The current era is one characterized by an abundance of raw facts, as the size and availability

of valuable data sets is rapidly increasing. This trend is reinforced by the existence of

projects like the Large Hadron Collider (LHC), which contains 150 million sensors and will

produce about 25 Petabytes of data in 2013, even after discarding over 99.99% of the sensor

output [4, 20, 46]. Another example—more pertinent to this work—is the construction of

the genome of a single human individual, which is comprised of over three billion DNA base

pairs. Producing such a genome using output from top-of-the-line next-generation DNA

5

David C. Uliana Chapter 2. Background

sequencers involves the complex process of assembling billions of 100-200 base-pair reads

into a single sequence [36]. This is especially concerning given the expectation that, in the

near future, next-generation sequencing machines will produce these reads in a matter of

hours [24]. This flood of information necessitates exceptional computing performance in

order to process such data sets within tolerable times.

At the forefront of big-data analysis efforts are domain experts—the brains behind ex-

tracting useful information from vast data sets. These include scientists who interpret the

LHC sensor output and bioinformaticians who explore genome hypotheses by analyzing large

quantities of genome data [26]. Such domain experts may have significant programming skill;

however, their productivity—–this will be defined here as their hypothesis discovery and veri-

fication rate—–is limited by the processing capabilities of available computing resources. For

example, the architecture of data-center class computing platforms is designed for speed over

a general mix of problems, and efficiently applying such platforms to domain-specific data

structures and algorithms such as DNA/protein sequence alignment can be very difficult

[37]. Heterogeneous computing machines, such as the Convey Hybrid-Core (HC) servers

have potential to address this problem, and are discussed in the next section.

2.2 Heterogeneous Computing

Heterogeneous computing (HC) can be defined as the application of diverse computing re-

sources to the acceleration of computationally intense tasks with diverse requirements [19].

Moving a computing task from general purpose processing resource to a resource specifically

designed for that task or class of tasks has potential to increase execution efficiency, specif-

ically in terms of time and space/energy savings [23]. These benefits have resulted in the

widespread use of domain- and application-specific computing resources, including graph-

ics processing units (GPUs) and application-specific integrated circuits (ASICs), for HPC

problems.

6

David C. Uliana Chapter 2. Background

Each of these resource types demonstrates a tradeoff between application performance and

development time. Multicore processors are easiest to program and debug, resulting in short

development times; however, such hardware executes code sequentially with very coarse-

grained parallelism, failing to take advantage of significant fine-grained parallelism found

in many HPC applications. GPUs, which typically perform computer graphics tasks, are

much more specialized, providing great acceleration to the domain of applications that map

to the same instruction/multiple data (SIMD) model, and operate on floating point data.

The parallel acceleration offered by GPUs is much finer than that of multicore processors

(e.g. hundreds of small processing elements vs. 4-16 large elements per unit). Finally, ASIC

devices are completely specialized, and enable the highest level of application performance

per space/energy due to the ultra-fine grained level of control over the physical layout of

the chip. These are custom solutions, and come at the cost of very long development times,

as well as the inability to make changes to the implementation after fabrication, a severe

limitation when compared to the ease of recompiling software for CPUs and GPUs.

One alternative to the devices discussed above are field-programmable gate arrays (FP-

GAs), which provide a compromise between the programmability of software and the per-

formance of hardware. FPGAs can be configured at a fine level of granularity to execute

virtually any hardware description. This flexibility means that, when properly programmed,

FPGAs outperform multicore CPUs and GPUs for many applications (see Table 2.1 for a

high-level comparison of these devices). This is especially true for arithmetic involving non-

standard data types, which dominate many bioinformatics applications. For this reason, and

others discussed in the next section, FPGA targets are the focus of this work.

2.2.1 FPGAs

FPGAs consist of large, two-dimensional arrays of logic blocks, arithmetic blocks, and mem-

ory elements connected to each other through a highly configurable interconnect fabric.

These devices can be programmed with virtually any hardware description, provided it does

7

David C. Uliana Chapter 2. Background

Table 2.1: Comparison of multicore CPUs, GPUs, and FPGAs. MIPS/W refers to the

typical power efficiency—energy consumed per meaningful computation.

Device Granularity Programmability MIPS/W

Multi-core Coarse Software Low

GPUs Medium Software Medium

ASICs Ultra-fine Hardware (once) Very High

FPGAs Fine Hardware High

not require more resources than those available in the device. The performance of FP-

GAs, when compared to other resources, depends heavily on the application in question.

For example, FPGAs will generally underperform GPUs for applications requiring SIMD

operations on large, floating-point data sets, as this problem domain is the focus of GPU

architectures, and FPGA implementations suffer from significant overhead due to the fabric

flexibility [34]. Also, CPUs maintain an advantage over FPGAs for applications with exten-

sive control requirements and frequent context changes, due to their architecture and much

higher clock speeds. However, the abundant parallelism and fine-grain control accessible to

FPGA designers permit application-specific optimizations unavailable on the rigid architec-

tures of CPUs and GPUs, which require the use of standard, 32- or 64-bit data types for full

utilization—FPGAs enable non-standard resources, such as 2-bit arithmetic units. Due to

the problem-specific nature of data types found in many HPC computations in the sciences

(e.g. 2-bit encoding of DNA base pairs), this work focuses on heterogeneous platforms that

provide acceleration with FPGA devices.

2.2.2 Convey Hybrid-Core

Convey Computer’s Hybrid-Core (HC) machines are excellent examples of FPGA-based,

heterogeneous computing platforms [10]. These systems provide application acceleration

8

David C. Uliana Chapter 2. Background

through the tight coupling of a general purpose processor and an FPGA-based application

accelerator. The work presented in this paper makes heavy use of the Convey HC-1 Hybrid-

Core Computer, a 2U chassis server partitioned into an Intel Xeon-based host board and a

co-processor accelerator board, the focus of which is four user-programmable Xilinx Virtex

5 FPGAs. A unique configuration of these FPGAs is referred to as a “personality,” and

provides a set of x86 custom assembly instructions to application running on the host server.

By using a personality tailored to a particular application, significant speedup can be real-

ized. Convey Computer has created personalities that target particular application domains,

including graph problems and algorithms common to the financial sector [12, 11]. However,

it is probable that existing personalities will not meet the requirements of a user’s particular

application; as a result, Convey has provided a development environment, the Personal-

ity Development Kit (PDK), for designing, building, and simulating custom personalities.

Following is an overview of the HC-1’s architecture and Convey’s supported development

process using the PDK.

HC-1 Architecture

The high-level architecture of the HC-1 system is shown in Figure 2.1. The bottom half

of the server chassis is dedicated to a dual-socket motherboard containing a dual-core, 2.13

GHz Intel Xeon 5138 processor with an Intel 5400 memory controller hub attached to up to

128 GB of memory in 16 DIMMs. The other socket houses a mezzanine connector to join the

co-processor board to the host’s 1,066 MHz front-side bus (FSB). The co-processor board

contains eight memory controllers connected to two DIMMs each [3, 35, 13].

The co-processor contains four user-programmable Xilinx Virtex-5 XC5VLX330 FPGAs,

referred to by Convey as Application Engines (AE). Each AE FPGA connects to the rest of

the system through four primary interfaces (see Figure 2.2):

• The dispatch interface handles custom instruction calls from the the scalar processor, as

9

David C. Uliana Chapter 2. Background

well as 64-bit register transfers. The registers, known as the application engine general

(AEG) registers, are typically utilized for runtime configuration of the personality.

• Each AE contains 16 ports on eight memory controller interfaces, each connected to

one of the coprocessor’s eight memory controllers. Assuming an ideal memory access

pattern, each AE has up to a 20 GB/s link to the 16 DDR2 DIMMs.

• The Control and Status Register (CSR) interface, which connects all four AEs and

the scalar processor in a ring topology, runs off its own clock, and enables access to

registers in each AE. Registers on this ring can be accessed through read and write

commands sent to a local telnet server provided by the MPIP program. This is also

referred to as the management interface.

• An AE-to-AE interface is provided to directly support communication between neigh-

boring FPGAs. With this interface, all four AEs are interconnected in a ring topology

using 668 MB/s full-duplex links.

The co-processor board also contains two non-user programmable FPGAs, which constitute

the Application Engine Hub (AEH). One FPGA handles communication with the host over

the FSB, and enforces memory coherency across the host and coprocessor memory systems.

The second contains the scalar processor, which implements Convey’s base instruction-set

and invokes the personality custom instructions through the dispatch interface.

Personality Development Kit (PDK)

To enable the creation of custom personalities, Convey provides a Personality Development

Kit (PDK) flow, which is illustrated in Figure 2.3. The PDK encourages the following

development process, when constructing an accelerator from an existing software-only im-

plementation:

1. Analyze the application’s performance bottlenecks and heavily-used data structures,

10

David C. Uliana Chapter 2. Background
K

arlSavio
P

im
enta

P
ereira

T
he

C
onvey

H
C

-1
H

ybrid
C

ore
27

F
igu

re
3.3

C
onvey

H
C

-1
system

block
diagram

.
Source:

C
onvey

H
C

-1
P
ersonality

D
evelopm

ent
K

it
R

eference
M

anual,
v

4.1,
C

onvey
C

orporation,
2010,

used
under

fair
use

guidelines,2011.

Figure 2.1: Convey HC-1 system architecture. Convey Computer Corporation. Convey

HC-1 Personality Development Kit Reference Manual, v.4.1, 2011. Used with permission of

Convey Computer Corporation, 2014.

and identify core functionality that can be moved to the FPGA-based co-processor for

acceleration. Extract this functionality into a set of software kernels, which will serve

to model the desired co-processor behavior.

2. Map the software kernels to the subset of the Convey Instruction Set Architecture

reserved for custom personalities. This replaces the original calls to the kernels with

calls to the coprocessor software model, allowing the designer to verify the partitioning

using a functional, system-wide simulation framework provided by Convey.

3. Provide implementations of the kernels using a hardware description language (HDL),

such as Verilog and VHDL, or as synthesized netlists (e.g. EDIF), and verify their

functionality using the aforementioned simulation framework, which contains bus-

functional models of all AE interfaces, and co-simulates the host software with the

co-processor HDL through the Verilog Procedural Interface.

11

David C. Uliana Chapter 2. Background

Convey PDK Reference Manual v4.2 27

Figure 8 – Application Engine (AE) FPGA Block Diagram

9.3.2 Dispatch Interface
The dispatch interface is the hardware interface through which a host application sends
coprocessor instructions to be executed by the AE. The dispatch interface receives
instructions from the scalar processor. Some instructions, such as MOV to and from AE
registers, are handled directly in the dispatch module. Instructions intended for the
custom Application Engine personality are passed to the custom personality through the
signals described below. The dispatch interface also ensures that scalar data is returned
to the IAS when required by the instruction.

The diagram below shows the data flow through the dispatch interface:

Figure 2.2: HC-1 Application Engine (AE) architecture. Convey Computer Corporation.

Convey HC-1 Personality Development Kit Reference Manual, v.4.1, 2011. Used with per-

mission of Convey Computer Corporation, 2014.

4. Lastly, the personality is implemented to a bitstream package using the Xilinx FPGA

design flow. Each personality package consists of the kernel software models, FPGA

configuration files for programming the AEs, and some metadata and documentation.

On-demand, the package is loaded to the co-processor and its instructions made avail-

able to the host application.

12

David C. Uliana Chapter 2. Background
The application can now be compiled using the Xilinx ISE tools and packaged as a
personality to be run on the Convey hybrid-core system.

Figure 5.

Identify critical
kernels/define
instruction(s)

Develop model for
simulator/compile

with Convey compilers

C functional
model

Implement kernel in
hardware description

language

Run kernel on
HC-1 coprocessor

hardware
Application
...
call kernel()

Application
...
call kernel()

HC-1 Functional
Simulator

App kernel copcall(CAEP00)

Application
...
call kernel()

copcall(CAEP00)

Application
...
call kernel()

copcall(CAEP00)

App kernel

Verilog on external
HW simulator

HC-1 Functional
Simulator

HC-1 Hardware

App kernel

Custom
personality

x86-64 Linux development environment Hardware

 The PDK stepwise process that simplifies custom personality development.

The ability to create new instructions that can be loaded dynamically allows the
implementation of highly parallel instructions that are specific to algorithms and data
structures not well served by classic scalar and vector architectures. As these
applications evolve, the instruction set architecture can evolve along with new
instructions.

Turnkey Applications and Personalities
The openness of the Convey hybrid-core architecture lends itself well to development
and distribution of personalities that accelerate popular algorithms across a wide range
of disciplines. Both Convey, Convey customers, and 3rd party developers have developed
personalities that are sold and supported to accelerate applications. Specifically,
personalities have been developed for four major market segments: Bioinformatics, “Big
Data” Analytics, Government/Defense, Research and Development. Please check the
Convey website for the latest information on personalities that are available.

Summary
Convey hybrid-core computer systems provide increased scalability and cost
effectiveness by delivering higher performance per node for compute intensive
workloads. It leverages reconfigurable logic to support specialized architectures
optimized for specific workloads. These specialized architectures are integrated into an
industry standard Intel 64 system—leveraging commodity components and allowing
easy integration into an existing environment.

The Convey systems maximize productivity by delivering prebuilt personalities for
important applications and a unified development environment based on standard ANSI
C/C++ and Fortran. Users can create new personalities, allowing new instruction sets
to be innovated for emerging applications.

The openness of the
Convey hybrid-core
architecture lends itself
well to development
and distribution of new
personalities.

7

Figure 2.3: Convey’s Personality Development Kit (PDK) process for developing cus-

tom personalities. Convey Computer Corporation. The Convey HC-2 Computer Archi-

tectural Overview. http://www.conveycomputer.com/files/4113/5394/7097/Convey_HC-

2_Architectual_Overview.pdf. [Online; accessed 3 Dec 2013] Used with permission of Con-

vey Computer Corporation, 2014.

2.2.3 Usability Challenges

Computing on platforms with heterogeneous resources poses several challenges. First, there

is the problem of effectively partitioning the task into subtasks to run on the diverse set

of resources. This is made more difficult by the vast differences between development flows

for each resource type, and the inability to use a single specification language to target the

entire system. Furthermore, when such platforms are used for HPC in the sciences, however,

the problem of usability by non-engineers is brought to center-stage. Development flows for

heterogeneous platforms like the Convey HC series require extensive computer engineering

and digital design expertise, rendering the use of these platforms impractical for most experts

in the science communities, who typically lack such backgrounds [21].

13

David C. Uliana Chapter 2. Background

2.3 FPGA Design Productivity

Design productivity for FPGA-based computing has suffered from the contemporary ASIC

“design productivity gap,” in which the rapid rise in transistor density overwhelms the abil-

ities of design tools and methodologies [1]. This gap especially hurts FPGA design produc-

tivity as these devices present unique needs and opportunities, such as reprogrammability

(not available on ASICs). Contributors to high FPGA design productivity and challenges

unique to non-engineer domain experts are discussed in this section.

2.3.1 Contributors to Productivity

In [32] Nelson et al. proposed a productivity model that exposes three key contributors to

high design productivity for FPGAs. This model draws from the rich history of software

development by comparison with hardware development, and defines productivity as depen-

dent primarily on the extent of object reuse during development, the level of abstraction

of the design environment, and the level of interactivity of the design tools. Following are

descriptions of each of these contributors:

• Object reuse. The reuse of components in software has proven hugely beneficial to

productivity; in fact, even the simplest “Hello World” programs depend on a huge level

of reuse [32]. Applying these concepts to FPGA design leads to libraries of reusable

hardware blocks and the standardization of interfaces between such blocks. When such

components can be integrated into the rest of the system with significantly less effort

than designing them from scratch, productivity is increased.

• High-levels of abstraction. The move from machine code and assembly to high-level

languages such as C++ and Python has effected massive reductions in software design

and verification time. Similar benefits can be had in FPGA development by elevating

design granularity to a coarse level using hierarchy and object reuse, e.g. designing with

14

David C. Uliana Chapter 2. Background

large blocks, such as FFTs, rather than individual logic and arithmetic operators. This

has the positive side effect of improving the portability of designs. Furthermore, bene-

ficial abstraction can be achieved by providing mappings from behavioral descriptions

to structural descriptions—this is the focus of HLS tools.

• Considerable interactivity in development flows. By decreasing the time required to

evaluate meaningful design iterations, or turns, the turns-per-day can be increased, and

the total time-to-solution reduced. In FPGA development, this evaluation consists of

verifying and debugging the functionality of the design, and analyzing its performance,

providing valuable insight to the designer. Hence, when the turns-per-day rate is

increased, the volume of beneficial feedback to the designer is increased. This is the

desired interactivity that benefits design productivity.

2.3.2 Non-Engineer Usability

Unique to FPGA-based HPC in the sciences is the involvement of non-engineer domain

experts. In addition to productivity challenges faced by digital designers, non-engineer

designers face a steep learning curve presented by traditional, HDL-based tools. This barrier

to entry exists for two reasons: 1) learning an unfamiliar text-based language syntax and

2) thinking in terms of concurrent processes, all executing simultaneously. Unfortunately,

students beginning a computer science or engineering education are taught to think of an

application as a sequence of steps, rather than a set of concurrent tasks [38]. This is true for

engineers, and even more so for non-engineer domain experts.

2.4 Non-Traditional Development Flows

Due to the productivity and usability limitations of traditional design entry frameworks (i.e.

HDL-based flows) discussed in the previous section, many non-traditional languages and

15

David C. Uliana Chapter 2. Background

processes have emerged in an attempt to ease the use of FPGAs in heterogeneous systems

by 1) decreasing the time-to-solution for FPGA implementations and 2) broadening the

FPGA user base through the use of highly abstracted syntaxes. This section discusses the

role or purpose of these tools in the development cycle, and describes the current state of

such tools.

2.4.1 High Level Synthesis

High-level synthesis (HLS) is defined here as the compilation of a high-level, behavioral de-

scription language to a low, register-transfer level (RTL) hardware specification (e.g. Verilog

and VHDL). These tools consume textual or graphical behavioral descriptions, which are

analyzed to extract control dependencies and parallelism. By using a very high-level spec-

ification, HLS can drastically reduce the time required to arrive at a functionally correct

solution when compared to RTL-based development. However, as the input description is

abstracted, optimization of the hardware is shifted from the designer to the HLS compiler,

often resulting in inefficient implementations. This effect can usually be mitigated by pro-

viding ‘hints’ (e.g. pragma statements in C-based HLS), to aid the compiler, though these

hints are usually of a nature requiring digital design expertise.

Many early HLS tools made use of unconventional or tool-specific languages. In general,

however, the use of a non-standard language as the entry format of an HLS tool creates a

barrier to widespread adoption [25]. To avoid this, numerous attempts have been made to

use existing, widely adopted languages, such as C/C++/SystemC, Java, Python, OpenCL,

etc., as the design entry point. Current HLS tools that accept C/C++/SystemC as input

include Catapult (formerly Catapult C from Mentor Graphics) [7], Bluespec [5], ImpulseC

[18], Xilinx HLS (formerly AutoPilot from AutoESL) [51], LegUp [8], and Synphony C [40].

Examples of OpenCL HLS tools include Altera’s SDK for OpenCL [15, 2]. An excellent,

albeit slightly outdated summary of HLS history is presented in [25].

16

David C. Uliana Chapter 2. Background

2.4.2 Graphical Environments

Among the vast spectrum of HLS tools one can find the subset devoted to graphical develop-

ment environments. Such environments are distinguished from text-based HLS tools by the

use of a graphical syntax as the entry format, rather than text. It can be argued that con-

straining the designer to indicating application behavior and structure graphically, rather

than textually, forces him/her to think in terms of concurrent—rather than sequential—

processes, which map well to the parallelism provided by FPGAs. These tools provide func-

tion ranging from simply visually capturing the hardware structure of an implementation,

to capturing a highly abstracted, behavioral model of the computation to be implemented.

In the following text both ends of this spectrum are discussed.

Schematic Capture

Designing a digital hardware system by placing and connecting purely structural logic blocks

on a graphical, block diagram canvas is referred to as schematic capture. It is a graphical

analog to structural RTL design, and shares its low level of abstraction and limitations.

For example, a general disadvantage of schematic capture tools is the lack of state machine

constructs to compare with the intuitive, almost C-like constructs of the Verilog and VHDL

state machine syntaxes.

Beyond Schematics

Pure schematic capture tools like those discussed above do little to abstract the low level

implementation details from the designer, and do nothing to lower the barrier to entry of

prerequisite digital design knowledge. Furthermore, the lack of high-level abstractions results

in development times as long if not longer than with HDLs. In an effort to address this,

graphical tools emerged with a focus on providing an abstracted front-end to engineers and

non-engineers alike in an effort to accelerate development and broaden the user base. These

17

David C. Uliana Chapter 2. Background

tools include MathWorks Simulink [43], Xilinx System Generator [50], Data I/O’s Azido [6],

and National Instrument’s LabVIEW platform with the LabVIEW FPGA Module [29, 30].

This list is not exhaustive. Screenshots of these tools are shown in Figure 2.4.

Figure 2.4: Screenshots of four graphical hardware development environments used to de-

scribe a multiply-accumulate operation. Clockwise from top-left: Simulink, System Genera-

tor, Azido, and LabVIEW.

Simulink, developed by The MathWorks, is a graphical tool tightly integrated with MAT-

LAB, and intended for modeling and simulating dynamic systems [43, 42]. Design entry

is accomplished by placing, connecting, and configuring hierarchical “sub-systems” on a

graphical canvas. Using The MathWork’s HDL Coder, HDL code and testbenches can be

generated from a Simulink model and used to configure Xilinx and Altera FPGA devices

[41]. Xilinx System Generator is used in conjunction with Simulink and HDL Coder as

18

David C. Uliana Chapter 2. Background

a unified environment. System Generator provides a block-diagram front-end which takes

advantage of the Xilinx CoreGen tool for generating high-performance computation cores

[48, 50]. The abstractions shown by both Simulink and System Generator indicate a heavy

focus on dynamic systems and signal processing applications.

Data I/O’s Azido, which is used in this work and discussed in depth in the next section, is

a graphical hardware development environment [6]. One of the features that distinguishes it

from schematic capture and other graphical tools is the automatic compile-time resolution

of data types. This enables graphical polymorphism, and allows recursive instantiations

of an object within itself. Azido provides a large library of logic, arithmetic, and control

objects called the CoreLib, and defines a framework for providing support for arbitrary target

platforms. In this work Azido is used to target the Convey HC-1 coprocessor.

The LabVIEW platform, created by National Instruments, is a mature, widely adopted

environment for system design, with a focus on instrument control/monitoring and data ac-

quisition [27]. Design with the tool is very behavioral, making heavy use of synchronization

and control constructs, such as for loops, timeline structures, and case statements. A behav-

ioral block designed in LabVIEW is called a Virtual Instrument (VI), and can be run either

within the environment or as an independent application. With the LabVIEW FPGA Mod-

ule, these applications can be deployed to supported FPGA-based systems for accelerated

computation. While some of LabVIEW’s control abstractions are unavailable when target-

ing FPGA systems, the environment still presents a highly abstracted view to the designer,

making it appropriate for use by non-engineers. As with Azido, LabVIEW is used in this

work to target the HC-1 coprocessor, despite no official support for the platform.

2.4.3 Role

It is crucial to understand the role of such tools in the development process. The target

users for early HLS tools were digital designers, and the purpose of the tools was to decrease

time-to-solution while maintaining application performance. Few HLS tools have produced

19

David C. Uliana Chapter 2. Background

implementations with a quality level high enough to draw such users from familiar, traditional

flows [25]. Current tools also target non-engineers, in the hope of broadening the FPGA user

base by abstracting away the nasty low-level details of hardware design.

The typical approach taken by a non-engineer domain expert to accelerate a big-data

computation in the sciences is to present the problem to a hardware engineer along with

a specification and set of constraints. The engineer implements the accelerator as per the

specification, and it is inserted into a scientific workflow used by the domain expert [14].

When providing the domain expert with direct access to hardware and an abstracted, high-

level development environment, two scenarios can occur.

1. The domain expert independently describes the computation using the tool, and correct

implementation is produced. This requires the tool to feature a syntax usable to the

user without significant training. Furthermore, the tool must be capable of producing

an efficient, high-performance implementation from the abstracted syntax.

2. The domain expert fails to independently describe the computation in the tool in a

manner that produces a functionally correct or efficient, high-performance implemen-

tation. However, through collaboration with a hardware engineer, the expert can use

the tool to produce such an accelerator.

In this work, both situations are experienced. The former is ideal, but unlikely. In the second

scenario, the tool acts as a communication device, facilitating a mutual understanding among

the domain expert and engineer of the computation and desired acceleration. This supports

the interdisciplinary effort to produce a correct, high-performance implementation.

2.5 Azido

Data I/O’s Azido, shown in Figure 2.5, is a graphical, object-oriented design environment

based on the Implementation Independent Algorithm Description Language (I2ADL) [6].

20

David C. Uliana Chapter 2. Background

Like most graphical front-ends, Azido attempts to abstract the low-level complexities of dig-

ital hardware design to higher-level algorithmic objects more intuitive to designers without

traditional digital design expertise (e.g. knowledge of HDL). Also, it simplifies and acceler-

ates design by heavily encouraging object reuse and providing an extensible library of I2ADL

primitives, known as the CoreLib. Azido can be extended to support virtually any hardware

target through the use of system descriptions (SDs).

Figure 2.5: Screenshot of the Azido desktop environment.

Development in the Azido environment for a heterogeneous target platform is structured

as follows. First, the user indicates the desired functionality on the top-level canvas using the

graphical, I2ADL syntax. For this step the reuse of existing objects in the CoreLib is highly

encouraged. By selecting the x86 system description and running the design, the user can

perform a rough verification of the implementation. Finally, the target system description

can be selected, the design synthesized for that target, and the implementation run with

21

David C. Uliana Chapter 2. Background

real data. All top-level inputs and outputs not tied to real system I/O will be displayed and

controlled in the widget window, shown in Figure 2.7.

Among several existing graphical design environments, Azido was selected for this work

primarily for three reasons: 1) it provides a flexible design environment and core library

capable of servicing many application domains at multiple levels of abstraction, 2) the sys-

tem description-based implementation framework facilitates extension of the tool to many

target platforms, and 3) beyond standard schematic-capture abilities, Azido provides some

dynamic features, such as automatic data typing and graphical polymorphism. The graph-

ical polymorphism is enabled by unspecified (in terms of size) data types, and allows the

recursive instantiation of an object within itself, as shown in Figure 2.6.

4-bit ripple-carry adder

2x 2-bit ripple-carry adders

4x full-adders

gate-level implementation

Figure 2.6: Recursive self-instantiation of an object using Azido’s I2ADL syntax. This

example shows a 4-bit ripple-carry adder.

22

David C. Uliana Chapter 2. Background

2.5.1 System Descriptions

At the core of the Azido implementation engine are system descriptions. These are script-

based “plugins” to Azido that encapsulate details of the target’s architecture and implemen-

tation process, which is shown in Figure 2.8. SDs provide the following primary functions:

Figure 2.7: Azido widget window displayed at runtime for stimulation and diagnostic pur-

poses.

Figure 2.8: Azido system description-based implementation flow.

• Implementation flow. At compile time, Azido synthesizes the user’s I2ADL design into

23

David C. Uliana Chapter 2. Background

a structural EDIF (Electronic Design Interchange Format) netlist, which is passed to

a implementation script defined by the SD. This script produces a runtime executable

or configuration—a software binary for a CPU target, a configuration bitstream for an

FPGA target, etc.

• Low-level definitions of any CoreLib objects. Azido synthesizes the design by traversing

the I2ADL graph recursively and flattening each object into its sub-objects. When the

process encounters an object without a definition (i.e. a black box), it is placed into

the synthesized netlist and connected accordingly. For example, the CoreLib adder

object is, by default, defined as the combination of two half-size adders connected in

ripple-carry fashion. During synthesis, the adder is elaborated recursively until the

“leaf” objects (i.e. bit-wide full-adders) are reached. Hence, after elaboration, a 32-

bit, integer adder will synthesize to 32 full-adders connected in series. The strategy

Azido uses when synthesizing an object can be directed using a graphical equivalent

of compiler hints or pragmas.

• Target-specific objects that supplement the CoreLib. These objects are used to rep-

resent the top-level inputs and outputs of the target, such as physical switches and

indicator LEDs, or interfaces to memory or other system components.

• Inter-platform communication implementers. To enable the use of multi-system tar-

gets, Azido requires the definition of communication handlers for data transfers be-

tween platforms. At a minimum, the SD must define an x86 ↔ target communication

implementer for use by the runtime widget window (see Figure 2.7).

2.6 LabVIEW

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a mature graphi-

cal programming platform developed by National Instruments [29]. The platform is intended

primarily for data acquisition and instrument control and monitoring, and provides support

24

David C. Uliana Chapter 2. Background

for thousands of interfaces and hardware devices. LabVIEW code can also be deployed to

other platforms, including embedded platforms and FPGA-based machines. In this work,

LabVIEW is used to target the Convey HC-1 accelerator, despite no official support for the

platform.

LabVIEW uses a graphical syntax, called the G programming language, which enables

design through the drag-and-drop placement and interconnection of behavioral blocks in

a flowchart-like manner [28]. The language is used to design Virtual Instruments (VIs),

functional blocks that can be run independently or instantiated in a higher-level VI. Each

VI must have a block diagram (see Figure 2.9) and a front panel (see Figure 2.10). The

former specifies the behavior of the VI, while the latter acts as an interface to the VI at

runtime. While programming a VI, designers have access to an extensive library of reusable

arithmetic, logic, and higher-level behavioral blocks.

Alongside the standard development environment is the LabVIEW FPGA Module, a plu-

gin that enables LabVIEW to target supported FPGA-based platforms [30]. The G graphical

language is used when programming accelerators for FPGA targets; however, because some

of LabVIEW’s convenient control constructs and flexible data types cannot be mapped effi-

ciently to FPGA fabric, they are not enabled when developing in the FPGA module. These

features include arrays of variable-size at runtime, multidimensional arrays, and shared vari-

ables [31]. Nonetheless, the tool maintains a high level of abstraction appropriate for non-

engineers.

25

David C. Uliana Chapter 2. Background

Figure 2.9: LabVIEW block diagram. This VI generates a sine wave using parameters from

the front panel (see Figure 2.10).

Figure 2.10: LabVIEW front panel. This VI uses controls and indicators to generate and

display a sine wave (block diagram available in Figure 2.9).

26

David C. Uliana Chapter 2. Background

2.7 Summary

This chapter introduced the increasing reality of big-data in the sciences, and discussed the

challenges it poses to the field of HPC. These concerns can be addressed through the use of

FPGA-based heterogeneous systems, and one such system, the Convey HC platform, is used

in this work. However, these platforms provide acceleration at the cost of productivity and

usability, especially for non-engineer domain experts; hence, non-traditional development

flows, especially graphical programming front-ends, have emerged to tackle these problems

through the use of interactive design environments and high-level abstractions. Two such

graphical front-ends, Azido and LabVIEW FPGA, provide features essential to non-engineers

targeting systems like the HC-1; hence, this work involves the integration of these two

environments into development flows targeting the Convey platform.

27

Chapter 3

Approach

The approach taken in this work is divided into two distinct efforts to assemble a seamless,

end-to-end development flow for the Convey HC-1 platform using an existing FPGA design

front-end environment. The first effort involves integrating the Azido desktop tool into

such a flow, and accelerating the bitstream compilation process to improve interactivity, as

defined in Section 2.3.1. The second effort utilizes the LabVIEW platform as the front-end

but, due to time constraints, acceleration of the bitstream implementation was not pursued.

Both flows have the high-level architecture presented in Figure 3.1. Development and rough

functional verification of the accelerator is performed in a desktop environment (i.e. Azido

and LabVIEW). The host application, which runs on the HC-1’s x86 server, is developed

separately in a Linux environment. System-wide simulation of the host application with

the accelerator is performed on the Convey platform itself. Lastly, the accelerator can be

deployed as a personality, and utilized by the host application in a production context.

During simulation and production runtime, the front-end is utilized for monitoring and

providing diagnostic stimuli to the accelerator.

Each flow was used to implement the Smith-Waterman algorithm, a common sequence

alignment computation in the life sciences. They were then informally tested in the context

of a two-week, NSF-sponsored Summer Institute workshop organized by the Virginia Bioin-

28

David C. Uliana Chapter 3. Approach

Figure 3.1: High-level development process of the bFlow and ConVI flows.

formatics Institute (VBI) at Virginia Tech [44]. This section contains the details of each

effort and the resulting Azido- and LabVIEW-based flows, referred to as bFlow and ConVI,

respectively, as well as a short overview of the Smith-Waterman implementations used in

the workshops.

3.1 Azido Flow (bFlow)

The first attempt to assemble such a flow is based on the Azido algorithm design environ-

ment, which is discussed in Section 2.5. In bFlow, Azido I2ADL designs are synthesized

for system simulation or runtime, and are integrated into the HC-1 personality architecture.

The assembly of bFlow, which is visualized in Figure 3.2, is divided into three sub-efforts:

1) development of an Azido system description (SD) to enable targeting the Convey HC-1

coprocessor, 2) construction of a small software library, and 3) acceleration of the back-end

bitstream compilation process using incremental compilation frameworks. Each are described

29

David C. Uliana Chapter 3. Approach

in this section.

� ����� ����	
�

� ����� ������
���

	�

���

	�����

����� ������ �������
��

�	����� ������ 	��� ������

��������	
����

�������� ���� ��	������ �����

����������
��	�������

�����	
��	������

��	�������
������

��� ���������

�
�� �� �������
�� �����

 �����! "����

!�

 �����!
#��� $�!��

%���&�
�
'��������

��� 	())
����������

���� ����������

� ����	��

��'* "����

���������� %������
+���,��!�-!�.

Figure 3.2: bFlow development process.

3.1.1 System Description

The Azido SD for the Convey HC-1 consists of a communication implementer responsible

for transferring probe data and stimuli between the Azido front-end and the accelerator

30

David C. Uliana Chapter 3. Approach

during runtime, and two sets of abstractions, one for the HC-1 dispatch interface and one

for the memory controller interface. Furthermore, the SD is responsible for implementing

a synthesized netlist provided by Azido into an executable (or simulatable) format. In

bFlow, the top-level netlist generated by Azido is integrated into AE architecture as shown

in Figure 3.3.

Figure 3.3: Integration of the top-level Azido I2ADL design into the existing HC-1 HDL

framework.

Communication Implementer

The first component is invisible to the designer, and handles all communication between the

Azido front-end and the HC-1 platform at runtime, to provide real-time diagnostic probing

data and stimulation of the running accelerator. These probe and control points are indicated

in the design using top-level input and output horns. At runtime, these top-level ports are

shown in a pop-up window, as shown in Figure 3.4.

To enable this communication, the SD must provide a definition of the x86CPU ↔ PEn

interface object, by which data is passed back and forth between the user’s desktop (x86)

31

David C. Uliana Chapter 3. Approach

Figure 3.4: Azido top-level control and indicator widgets. Top-level ports in the Azido design

on the left are mapped to widgets in the pop-up window on the right. This example makes

use of the slider, button, and text box widgets.

and the Convey platform (PEn) at runtime. For the HC-1 SD, this definition contains a

Windows COM object interface. The COM object passes data through an SSH tunnel to a

relay server running on the HC-1 host server, which in turn uses the management interface

(MPIP telnet server) of the coprocessor to read and write AE CSR registers, which capture

and excite the aforementioned top-level signals. This architecture is shown in Figure 3.5.

Desktop Environment

Azido

COM
Object

Convey Hybrid-Core Server

Co-ProcessorHost CPU

Azido/MPIP
Relay MPIP

AE0 AE1

AE3AE2

SSH
Tunnel

Figure 3.5: Overview of the Azido ↔ HC-1 runtime communication implementer.

32

David C. Uliana Chapter 3. Approach

Dispatch Interface

The first set of abstractions included in the HC-1 SD are of the AE dispatch interface, which

is described in Section 2.2.2. This interface handles AEG register transactions, personality

instruction calls, and informs the host of the AE execution status. Hence, abstractions for

all of these tasks are provided to the user as library objects (see Figure 3.6), and can be

placed anywhere through the I2ADL design. Three block types are provided:

• 64-bit register blocks provide read/write access to the AEG registers. Their behavior

depends on how they are connected in the Azido block-diagram—if the read port is

connected, they can be written by the host and read by the AE, while if the write port

is connected, they are read by the host and written by the AE.

• Command trigger blocks have boolean outputs that are pulsed high when the host

invokes the corresponding personality custom instruction.

• Finally, a status block enables the AE to inform the host that execution of a custom

instruction has completed.

Considering the AE as a state machine with two states, busy (i.e. executing) and idle, the

command and status objects precipitate transitions between the two states. For example,

the host invokes custom instruction 3, which causes the AE to enter the busy state, pulsing

the Start output of the Cmd03 object. When the AE completes the computation associated

with that instruction, it indicates completion by pulsing the Cmplt input of the ExecDone

object, causing the AE to transition back to the idle state.

Management of theses states, as well as the AEG register contents, is performed by glue

logic external to the hardware module generated from the Azido I2ADL design (see the

instruction decode block in Figure 3.3). The I2ADL design connects to this logic through

top-level ports designated as non-widget I/O. As a result, these blocks are simply wrappers

providing connections to such top-level ports.

33

David C. Uliana Chapter 3. Approach

Figure 3.6: HC-1 AE dispatch interface functionality as Azido library objects.

Memory Streams

Lastly, to conceal the complexities of random memory access and address arithmetic, bFlow

contains a simplified, streaming abstraction to the memory controller interfaces available to

each AE. Two blocks are provided to the designer: a source streamer and a sink streamer.

Both operate on a sequence of data memory words, starting at a specified address—the

former reads the stream from memory while the latter writes the stream. A usage example,

shown in Figure 3.7, demonstrates the use of these objects to invert a sequential block of

memory, and complies with Azido’s Go-Done-Busy-Wait (GDBW) flow control methodology.

Note that in early iterations of bFlow, both streaming and standard random-access memory

objects were provided to the designer; however, because random-access memory was not

required during the VBI workshops and other demonstrations, those objects were removed.

Memory streamers are provided for each of the eight AE controller interfaces, and the control

logic mapping the streaming interface to the standard, random-access memory controller

interfaces is contained in the Azido wrapper (see Figure 3.3). Thus, as with the dispatch

interface objects, the memory streamers are essentially wrappers containing connections to

top-level ports.

The decision to provide a streaming abstraction of the memory interface is based on its

simplicity and intuitive behavior, and justified by the prevalence of applications in big-data

34

David C. Uliana Chapter 3. Approach

HPC which can be mapped to a stream-based processing model (e.g. pipelined, SIMD

processing). It is especially appropriate for the Smith-Waterman application used by the

students during the VBI Summer Institute workshop, as the algorithm involves reading

large, sequential blocks of memory.

Figure 3.7: HC-1 AE memory controller interface functionality provided as Azido library

objects. This example demonstrates the streaming access abstraction, as well as Azido’s

Go-Done-Busy-Wait flow control scheme.

3.1.2 Software Routines

In bFlow, the Azido front-end is used generate only the coprocessor configuration, or person-

ality. The host app must be developed separately in the Convey host Linux environment,

and verified with the Azido-generated accelerator implementation in system simulation.

Convey provides a set of low-level software and assembly routines to the host application

for loading, initializing, and running the personality. Core functionality provided by these

routines includes reading and writing the AEG registers, transferring data between the host

and coprocessor memory subsystems (while these are coherent, performance can be preserved

by moving large blocks of memory to the coprocessor before streaming it through the AEs),

and, of course, invoking the custom instructions handled by the personality. To simplify

the configuration and execution of the personality, several convenient wrappers are provided

to the host app programmer in the form of a C++ class called CPLib, which is detailed in

Table 3.1, and partially listed in Appendix A. This library is used in both the bFlow and

35

David C. Uliana Chapter 3. Approach

Table 3.1: List of software routines provided to the host app developer.

Method Description

readAEGReg() Read an AEG register (64-bit) on one AEs.

writeAEGReg() Write an AEG register (64-bit) on one or all AEs.

mallocCP() Allocate a chunk of coprocessor memory and [optional] fill it with

the contents of the passed buffer.

execCPInstr() Execute the custom personality instruction with the given index.

writeReg() These routines are used only in the ConVI flow, and provide the same

functionality as those above, but in a simpler format that maps well

to the LabVIEW dispatch interface abstractions.

readReg()

execCmd()

ConVI flows.

3.1.3 Incremental Compilation

Acceleration of the bitstream compilation process is achieved by two methods, or tools:

Xilinx Hierarchical Design Partitions flow [49] and qFlow [16]. Both are incremental, partial

implementation frameworks that reduce build times through high-level management of the

Xilinx ISE implementation process. The key to both approaches is the exploitation of the

high-level architecture of all Convey personalities—that is, the inclusion of interface logic that

remains nearly static throughout the development process. This logic consists of interfaces to

the eight memory controllers, a memory crossbar, and bFlow-related logic that communicates

with the dispatch and management processors. All of this consumes roughly 25% of each of

the HC-1’s AEs (Xilinx part XC5VLX330) and, when using Convey’s traditional compilation

process, is re-implemented each build, costing precious minutes of development time. Given

the rarely-changing nature of this logic, both of the following strategies accelerate compilation

by implementing it once, constraining its placement to the edges of the FPGA near the I/O,

36

David C. Uliana Chapter 3. Approach

and then preserving it’s placement and routing during consecutive builds of the personality.

For these consecutive builds, the dynamic, Azido-generated netlist is placed in a “dynamic

region” at the center of the device.

Xilinx Partitions

The first approach taken makes use of the Xilinx Hierarchical Design Partitions flow [49].

Two partitions were selected for this flow: 1) a top-level partition containing the entire

FPGA design and 2) the Azido-generated logic. After an initial compilation, the top-level

is preserved, and remains mostly static as the Azido accelerator logic evolves. This top-

level is re-implemented only when major changes to memory access patterns are needed

(i.e. changing the memory controller interface configuration). The application of this flow is

simple, requiring only some extensions to the Convey PDK makefiles and some changes to

a few .ucf constraint files.

qFlow

This second utilizes a subset of the qFlow framework [16], a tool for accelerating back-end

compilation of designs with hierarchical structure similar to that enforced by the Convey

PDK. Though qFlow offers a superset of the functionality provided by Partitions, the appli-

cation discussed here is similar. When compared to the partitions-based approach discussed

above, qFlow provided generally much faster compilation times (see Section 4.3.1); however,

as qFlow is a research product, it was much more difficult to work with.

3.2 LabVIEW Flow (ConVI)

The second effort toward the assembly of a seamless flow targeting the HC-1 began with the

LabVIEW platform, which is discussed in Section 2.6. The complete ConVI flow is similar to

37

David C. Uliana Chapter 3. Approach

bFlow, providing similar low-level hardware abstractions of software wrapper library to the

programmer. There are two key differences, however, which are ConVI ’s support for front-

panel control and monitoring during system simulation on the HC-1 host (not restricted

to only runtime, as is the case with bFlow), and its lack of compilation acceleration via the

incremental techniques discussed in Section 3.1.3. The primary steps taken to implement the

flow include 1) constructing abstractions for low-level hardware similar to those provided in

bFlow, 2) incorporating the Convey HC compilation framework into LabVIEW’s compilation

process, and 3) enabling front-panel control during runtime and simulation through a register

access framework. The latter two efforts are detailed in this section.

3.2.1 VI Compilation

The LabVIEW FPGA does not provide official target support for any of Convey’s HC sys-

tems. Support for the HC-1 was added by modifying an existing target package, specifically

that for the Spartan 3E Starter Kit. Since the VI generated by LabVIEW is instantiated as

a VHDL module within the HC-1 HDL hierarchy, the XML files containing the Spartan 3E

FPGA device I/O were modified to reflect the ports available to the module. The integration

of the VI in the AE architecture is shown in Figure 3.8.

LabVIEW FPGA includes a instance of Xilinx ISE for compiling VIs into FPGA configu-

ration bitstreams. During assembly of ConVI, this implementation process was replaced by

a set of scripts that extract the VI functionality and insert it into the AE’s HDL hierarchy

at compile time. This is seamlessly integrated into the LabVIEW build process, such that

the designer can remain in the friendly LabVIEW environment despite the outsourcing of

the compilation process (see Figure 3.9).

38

David C. Uliana Chapter 3. Approach

Figure 3.8: Integration of the top-level LabVIEW VI into the existing HC-1 HDL framework.

3.2.2 Front-Panel Control

The manner in which LabVIEW transfers control and monitor data between the front-

panel and the running FPGA-based target varies by system. For the Spartan 3E target,

such communication is accomplished by a local instance of the Xilinx Cable Server, which

connects to the device through its JTAG interface. Using this connection, LabVIEW reads

and writes hardware registers tied to the control and indicator ports in the VI, providing

runtime control to the user.

To achieve the same level of interactivity and seamless behavior for the remote HC-1 in

ConVI, the LabVIEW front-panel was integrated into the simulation and runtime contexts

of the Convey platform using a client-side server. During simulation and runtime, this server

ships these register transactions to a relay script on the remote HC-1 host, which uses the

MPIP server to send the transactions through the AE’s CSR interface. However, since the

CSR interface is not included in the system simulation framework, an emulator of the MPIP

server was added to the software framework for host application development. Thus, during

simulation, this emulator is run alongside the host application, makes a connection to the

39

David C. Uliana Chapter 3. Approach

Figure 3.9: LabVIEW compilation window during a ConVI build. Progress is indicated by

the level of coffee in the mug.

relay script, and tunnels the relayed MPIP commands through the dispatch interface to the

AE. Finally, using some simple VHDL glue, the transactions are executed through a register

access interface provided by LabVIEW’s generated VHDL module. This architecture is

better explained visually, and is shown in Figure 3.10. Note that most of this work was

performed by Ramakrishna Chakri as part of his Master’s Thesis [9].

3.3 Smith-Waterman

The Smith-Waterman (SW) algorithm is a technique for comparing and aligning two se-

quences with maximum sensitivity. Proposed in 1981 to detect similar regions and compute

optimal alignments of two sequences of DNA nucleotide or protein data, it is still widely

used today [39]. Figure 3.11 shows the SW alignment of two short DNA sequences.

40

David C. Uliana Chapter 3. Approach

Figure 3.10: Architecture of the register access framework that enables front-panel control

during runtime or simulation.

3.3.1 Overview

The proposed method has two steps: a matrix fill operation and a traceback operation. Given

two sequences S and T with respective lengths m and n, the proposed method executes two

steps: a matrix fill operation and a traceback operation. The former involves filling a matrix

V (i, j) of size m× n. This is the scoring matrix, in which each cell contains the score of the

‘best’ alignment of the two sequences that ends at the point given by the cell coordinates, i.e.

the value of cell (x, y) indicates the score of the best alignment of S[0..x] and T [0..y]. This

fill operation, augmented by Gotoh in 1982 [17], considers three sources of difference between

41

David C. Uliana Chapter 3. Approach

GGACCTCAA-CA

|| ||| || ||

GG-CCTGAAGCA

SW

GGACCTCAACA

GGCCTGAAGCA

Figure 3.11: Example of Smith-Waterman (SW) algorithm used to compare two DNA se-

quences. Note the mutations and gaps present in the resulting alignment.

the two sequences: the insertion of a base into one sequence, the deletion of a base from

one sequence, and the mutation of a base in only one sequence. Hence, in the alignment of

two sequences, a point of mismatch results in either 1) the creation or extension of a gap in

one sequence or 2) the labeling of the mismatch as a mutation. The example in Figure 3.11

demonstrates gap creation, gap extension, and mutation.

The scoring matrix is filled per the recursive definition given in Equation 3.1, and the

resulting data dependencies are shown in Figure 3.12a. In this definition, V (i, j) is a function

of E(i, j) and F (i, j), which incorporate the cost of opening and extending gaps in S and

T , respectively. α is the cost of opening a gap, β is the cost of extending a gap, and σ(s, t)

is the substitution score for s and t. For DNA nucleotides, this is often defined as constant

42

David C. Uliana Chapter 3. Approach

match/mismatch penalties (e.g. σ(s, t) = 5 if s == t, otherwise σ(s, t) = −4).

V (i, j) = max

0

E(i, j)

F (i, j)

V (i− 1, j − 1) + σ(S[i], T [j])

, 1 ≤ i ≤ n, 1 ≤ j ≤ m (3.1a)

E(i, j) = max

V (i, j − 1)− α

E(i, j − 1)− β
, 1 ≤ i ≤ n, 1 ≤ j ≤ m (3.1b)

F (i, j) = max

V (i− 1, j)− α

F (i− 1, j)− β
, 1 ≤ i ≤ n, 1 ≤ j ≤ m (3.1c)

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform

3

Figure 2. Similarity Matrix Calculating Sequence and Data Dependency

To further describe the level of similarity between two real bioinformatics sequences, an affine gap model was
introduced to the Smith-Waterman algorithm by O. Gotoh in 1982 [4]. In the affine gap model, the gap is used to
compensate for the insertion or deletion, to make the alignment more condensed in satisfying an expecting model.
The gap is usually a consecutive null character string in a sequence and should be as long as possible. In the affine
gap model, the penalty score (or cost) for the first gap is called gap_open, and the cost for the following gaps is called
gap_extension. According to the affine gap model, the formulas to calculate the similarity matrix are described
below:

Initialization: (Formula 3)

Recursion relation: (Formula 4)

 (Formula 5)

 (Formula 6)

In these formulas, D stands for the gap_open, and E stands for the gap_extension. E(i,j) and F(i,j) are the maxima of
the following two items: open a new gap or keep extending an existing gap.

S1 S2 S3 S4 S5 …

0 0 0 0 0 0

T1 0 ① ② ③ ④ ⑤ ⑥

T2 0 ② ③ ④ ⑤ ⑥ ⑦

T3 0 ③ ④ ⑤ ⑥ ⑦ ⑧

T4 0 ④ ⑤ ⑥ ⑦ ⑧ ⑨

T5 0 ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

… ⑥ ⑦ ⑧ ⑨ ⑩

V i 0(,) E i 0(,) 0 0 i nd d�= =
V 0 j(,) F 0 j(,) 0 0 j md d�= =¯

®

V i j(,) max=

0
E i j(,)
F i j(,)

V i 1– j 1–(,) V S i> @ T j> @(,)+

1 i nd d 1 j md d� �

¯
°
°
®
°
°

E i j(,) max=
V i j 1–(,) D–
E i j 1–(,) E–

1 i nd d 1 j md d� �
¯
®

F i j(,) max=
V i 1– j(,) D–
F i 1– j(,) E–

1 i nd d 1 j md d� �
¯
®

(a)

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform

5

Figure 3. Mapping the Smith-Waterman Algorithm to a Systolic PE Array

Due to the hardware resource limitation, we can only implement a limited number of PEs on the FPGA. Thus, in the
calculation of a similarity matrix, we need to divide the matrix into sub-matrices. In each iteration, the PE array will
calculate one sub-matrix, and store the intermediate results in memory for the next iteration to use.

As shown in Figure 4, a systolic PE array consists of many identical cascading PEs. Before the start of the
calculation, sequence S should be shifted into the array under the control of the Move_in_S signal. The init_in signal
to each PE decides whether or not this PE will join in the calculation. Sequence T is synchronous to init_in when
entering into the PE array. The mid_in is used to feed back the temporary intermediate data to the PE array when
multi-iteration calculation is needed.

Figure 4. Systolic PE Array of the Smith-Waterman Algorithm

Our design was created such that the shift in direction of sequence S is opposite to that of sequence T. This
configuration guarantees that sequence S will be stored in the PE array as the original sequence, which means the tail
of the sequence will always be stored in the last PE. This method not only facilitates the software process of preparing
data, but also guarantees that the computing of the score matrix is continuous when multi-iterations are needed.

S1 S2 S3 S4 S5 …

0 0 0 0 0 0

T1 0 ② ③ ④ ⑤ ⑥

T2 0 ② ③ ④ ⑤ ⑥ ⑦

T3 0 ③ ④ ⑤ ⑥ ⑦ ⑧

T4 0 ④ ⑤ ⑥ ⑦ ⑧ ⑨

T5 0 ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

… ⑥ ⑦ ⑧ ⑨ ⑩

PE Array PE1 PE2 PE3 PE4 PE5 …

Smith -
Waterman
Processing
Element
No.1

Smith -
Waterman
Processing
Element
No.2

Smith -
Waterman
Processing
Element
No.n

Valid_S
S_inT _in

mid_in
init_in

Clock
Reset_T

Reset_S
Move_in_S

init_out
result

(b)

Figure 3.12: Smith-Waterman scoring matrix data dependencies (a) and systolic array map-

ping (b). The earliest possible time step at which a cell’s value can be computed is indicated

by the number it contains. Source: [52].

When the end location of a high-scoring alignment is identified, the algorithm can perform

traceback, in which the whole alignment is traced in reversed, moving from the end point

43

David C. Uliana Chapter 3. Approach

to the alignment start by following a set of rules. This step is control-intensive, and not

ideal for FPGA acceleration; furthermore, in practice, the matrix fill accounts for the vast

majority of the execution time. Because of this, only the first step was offloaded to the HC-1

coprocessor.

3.3.2 Implementation

Because of the data dependencies in the scoring matrix (see Figure 3.12a), up to m cells

on a single anti-diagonal can be computed at one time step. Taking advantage of this,

acceleration of the matrix fill step is performed with a systolic array that maps to the anti-

diagonals as shown in Figure 3.12b. This results in “wave-front” computation of the matrix

from coordinate (0, 0) to (m,n). In hardware, the systolic array is fixed with the contents of

sequence S, and sequence T is streamed through the array.

The processing element (PE) implemented in this work is based on [52], and is shown in

Figure 3.13. Each PE is configured with one base from sequence S. Every time step, each

PE consumes a base of sequence T from its predecessor and computes the value of one cell of

the scoring matrix. Because sequence T may be very large, it is infeasible to store the entire

matrix contents in memory; rather, each PE compares its computed score with a “max”

score (higher values indicates better alignments) provided by the previous PE. Logic at the

end of the array maintains one or more best alignment locations.

Both bFlow and ConVI were used to implement such an accelerator for the HC-1 platform.

While both have significant differences, the top-level architecture is identical, and is displayed

in Figure 3.14. The accelerator is initialized by loading a query sequence S—the length of

S is limited by the number of PEs instanced in the accelerator—into the systolic array.

Then, a large reference T is streamed through the array, and the best alignment locations

are computed. Both sequences are loaded into coprocessor memory prior to execution, and

AEG registers are used to provide the AEs with the length and location of each sequence,

as well as send the alignment locations back to the host.

44

David C. Uliana Chapter 3. Approach

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation

6

The Smith-Waterman Algorithm-PE Design
In Formula 3, Formula 4, Formula 5, and Formula 6, a straightforward PE schematic was proposed (shown in
Figure 5) [16] [17], and the functions of each DFF (D-type flip-flop) are detailed below:

■ S-Out and T-out DFFs are used to store S[i] and T[j].
■ E-out DFF is used to store E(i,j), and it will be used by the same PE in the next clock cycle. Its inputs come from

the same PE which was generated in the previous clock cycle, representing the values in its upper neighbor
element.

■ F-out DFF is used to store F(i,j), and it will be used by the next PE. Its inputs come from the previous PE,
representing the values in its left neighbor element.

■ The input of V-diag DFF comes from the previous PE, and it is registered for one cycle before it is used by the PE,
so it represents the value of its upper-left neighbor element.

■ V-out DFF is used to store V(i,j).
■ Max_out DFF is used to store the maximum value of the similarity matrix. It has three inputs:

● The maximum value coming from the previous PE
● V(i,j) coming from the current PE
● The maximum value stored in itself

Figure 5. A Straightforward Smith-Waterman Algorithm PE Design

Before the hardware implementation, we need to estimate the FPGA resources used by the PE design. The PE data
width should be decided by the maximum sequence length and the maximum value in the substitution matrix. For
example, if the length is 64 KBp and the maximum value is 11, then the PE data width should be at least 20 bits,
which means 220>64K*11. In the straightforward PE design, there are five add/sub operations and six max operations.
Because each max operation consists of a subtraction and a 2:1 multiplexing operation, there are 11 add/sub and 6 2:1

D Q

LUT

DQ

D Q

D Q

D Q

Max- in

T - in

D Q

E -out

V (i,j-1)

α

α
F - in

D Q

V-diag

V -out

Max-out

S- in

V - in

F -out

M
ax

M
ax

M
ax

M
ax M

ax

F - out

V-out

S-out

T -out

S-out

T -out

M
ax

Figure 3.13: Diagram of the Smith-Waterman systolic array processing element used in this

work. Source: [52].

A comprehensive set of screenshots of the bFlow and ConVI SW accelerator implemen-

tations can be found in Appendices C and D, respectively. Screenshots of the SW PE

implementations in can be found in Figures 3.16 and 3.17, respectively. Each of the front-

ends brought unique challenges to the development of the SW accelerator, especially the PE,

in part due to the prioritization of high-throughput in the result. Some of those challenges

are discussed in the following text.

Synchronous Design

While Azido provides flow-control abstractions to aid in synchronous design, they rely heavily

on FIFOs and, because of the existence of feedback in the SW PE, the design could not

45

David C. Uliana Chapter 3. Approach

Smith-Waterman Accelerator

T

Params:
qrySeqBaseAddr
qrySeqLen

Query Sequence Collector

S0 S1 S2 Sn

Params:
refSeqBaseAddr
refSeqLen

Results:
bestMatchScore
bestMatchIndex

. . .PE0 PE1 PE2 PEn

Systolic Cell Array

Memory
Streamer

Memory
Streamer

Results
Collector

AEG
Register
Bank

Figure 3.14: Top-level architecture of the HC-1 accelerator for the Smith-Waterman matrix

fill operation.

synthesize to a netlist capable of meeting the desired single-cycle latency. The alternative

method was to implement the PE using clocked registers for synchronization, as shown in

Figure 3.16. This approach proved straightforward for this thesis’ author, who has digital

design experience; however, such limited abstraction would not be appropriate for a non-

engineer attempting to do the same.

LabVIEW FPGA’s approach to synchronous design is much higher level, including ab-

stractions such as for and while loops, which indicate periodic execution of all functions

within the structure. Using these constructs, the SW systolic array could be implemented

with great abstraction; however, as with Azido, limitations in the throughput of the resulting

netlist resulted in the use of more explicit constructs. Specifically, the implementation was

created using a top-level Single-Cycle Timed Loop (SCTL), within which was nested all the

design’s functionality, as well as synchronization constructs called “feedback nodes.” By this

approach, the feedback nodes operated as simple registers, updating once every clock cycle

(see Figure 3.17).

46

David C. Uliana Chapter 3. Approach

Replication of the Processing Element

The approach taken for replicating and connecting the PE to form a systolic array is different

across the two flows. The ability define objects recursively in Azido was utilized for the

bFlow implementation in the following manner. Two definitions were provided for the PE,

Cell (Figure 3.15) and Cell (leaf) (Figure 3.16). The latter is the definition of a single PE,

while the former is defined recursively, such that each instantiation prunes one base from

the input S and passes it to Cell (leaf), passing the rest of S to a self-instance. Thus, after

elaboration, passing a query sequence S with 16 bases to a single instance of Cell results in

16 instances of Cell (leaf).

Figure 3.15: Recursive definition of the Smith-Waterman processing element in Azido. One

base is pruned from input S by the MostSigChar object and passed to the leaf instance on

the right, while the remainder of S is fed to a self-instance.

PE replication in ConVI required a different approach. While the LabVIEW platform

permits calling a VI within itself in a recursive manner, this feature does not extend to the

the LabVIEW FPGAModule. Hence, a LabVIEW script, shown in Figure 3.18, was created1

to automate systolic array generation through VI replication and interconnection. Using this

script, systolic pipelines with an arbitrary number of PEs can constructed automatically.
1The systolic array generation script was provided by lab mate Kevin Lee.

47

David C. Uliana Chapter 3. Approach

3.4 VBI Workshops

To verify the usability and productivity that bFlow and ConVI aim to provide, they were

used in an NSF-funded summer program at the Virginia Bioinformatics Institute at Virginia

Tech [44]. This program was hosted during the summers of 2012, 2013, and will be hosted

again in 2014. The bFlow framework was tested at the 2012 institute, while ConVI was used

in 2013.

Each occurrence of this two-week institute brought in 16 students from a diverse set of

fields and levels of expertise. For the first week, all students attended workshops covering

a wide range of topics related to HPC in the field of bioinformatics, and completed short

assignments related to the topic. The students then split into four- or five-person groups,

each spending the second week attempting to address a specific problem in the field. In each

workshop, one of the groups was instructed to provide acceleration of the Smith-Waterman

algorithm on the Convey HC-1 platform using one of the graphical tools developed in this

thesis (bFlow in 2012 and ConVI in 2013). Prior to the event, the students in this group

were asked to review [52] to gain a basic understanding of the systolic array approach to

implementing the accelerator. At the end of the first week, this group was given the skeleton

SW implementation described in Section 3.3.2, and tasked with extending its functionality

and improving its performance. The results from these workshops are given in Section 4.1.

48

David C. Uliana Chapter 3. Approach

Figure 3.16: Implementation of the Smith-Waterman processing element in Azido.

49

David C. Uliana Chapter 3. Approach

Figure 3.17: Implementation of the Smith-Waterman processing element in LabVIEW.

50

David C. Uliana Chapter 3. Approach

Figure 3.18: LabVIEW script that automates VI replication and interconnection to generate

systolic arrays. Inputs to this script include the PE VI, a specification of the systolic interface,

and the number of desired PEs in the generated array.

51

Chapter 4

Results & Analysis

The two flows constructed in this work, bFlow and ConVI, were given to participants of the

NSF-sponsored workshop at the Virginia Bioinformatics Institute at Virginia Tech [44]. In

2012 and 2013, two groups of 4-5 students each were tasked with using the flows to improve

the performance and function of a skeleton Smith-Waterman accelerator. This chapter con-

tains the outcomes of these workshops, a qualitative discussion of the usability challenges

countered by those using the flows, and the results of reducing accelerator compilation time

in bFlow using incremental implementation techniques.

4.1 Workshop Results

Over two years, two groups of 4-5 students were tasked with exploring the acceleration of

DNA nucleotide sequence alignment using bFlow in 2012 and ConVI in 2013, and starting

with the bare-bones Smith-Waterman accelerator discussed in Section 3.3.2. The results

from these workshops are presented in the following text.

52

David C. Uliana Chapter 4. Results & Analysis

4.1.1 2012 Workshop (bFlow)

Given the task of improving performance and functionality, the first group, which was com-

prised of undergraduate and graduate-level students in the sciences, planned to make two

changes to the provided reference implementation. The first modification was functional,

and involved the addition of logic (see Figure 4.1) to the end of pipeline with the function of

maintaining the index of the single highest scoring alignment. This logic consisted of Azido’s

counter, maximum, multiplexer, and register objects, and was implemented in less than one

day.

Figure 4.1: Smith-Waterman pipeline logic in Azido. The logic that maintains the index of

the best alignment is surrounded by the green box.

The second modification stems from the poor AE utilization when only one query sequence

is loaded into the PE pipeline (see Figure 3.14). By replicating the pipeline such that np

pipelines are in the AE, this utilization can be improved by streaming the reference through

np query sequences in parallel. If the same query sequence is loaded into all pipelines,

the reference sequence can be split into np partitions and streamed through the AE with

an almost-linear throughput speedup proportional to np (increasingly linear as length of

53

David C. Uliana Chapter 4. Results & Analysis

T → ∞, due to partition overlap requirements). The query sequence is aligned to each

partition in parallel, and the results merged at the end of the pipelines. The implementation

of this parallelization involved changes to the high-level accelerator architecture—specifically,

replication of the systolic cell array and addition of logic at the front and back of the arrays

to split the incoming stream and collect results from each array.

By splitting the reference into multiple chunks (up to 32) and streaming each chunk into

separate, parallel pipelines, the accelerator can consume the reference up to 32 times faster

than the single-pipeline approach. Using this technique, the group realized a 4× bandwidth

increase from 150 million to 600 million bases per second (bps), and a theoretical speedup

of 32× to 4.8 billion bps, given enough parallel cell arrays. This is not entirely without

cost, however, as aligning to partitions of the reference sequence does require preprocessing,

and as the number of parallel pipelines increase, the maximum length of the query sequence

decreases due to FPGA resource limitations. Note that, due to bFlow’s lack of an intuitive

abstraction for multi-AE development, the accelerator was run on only one of the four AE

FPGAs in the HC-1.

4.1.2 2013 Workshop (ConVI)

The second group contained both undergraduate and graduate biology students, as well as

two computer-savvy participants—one a computer programmer and the other an engineering

undergraduate. Rather than focus on improving alignment throughput, this group focused

solely on developing extensions to functionality Specifically, the participants created logic to

track multiple alignment locations in a approach similar to that used by the previous year’s

group, but with support for saving more than one alignment location.

Several approaches were discussed, and several of the group members independently de-

veloped LabVIEW VIs to perform this function. The simple, naive technique of saving

the indices of the k best alignments was discussed but discarded due to the problem long,

high-scoring alignments contributing many indices to the results table (i.e. a subset of a

54

David C. Uliana Chapter 4. Results & Analysis

high-scoring alignment may still be considered a “best” alignment). The final approach at-

tempted to find local maxima alignments, by monitoring the scores produced by the last PE.

The logic considers adding an index to the table only when the produced alignment score

is less than its predecessor, which must be greater than its predecessor, indicating a local

maxima.

4.2 Usability Challenges

The participants’ use of bFlow and ConVI provided valuable insight into how non-engineers

might use the flows. This section contains an informal discussion of the successes and failures

of the two tools as used by the workshop participants.

4.2.1 bFlow

The students in the first workshop found synchronous design in the Azido I2ADL environ-

ment to be quite challenging. Azido encourages the use of synchronous objects with built-in

Go-Done-Busy-Wait (GDBW) interface flow control, and synchronous, GDBW-based defini-

tions are provided for most CoreLib objects. However, this flow control is implemented using

FIFOs not optimized away during synthesis, resulting in significant, and often unnecessary

resource overhead. Because of this, the students were encouraged to stay away from GDBW-

based objects, requiring explicit specification of synchronous behavior using registers, etc.

Furthermore, the abstraction provided by Azido to implement state machine control is poor,

complicating the design process.

The heavy use of asynchronous objects increased challenge of meeting timing closure.

Under the standard parameterization, the Convey PDK enforces a clock rate of 150 MHz,

which is easily broken by moderately long chains of asynchronous operations. However,

Azido neither analyses the design nor enforces any timing restrictions at compile time; hence,

55

David C. Uliana Chapter 4. Results & Analysis

whether or not a design meets timing is determined only during the “hidden,” behind-the-

scenes implementation processes, resulting in the loss of the abstraction that Azido provides

when a constraint is not met and the design proves dysfunctional.

In bFlow the Azido front-end connects to the accelerator only when running on the co-

processor, and not during system simulation. Thus, while the generated accelerator can be

verified in Convey’s simulation framework, it must be initiated in a command-line environ-

ment, and the results examined using a waveform viewer. This limited the independence of

the users, as system-wide verification required the involvement of an instructor.

4.2.2 ConVI

In general, the ConVI group’s experience was much more positive than the previous year’s

group for several reasons. Fundamentally, the usability of the LabVIEW front-end exceeded

that of the Azido environment. This can be attributed to the stability and maturity of the

LabVIEW platform, and the intuitiveness of its provided control abstractions, such as state

and loop control containers. The behavior of these constructs was easily understood by the

students, and they were quickly able to independently design functional VIs.

Also, the seamless integration of the LabVIEW front-end into Convey’s system simulation

framework allowed for relatively fast verification without significant technical expertise, as

required in bFlow. Ideally, this would have allowed independent verification of the group’s

design; however, in practice, bugs in the integration processes limited this independence.

One of the more substantial drawbacks discovered was that the students designed pri-

marily in LabVIEW under the My Computer or Desktop target, rather than the FPGA

target, since only VIs under the former can be verified locally (i.e. without building the

VI for verification through external tools). Because desktop-bound VIs have access to con-

trol and data constructs incompatible with FPGA targets, the students initially designed

using FPGA-incompatible objects, and often had to be reminded to use only constructs and

56

David C. Uliana Chapter 4. Results & Analysis

sub-VIs available to VIs under the FPGA target.

4.3 Compilation Performance

This section covers the results of reducing the compilation times in the bFlow framework

using the Xilinx Partitions flow [49] and the qFlow framework [16]. Due to time constraints,

these techniques were not applied to the bitstream compilation phase in ConVI.

4.3.1 bFlow

In the bFlow compilation phase, the synthesized netlist generated from the Azido acceler-

ator design is instantiated within a hierarchy of Verilog modules (see Figure 3.3), which

is compiled to a bitstream for configuration of the HC-1 AE FPGAs. In addition to the

standard, Convey-provided make process, two incremental implementation frameworks were

considered (discussion in Section 3.1.3). The performance of each implementation frame-

work was measured for the compilation of the bare-bones Smith-Waterman implementation

(Section 3.3.2) with the top-level pipeline modifications from the first VBI workshop (see

Section 4.1.1). The compilations were executed on the VBI ShadowFax compute cluster

[45], and their run-time durations recorded in Table 4.1 and visualized in Figure 4.2. Each

SW configuration is named with convention sw_MxN , where M is the number of parallel

systolic arrays and N is the length of each array. The median speedup over the standard,

Convey-provided flow for the partitions-based approach 1.51, while that of qFlow was 2.76.

The last two configurations tested, 4× 48 and 4× 64, could not be placed into the dynamic

region, and those compilations exited with errors. Note that the same dynamic region area

constraints were used for both flows. Also note the jump in build time from configuration

4 × 16 to 4 × 32, which is due to the the significantly increased utilization of the dynamic

region. In fact, due to the resource overhead introduced by the flows, the area devoted to

user logic was reduced, and the largest two configurations could not be placed.

57

David C. Uliana Chapter 4. Results & Analysis

Table 4.1: Build times (mean of three runs) for Convey’s standard flow and the Partitions-

and qFlow-based flows for the Smith-Waterman accelerator. The speedup over the standard

flow is given in parentheses. Note: Device utilization listed is the utilization due to only the

user logic.

Design Cell Ct
Device Util. (%) Mean Build Time (min)

LUTs FFs Standard Partitions qFlow

sw_1x8 8 1.83 2.16 89.10 65.60 (1.36) 26.58 (3.35)

sw_1x12 12 2.43 2.44 89.90 54.16 (1.66) 26.12 (3.44)

sw_1x16 16 3.02 2.73 104.09 57.92 (1.80) 32.94 (3.16)

sw_1x24 24 4.22 3.30 98.80 76.85 (1.29) 34.75 (2.84)

sw_1x32 32 5.41 3.87 102.20 72.89 (1.40) 38.27 (2.67)

sw_4x8 32 5.62 4.10 96.90 61.58 (1.57) 39.20 (2.47)

sw_1x48 48 7.79 5.01 128.50 82.95 (1.55) 43.02 (2.99)

sw_1x64 64 10.18 6.15 129.73 87.92 (1.48) 53.75 (2.41)

sw_4x16 64 10.36 6.34 130.08 84.74 (1.54) 53.94 (2.41)

sw_4x32 128 19.85 10.81 165.99 173.62 (0.96) 97.33 (1.71)

sw_4x48 192 29.34 15.29 173.22

sw_4x64 256 38.83 19.76 208.89

58

David C. Uliana Chapter 4. Results & Analysis

1x8 1x12 1x16 1x24 1x32 4x8 1x48 1x64 4x16 4x32 4x48 4x64
0

50

100

150

200

250
Bu

ild
 T

im
e

(m
in

)

Standard

Partitions

qFlow

Figure 4.2: Build times (mean of three runs) for Convey’s standard flow and the Partitions-

and qFlow-based flows for the Smith-Waterman accelerator.

4.4 Resource Utilization

Also important is the efficiency of the netlists produced by the two flows—here this is defined

in terms of resource utilization per functional unit. For bFlow and ConVI, this is almost ex-

clusively dependent on the netlist generation processes used by Azido and LabVIEW FPGA,

respectively. Table 4.2 compares the resource utilization of a Smith-Waterman processing

element with a 16-bit data path (i.e. support for maximum sequence length of 10,000), as

described in Azido, LabVIEW, and hand-written Verilog, and mapped by Xilinx ISE 13.1

[47] for the Virtex-5 XC5VLX330 part. This test was performed by building using each

front-end to implement a 32-cell systolic array, while omitting of all memory access control

and arithmetic hardware. The cell designs for bFlow and ConVI are in Appendices C and

D, respectively. The per-cell utilization is 1/32 of that due to the 32-cell array. Note that

while Azido generated netlist and the Verilog design contain no communication overhead,

LabVIEW includes register access hardware in every compilation; thus, a baseline utilization

was computed and subtracted from the pipeline utilization.

After mapping, the resource overhead compared to the hand-written Verilog design is non-

59

David C. Uliana Chapter 4. Results & Analysis

Table 4.2: Resource utilization of a single Smith-Waterman processing element described

using handwritten Verilog, LabVIEW FPGA, and Verilog. The resource overhead due to

using the abstracted design environments is given in parentheses.

Front-end Slice LUTs Flip-Flops

Verilog (HDL) 300 144

LabVIEW FPGA (ConVI) 383 (1.27) 159 (1.10)

Azido (bFlow) 492 (1.64) 242 (1.68)

trivial. The LabVIEW-generated netlist consumes 27% more lookup tables (LUTs) and 10%

more flip-flops, while the Azido netlist consumes 64% more LUTs and 68% more flip-flops.

Comparing Azido and LabVIEW, Azido’s higher LUT usage is probably due to its generation

of an EDIF netlist that is processed by the Xilinx ISE implementation after synthesis, a step

responsible for significant optimization. Similarly, the lower flip-flop usage of the LabVIEW

generated HDL may be due to optimization during synthesis.

60

Chapter 5

Conclusions

In summary, big-data in the sciences is a growing concern, especially in the field of bioinfor-

matics, as the explosion of available genomic data is quickly outpacing the growth in usable

HPC technology. FPGA-based heterogeneous systems, such as the Convey HC-1 platform,

have the potential to address such growth through the creation of custom, high-performance

accelerators; however, the use of existing development flows for such platforms (i.e. Convey

Personality Development Kit) necessitates a heavy background in digital design concepts,

forcing bioinformatics domain experts to influence accelerator development through a hard-

ware engineer. This thesis presents two end-to-end development flows, bFlow and ConVI,

which are based on graphical, design front-end tools intended for hardware design by non-

engineers. These flows enable domain experts without significant digital design experience

to design, test, and deploy accelerators on the Convey HC-1 platform with minor to no

intervention by a hardware engineer. The specific contributions of this work are:

• The assembly of two end-to-end accelerator development flows targeting the Convey

HC-1 coprocessor, bFlow and ConVI, which are based on the Azido and LabVIEW

graphical programming environments, respectively. This assembly included the inte-

gration of the run-time feedback mechanisms of both tools into the Convey HC run-time

61

David C. Uliana Chapter 5. Conclusions

and system simulation (ConVI only) frameworks. Also, for bFlow, the bitstream com-

pilation process was accelerated using two incremental compilation techniques, in the

interest of improving the productivity of the flow.

• A bare-bones implementation of a HC-1-based accelerator for the matrix-fill step of the

Smith-Waterman sequence alignment algorithm, developed in both bFlow and ConVI.

• An informal evaluation of the usability of each flow across two years of an annual,

two-week summer program on HPC in bioinformatics, including a short quantitative

evaluation of the performance of the two incremental compilation techniques integrated

into bFlow.

A summary of the results and analysis presented in Chapter 4 and a list of potential future

work items are given in the following two sections.

5.1 Summary of Results

In the summers of 2012 and 2013, the bFlow and ConVI flows, respectively, were given

to participants of a two-week program at the Virginia Bioinformatics Institute at Virginia

Tech. The participants were tasked with extending a bare-bones Smith-Waterman (SW)

implementation with regard to functionality and performance. In the first workshop, the

group made two modifications. The first was functional, involving the addition of logic at

the end of the SW systolic array to track the index of the best alignment. The second effort,

which was the primary focus of the group, involved replication of the systolic array in order

to improve accelerator throughput. This resulted in a theoretical AE throughput increase

of 32×, and a 4× increased realized in hardware. In the second year, the group members

focused exclusively on functional improvements, adding hardware to the end of the pipeline

to track multiple best alignments. Several implementations of this logic were described in

LabVIEW without instructor intervention; however, most of the objects used were supported

62

David C. Uliana Chapter 5. Conclusions

by LabVIEW but not the FPGA module, and only one of the designs was suitable for the

HC-1-based accelerator.

Both workshops provided valuable insight into the usability of the development flows, and

the front-end tools they utilize. In the first workshop, the students gained comprehension

of the algorithm as described in Azido, and were able to make simple data path-centric

changes independently; however, poor abstractions for synchronous design and the inability

to perform system simulation from the Azido front-end resulted in the participants depending

heavily on the presence of an instructor during development. In the second workshop, which

utilized the ConVI flow, the students were far more independent, due to the usability of

the abstracted syntax provided by the LabVIEW front-end, as well as the ability to perform

system simulation from the LabVIEW front panel. They group was able to describe and

test functional blocks independently; however, as many of the LabVIEW abstractions are

unsupported by the FPGA Module, the students did require help when preparing their VIs

for execution on the FPGA target.

The techniques used to reduce bitstream implementation runtime in bFlow were successful,

achieving a mean speedup over Convey’s standard framework of 1.51 and 2.76 for the Xilinx

Partitions and qFlow tools, respectively, for the compilation of several configurations of the

multi-pipeline SW implementation. The primary downside of using such tools proved to be

the area overhead introduced by the modular, incremental approach that they take; hence,

some especially large accelerators could not be fit into the dynamic sandbox region, and

failed placement.

5.2 Future Work

A list of future work items that would effectively reinforce or extend this thesis is provided

here:

63

David C. Uliana Chapter 5. Conclusions

• A premise of this work is that traditional, HDL-based flows are practically unusable by

non-engineers. However, a controlled study evaluating the usability and performance

of bFlow and ConVI in comparison to such traditional flows would be beneficial. For

example, provide one group with HDL educational materials and a traditional flow,

give the other group bFlow or ConVI, and assign the same objective to both groups,

measuring the time-to-solution and quality of implementation of both groups.

• While Smith-Waterman is still in widespread use, it is often relegated to aligning small

sequences as part of a larger algorithm, and its level of complexity may not represent

that of most bioinformatics algorithms [22, 33]. For this reason, more complicated,

more “real-world” algorithms should be considered.

• Exploring memory-access abstractions other than the streaming model, which is heavily

relied upon in this thesis, is prerequisite to the application of these flows to more com-

plex algorithms employing non-streaming memory access, unlike the Smith-Waterman

accelerator.

• This work focuses on enabling non-engineers to design HC-1 coprocessor personalities,

leaving the host software to be developed separately in the host Linux environment.

Unifying the development process by targeting the HC-1 x86 host in addition in to

the coprocessor AEs within the LabVIEW environment would prove beneficial to the

usability of ConVI.

64

Bibliography

[1] A. Allan, D. Edenfeld, W.H. Joyner, A.B. Kahng, M. Rodgers, and Y. Zorian. 2001

technology roadmap for semiconductors. Computer, 35(1):42–53, January 2002.

[2] Altera Corporation. Altera SDK for OpenCL. http://www.altera.com/products/

software/opencl/opencl-index.html. [Online; accessed 1 Dec 2013].

[3] Jason D. Bakos. High-Performance Heterogeneous Computing with the Convey HC-1.

Computing in Science & Engineering, 12(6):80–87, November 2010.

[4] Ian Bird. Computing for the Large Hadron Collider. Annual Review of Nuclear and

Particle Science, 61(1):99–118, October 2011.

[5] Bluespec, Inc. Bluespec compiler. http://www.bluespec.com/high-level-synthesis-tools.

html. [Online; accessed 1 Dec 2013].

[6] Andy Caley and Kent Gilson. Isolation of behavior design from system implementation.

In 2012 International Conference on Reconfigurable Computing and FPGAs, pages 1–6.

IEEE, December 2012.

[7] Calypto Design Systems, Inc. Catapult: Product Family Overview. http://calypto.

com/en/products/catapult/overview/. [Online; accessed 1 Dec 2013].

[8] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Ja-

son H. Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp. In Proceedings of

65

http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.bluespec.com/high-level-synthesis-tools.html
http://www.bluespec.com/high-level-synthesis-tools.html
http://calypto.com/en/products/catapult/overview/
http://calypto.com/en/products/catapult/overview/

David C. Uliana BIBLIOGRAPHY

the 19th ACM/SIGDA international symposium on Field programmable gate arrays -

FPGA ’11, page 33, New York, New York, USA, February 2011. ACM Press.

[9] Ramakrishna Bijanapalli Chakri. Enabling the Use of Heterogeneous Computing for

Bioinformatics. PhD thesis, Virginia Polytechnic Institute and State University, 2013.

[10] Convey Computer Corporation. Convey: Better Computing for Better Analytics. http:

//www.conveycomputer.com/products/hcseries/. [Online; accessed 19 Nov 2013].

[11] Convey Computer Corporation. Financial Analytics Personality. http://www.

conveycomputer.com/files/8213/5085/5812/FinancialAnalyticsPersonalityDatasheet.

pdf. [Online; accessed 2 Dec 2013].

[12] Convey Computer Corporation. GraphConstructor Personality. http://www.

conveycomputer.com/files/1513/5085/5638/ConveyGraphConstructor_datasheet_V_

11_019.1CGCe.pdf. [Online; accessed 2 Dec 2013].

[13] Convey Computer Corporation. HC-1 Data Sheet. http://bgcomm.com/Resources/

HC-1DataSheet.pdf.

[14] V. Curcin and M. Ghanem. Scientific workflow systems - can one size fit all? In 2008

Cairo International Biomedical Engineering Conference, pages 1–9. IEEE, December

2008.

[15] Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael Kin-

sner, David Neto, Jason Wong, Peter Yiannacouras, and Deshanand P. Singh. From

opencl to high-performance hardware on FPGAS. In 22nd International Conference on

Field Programmable Logic and Applications (FPL), pages 531–534. IEEE, August 2012.

[16] Tannous Frangieh and Peter Athanas. A design assembly framework for FPGA back-

end acceleration. In 2012 International Conference on Reconfigurable Computing and

FPGAs, pages 1–6. IEEE, December 2012.

66

http://www.conveycomputer.com/products/hcseries/
http://www.conveycomputer.com/products/hcseries/
http://www.conveycomputer.com/files/8213/5085/5812/FinancialAnalyticsPersonalityDatasheet.pdf
http://www.conveycomputer.com/files/8213/5085/5812/FinancialAnalyticsPersonalityDatasheet.pdf
http://www.conveycomputer.com/files/8213/5085/5812/FinancialAnalyticsPersonalityDatasheet.pdf
http://www.conveycomputer.com/files/1513/5085/5638/ConveyGraphConstructor_datasheet_V_11_019.1CGCe.pdf
http://www.conveycomputer.com/files/1513/5085/5638/ConveyGraphConstructor_datasheet_V_11_019.1CGCe.pdf
http://www.conveycomputer.com/files/1513/5085/5638/ConveyGraphConstructor_datasheet_V_11_019.1CGCe.pdf
http://bgcomm.com/Resources/HC-1 Data Sheet.pdf
http://bgcomm.com/Resources/HC-1 Data Sheet.pdf

David C. Uliana BIBLIOGRAPHY

[17] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of

Molecular Biology, 162(3):705–708, 1982.

[18] Impulse Accelerated Technologies, Inc. Impulse C. http://www.impulseaccelerated.

com/products_universal.htm. [Online; accessed 18 Nov 2013].

[19] A.A. Khokhar, V.K. Prasanna, M.E. Shaaban, and C.-L. Wang. Heterogeneous com-

puting: challenges and opportunities. Computer, 26(6):18–27, June 1993.

[20] Christiane Lefevre. LHC Guide, English version. A collection of facts and figures about

the Large Hadron Collider (LHC) in the form of questions and answers. [Online; accessed

18 Nov 2013], January 2008.

[21] Fran Lewitter and Michael Rebhan. Establishing a successful bioinformatics core facility

team. PLoS computational biology, 5(6):e1000368, June 2009.

[22] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics (Oxford, England), 25(14):1754–60, July 2009.

[23] Kenli Li, Xiaoyong Tang, and Keqin Li. Energy-Efficient Stochastic Task Scheduling

on Heterogeneous Computing Systems. IEEE Transactions on Parallel and Distributed

Systems, PP(99):1–1, 2013.

[24] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu,

and Maggie Law. Comparison of next-generation sequencing systems. Journal of

Biomedicine and Biotechnology, 2012, 2012.

[25] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future. IEEE Design

& Test of Computers, 26(4):18–25, July 2009.

[26] L J McIver, J W Fondon III, M A Skinner, and H R Garner. Evaluation of microsatellite

variation in the 1000 Genomes Project pilot studies is indicative of the quality and utility

of the raw data and alignments. Genomics, 97(4):193–199, 2011.

67

http://www.impulseaccelerated.com/products_universal.htm
http://www.impulseaccelerated.com/products_universal.htm

David C. Uliana BIBLIOGRAPHY

[27] National Instruments Corporation. How Can I Use NI LabVIEW? - Application Areas.

http://www.ni.com/labview/applications/. [Online; accessed 6 Dec 2013].

[28] National Instruments Corporation. Introduction to G Programming. http://www.ni.

com/white-paper/7668/en/. [Online; accessed 7 Dec 2013].

[29] National Instruments Corporation. NI LabVIEW. http://www.ni.com/labview/. [On-

line; accessed 1 Dec 2013].

[30] National Instruments Corporation. NI LabVIEW FPGA Module. http://www.ni.com/

labview/fpga/. [Online; accessed 1 Dec 2013].

[31] National Instruments Corporation. Unsupported LabVIEW Features (FPGA Module).

http://zone.ni.com/reference/en-XX/help/371599J-01/lvfpgaconcepts/fpgamisc/. [On-

line; accessed 1 Dec 2013].

[32] Brent E Nelson, Michael J Wirthlin, Brad L Hutchings, Peter M Athanas, and Shawn

Bohner. Design Productivity for Configurable Computing. In ERSA, volume 8, pages

57–66, 2008.

[33] Corey B. Olson, Maria Kim, Cooper Clauson, Boris Kogon, Carl Ebeling, Scott Hauck,

and Walter L. Ruzzo. Hardware Acceleration of Short Read Mapping. In 2012 IEEE

20th International Symposium on Field-Programmable Custom Computing Machines,

pages 161–168. IEEE, April 2012.

[34] Karl Pereira, Peter Athanas, Heshan Lin, and Wu Feng. Spectral Method Characteri-

zation on FPGA and GPU Accelerators. In 2011 International Conference on Recon-

figurable Computing and FPGAs, pages 487–492. IEEE, November 2011.

[35] Karl Savio Pimenta Pereira. Characterization of FPGA-based high performance com-

puters. PhD thesis, Virginia Polytechnic Institute and State University, 2011.

[36] Michael A Quail, Miriam Smith, Paul Coupland, Thomas D Otto, Simon R Harris,

Thomas R Connor, Anna Bertoni, Harold P Swerdlow, and Yong Gu. A tale of three

68

http://www.ni.com/labview/applications/
http://www.ni.com/white-paper/7668/en/
http://www.ni.com/white-paper/7668/en/
http://www.ni.com/labview/
http://www.ni.com/labview/fpga/
http://www.ni.com/labview/fpga/
http://zone.ni.com/reference/en-XX/help/371599J-01/lvfpgaconcepts/fpgamisc/

David C. Uliana BIBLIOGRAPHY

next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences

and Illumina MiSeq sequencers. BMC genomics, 13(1):341, January 2012.

[37] Michael S Rosenberg. Sequence alignment: methods, models, concepts, and strategies.

University of California Pr, 2009.

[38] Caitlin Sadowski, Thomas Ball, Judith Bishop, Sebastian Burckhardt, Ganesh

Gopalakrishnan, Joseph Mayo, Madanlal Musuvathi, Shaz Qadeer, and Stephen Toub.

Practical parallel and concurrent programming. In Proceedings of the 42nd ACM tech-

nical symposium on Computer science education - SIGCSE ’11, page 189, New York,

New York, USA, March 2011. ACM Press.

[39] Temple F Smith and Michael S Waterman. Identification of common molecular subse-

quences. Journal of molecular biology, 147(1):195–197, 1981.

[40] Synopsys, Inc. Synphony C Compiler Tool for High-Level C Synthesis. http://www.

synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx. [Online;

accessed 18 Nov 2013].

[41] The MathWorks, Inc. HDL Coder - MATLAB & Simulink. http://www.mathworks.

com/products/hdl-coder/. [Online; accessed 6 Dec 2013].

[42] The MathWorks, Inc. MATLAB - The Language of Technical Computing. http://www.

mathworks.com/products/matlab/. [Online; accessed 6 Dec 2013].

[43] The MathWorks, Inc. Simulink: Simulation and Model-Based Design. http://www.

mathworks.com/products/simulink/. [Online; accessed 2 Dec 2013].

[44] Virginia Bioinformatics Institute. High Performance Computing in the Life/Medical

Sciences: Summer Institute. http://nsfsi.vbi.vt.edu/.

[45] Virginia Bioinformatics Institute. Partnership Supercomputing Program. http://www.

vbi.vt.edu/high_performance_computing/. [Online; accessed 6 Dec 2013].

69

http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx
http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://nsfsi.vbi.vt.edu/
http://www.vbi.vt.edu/high_performance_computing/
http://www.vbi.vt.edu/high_performance_computing/

David C. Uliana BIBLIOGRAPHY

[46] Worldwide LHC Computing Grid. Worldwide LHC Computing Grid | WLCG. http:

//wlcg.web.cern.ch/. [Online; accessed 18 Nov 2013].

[47] Xilinx, Inc. ISE Design Suite. http://www.xilinx.com/products/design-tools/

ise-design-suite/. [Online; accessed 7 Dec 2013].

[48] Xilinx, Inc. Xilinx CORE Generator System. http://www.xilinx.com/tools/coregen.

htm. [Online; accessed 6 Dec 2013].

[49] Xilinx, Inc. Hierarchical Design Methodology Guide, UG748 (v13.1). http:

//www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/Hierarchical_

Design_Methodology_Guide.pdf, 2011.

[50] Xilinx, Inc. System Generator for DSP, UG640 (v14.3). http://www.xilinx.com/

support/documentation/sw_manuals/xilinx14_4/sysgen_user.pdf, 2012.

[51] Xilinx, Inc. Introduction to FPGA Design with Vivado High-Level Synthe-

sis, UG998 (v1.0). http://www.xilinx.com/support/documentation/sw_manuals/

ug998-vivado-intro-fpga-design-hls.pdf, 2013.

[52] Peiheng Zhang, Guangming Tan, and Guang R. Gao. Implementation of the Smith-

Waterman algorithm on a reconfigurable supercomputing platform. In Proceedings of

the 1st international workshop on High-performance reconfigurable computing technology

and applications held in conjunction with SC07 - HPRCTA ’07, page 39, New York, New

York, USA, November 2007. ACM Press.

70

http://wlcg.web.cern.ch/
http://wlcg.web.cern.ch/
http://www.xilinx.com/products/design-tools/ise-design-suite/
http://www.xilinx.com/products/design-tools/ise-design-suite/
http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/sysgen_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/sysgen_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf

Appendix A

CPLib Software Library

Listing A.1: cplib.h
1 # ifndef _CPLIB_H
2 # define _CPLIB_H
3
4 # include <stdio .h>
5 # include <stdlib .h>
6 # include <boost / thread .hpp >
7
8 # ifdef CONVEY
9 # include <convey /usr/ cny_comp .h>

10 # endif
11
12 # include " mpipserver .h"
13
14 // Typedefs
15 typedef unsigned long long int uint64 ;
16
17 class CPLib {
18 public :
19 // Constructor
20 CPLib (int debugLvl = 0);
21
22 // Destructor -- ensures that the mpip server is stopped
23 ~ CPLib ();
24
25 // Returns true if the signature was acquired successfully
26 bool hasSig ();
27
28 // Stats accessors
29 int getCPCallCt ();
30 int getAEGWrCt ();
31 int getAEGRdCt ();
32
33 // Start and stop the mpip server
34 void runMPIPServer ();
35 void stopMPIPServer ();
36

71

David C. Uliana Chapter A. CPLib Software Library

37 // Allocate memory on the coprocessor
38 void * mallocCP (size_t size);
39 void * mallocCP (const void *buf , size_t size);
40
41 // Write AEG registers
42 void writeAEGReg (uint64 data , int aegIdx);
43 void writeAEGReg (uint64 data , int aegIdx , int aeIdx);
44
45 // Read AEG registers
46 uint64 readAEGReg (int aegIdx);
47 uint64 readAEGReg (int aegIdx , int aeIdx);
48
49 // Execute custom coprocessor instructions
50 void execCPInstr (int instIdx);
51 void execCPInstr (int instIdx , int aeIdx);
52
53 // Simplified register access and custom instruction methods for LabVIEW designs
54 void writeReg (uint64 data , int index);
55 uint64 readReg (int index);
56 void execCmd (int index);
57
58 protected :
59 // Personality signatures
60 # ifdef CONVEY
61 cny_image_t mSig , mSig2 ;
62 # endif
63
64 // Flags
65 bool mHasSig ;
66 int mSigStat ;
67
68 // Stats
69 int mCPCallCt ;
70 int mAEGWrCt ;
71 int mAEGRdCt ;
72
73 // Config
74 int mDebugLvl ;
75
76 // Mutex for dispatch interface ops
77 boost :: mutex mDIMutex ;
78
79 // MPIP Server
80 MPIPServer mMPIPServer ;
81 };
82
83 # endif // _CPLIB_H

72

David C. Uliana Chapter A. CPLib Software Library

Listing A.2: cplib.cpp
1 # include <stdio .h>
2 # include <stdlib .h>
3 # include <boost / thread .hpp >
4
5 # ifdef CONVEY
6 # include <convey /usr/ cny_comp .h>
7 //# include " cplib_cny .s"
8 # endif
9

10 # include " cplib .h"
11 # include " timer .h"
12
13 //
14 // Coprocessor assembly routines
15 //
16
17 // AEG Write routines
18 extern "C" void cpWrAEG ();
19 extern "C" void cpAE0WrAEG ();
20 extern "C" void cpAE1WrAEG ();
21 extern "C" void cpAE2WrAEG ();
22 extern "C" void cpAE3WrAEG ();
23
24 // AEG Read Routines
25 extern "C" long cpAE0RdAEG ();
26 extern "C" long cpAE1RdAEG ();
27 extern "C" long cpAE2RdAEG ();
28 extern "C" long cpAE3RdAEG ();
29
30 // Co - processor Call Routines
31 extern "C" void cpCaep00 ();
32 extern "C" void cpCaep01 ();
33 extern "C" void cpCaep02 ();
34 extern "C" void cpCaep03 ();
35 extern "C" void cpCaep04 ();
36 extern "C" void cpCaep05 ();
37 extern "C" void cpCaep06 ();
38 extern "C" void cpCaep07 ();
39 extern "C" void cpAE0Caep00 ();
40 extern "C" void cpAE0Caep01 ();
41 extern "C" void cpAE0Caep02 ();
42 extern "C" void cpAE0Caep03 ();
43 extern "C" void cpAE0Caep04 ();
44 extern "C" void cpAE0Caep05 ();
45 extern "C" void cpAE0Caep06 ();
46 extern "C" void cpAE0Caep07 ();
47 extern "C" void cpAE1Caep00 ();
48 extern "C" void cpAE1Caep01 ();
49 extern "C" void cpAE1Caep02 ();
50 extern "C" void cpAE1Caep03 ();
51 extern "C" void cpAE1Caep04 ();
52 extern "C" void cpAE1Caep05 ();
53 extern "C" void cpAE1Caep06 ();
54 extern "C" void cpAE1Caep07 ();
55 extern "C" void cpAE2Caep00 ();
56 extern "C" void cpAE2Caep01 ();
57 extern "C" void cpAE2Caep02 ();

73

David C. Uliana Chapter A. CPLib Software Library

58 extern "C" void cpAE2Caep03 ();
59 extern "C" void cpAE2Caep04 ();
60 extern "C" void cpAE2Caep05 ();
61 extern "C" void cpAE2Caep06 ();
62 extern "C" void cpAE2Caep07 ();
63 extern "C" void cpAE3Caep00 ();
64 extern "C" void cpAE3Caep01 ();
65 extern "C" void cpAE3Caep02 ();
66 extern "C" void cpAE3Caep03 ();
67 extern "C" void cpAE3Caep04 ();
68 extern "C" void cpAE3Caep05 ();
69 extern "C" void cpAE3Caep06 ();
70 extern "C" void cpAE3Caep07 ();
71
72 // Constructor
73 CPLib :: CPLib (int debugLvl)
74 : mHasSig (false),
75 mCPCallCt (0) ,
76 mAEGWrCt (0) ,
77 mAEGRdCt (0) ,
78 mDebugLvl (debugLvl),
79 mMPIPServer (this , debugLvl) {
80 # ifdef CONVEY
81 cny_get_signature ((char *) "pdk", &mSig , &mSig2 , & mSigStat);
82 if (mSigStat) {
83 fprintf (stderr , " ERROR : CPLib :: CPLib (): cny_get_signature () failed (%d)!\n",

mSigStat);
84 } else mHasSig = true;
85 #else
86 mHasSig = true;
87 # endif
88
89 // Run this regardless -- not like it consumes any resources ...
90 // runMPIPServer ();
91 }
92
93 // Destructor
94 CPLib ::~ CPLib () {
95 stopMPIPServer ();
96 }
97
98 // Accessors
99 bool CPLib :: hasSig () {

100 return mHasSig ;
101 }
102 int CPLib :: getCPCallCt () {
103 return mCPCallCt ;
104 }
105 int CPLib :: getAEGWrCt () {
106 return mAEGWrCt ;
107 }
108 int CPLib :: getAEGRdCt () {
109 return mAEGRdCt ;
110 }
111
112 // Run MPIP server
113 void CPLib :: runMPIPServer () {
114 mMPIPServer . start ();

74

David C. Uliana Chapter A. CPLib Software Library

115 }
116
117 // Stop MPIP server
118 void CPLib :: stopMPIPServer () {
119 mMPIPServer .stop ();
120 }
121
122 // Allocate co - processor memory
123 void * CPLib :: mallocCP (size_t size) {
124 # ifdef CONVEY
125 return cny_cp_malloc (size);
126 #else
127 return (void *) 0;
128 # endif
129 }
130
131 // Allocate co - processor memory and init with buffer contents
132 void * CPLib :: mallocCP (const void *buf , size_t size) {
133 # ifdef CONVEY
134 void *ret = cny_cp_malloc (size);
135 memcpy (ret , buf , size);
136 return ret;
137 #else
138 return (void *) 0;
139 # endif
140 }
141
142 // Write the AEG registers
143 void CPLib :: writeAEGReg (uint64 data , int aegIdx) {
144 writeAEGReg (data , aegIdx , -1);
145 }
146 void CPLib :: writeAEGReg (uint64 data , int aegIdx , int aeIdx) {
147 mDIMutex .lock ();
148
149 if (mDebugLvl >= 1)
150 printf ("INFO: writeAEGReg (data =0x%016 llx , aegIdx =%d, aeIdx =%d)\n", data ,

aegIdx , aeIdx);
151
152 // Invalid index flags
153 bool badAEIdx = false ;
154
155 # ifdef CONVEY
156 // Switch on AE index
157 switch (aeIdx) {
158 case -1: copcall_fmt (mSig , &cpWrAEG , "AL", (uint64) aegIdx , data); break ;
159 case 0: copcall_fmt (mSig , & cpAE0WrAEG , "AL", (uint64) aegIdx , data); break ;
160 case 1: copcall_fmt (mSig , & cpAE1WrAEG , "AL", (uint64) aegIdx , data); break ;
161 case 2: copcall_fmt (mSig , & cpAE2WrAEG , "AL", (uint64) aegIdx , data); break ;
162 case 3: copcall_fmt (mSig , & cpAE3WrAEG , "AL", (uint64) aegIdx , data); break ;
163 default : badAEIdx = true;
164 }
165 # endif
166
167 // Check for invalid AE index
168 if (badAEIdx)
169 fprintf (stderr , " ERROR : CPLib :: writeAEGReg (): Bad AE index (%d)!\n", aeIdx);
170
171 // Stats

75

David C. Uliana Chapter A. CPLib Software Library

172 mAEGWrCt ++;
173
174 mDIMutex . unlock ();
175 }
176
177 // Read the AEG registers
178 uint64 CPLib :: readAEGReg (int aegIdx) {
179 return readAEGReg (aegIdx , 0);
180 }
181 uint64 CPLib :: readAEGReg (int aegIdx , int aeIdx) {
182 mDIMutex .lock ();
183
184 if (mDebugLvl >= 1)
185 printf ("INFO: readAEGReg (aegIdx =%d, aeIdx =%d)\n", aegIdx , aeIdx);
186
187 // Invalid index flags
188 bool badAEIdx = false ;
189
190 uint64 ret = 0;
191 # ifdef CONVEY
192 // Switch on AE index
193 switch (aeIdx) {
194 case 0: ret = l_copcall_fmt (mSig , & cpAE0RdAEG , "A", (uint64) aegIdx); break ;
195 case 1: ret = l_copcall_fmt (mSig , & cpAE1RdAEG , "A", (uint64) aegIdx); break ;
196 case 2: ret = l_copcall_fmt (mSig , & cpAE2RdAEG , "A", (uint64) aegIdx); break ;
197 case 3: ret = l_copcall_fmt (mSig , & cpAE3RdAEG , "A", (uint64) aegIdx); break ;
198 default : badAEIdx = true;
199 }
200 # endif
201
202 if (mDebugLvl >= 1)
203 printf ("INFO: readAEGReg (aegIdx =%d, aeIdx =%d) => 0x%016 llx\n", aegIdx , aeIdx ,

ret);
204
205 // Check for invalid AE index
206 if (badAEIdx)
207 fprintf (stderr , " ERROR : CPLib :: readAEGReg (): Bad AE index (%d)!\n", aeIdx);
208
209 // Stats
210 mAEGRdCt ++;
211
212 mDIMutex . unlock ();
213 return ret;
214 }
215
216 // Call co - processor instructions
217 void CPLib :: execCPInstr (int instIdx) {
218 execCPInstr (instIdx , -1);
219 }
220 void CPLib :: execCPInstr (int instIdx , int aeIdx) {
221
222 if (mDebugLvl >= 1)
223 printf ("INFO: execCPInstr (instIdx =%d, aeIdx =%d)\n", instIdx , aeIdx);
224
225 // Invalid index flags
226 bool badAEIdx = false ;
227 bool badInstIdx = false ;
228

76

David C. Uliana Chapter A. CPLib Software Library

229 // Time execution
230 Timer t0;
231 t0. start ();
232
233 // Write custom instruction index [7:0] to AEG [1]
234 if (aeIdx < 0 || aeIdx > 3) {
235 fprintf (stderr , " ERROR : CPLib :: readAEGReg (): Bad AE index (%d)!\n", aeIdx);
236 return ;
237 }
238 writeAEGReg (1, aeIdx , instIdx & 0xff);
239
240 // Poll AEG [1] until idle status
241 while (readAEGReg (1, aeIdx) >> 63)
242 usleep (500) ;
243
244 # ifdef CONVEY
245 // Switch on AE index (-1 == all AEs)
246 switch (aeIdx) {
247 // AE0 , AE1 , AE2 , AE3
248 case -1:
249 switch (instIdx) {
250 case 0: copcall_fmt (mSig , &cpCaep00 , ""); break ;
251 case 1: copcall_fmt (mSig , &cpCaep01 , ""); break ;
252 case 2: copcall_fmt (mSig , &cpCaep02 , ""); break ;
253 case 3: copcall_fmt (mSig , &cpCaep03 , ""); break ;
254 case 4: copcall_fmt (mSig , &cpCaep04 , ""); break ;
255 case 5: copcall_fmt (mSig , &cpCaep05 , ""); break ;
256 case 6: copcall_fmt (mSig , &cpCaep06 , ""); break ;
257 case 7: copcall_fmt (mSig , &cpCaep07 , ""); break ;
258 default : badInstIdx = true;
259 }
260 break ;
261
262 // AE0
263 case 0:
264 switch (instIdx) {
265 case 0: copcall_fmt (mSig , & cpAE0Caep00 , ""); break ;
266 case 1: copcall_fmt (mSig , & cpAE0Caep01 , ""); break ;
267 case 2: copcall_fmt (mSig , & cpAE0Caep02 , ""); break ;
268 case 3: copcall_fmt (mSig , & cpAE0Caep03 , ""); break ;
269 case 4: copcall_fmt (mSig , & cpAE0Caep04 , ""); break ;
270 case 5: copcall_fmt (mSig , & cpAE0Caep05 , ""); break ;
271 case 6: copcall_fmt (mSig , & cpAE0Caep06 , ""); break ;
272 case 7: copcall_fmt (mSig , & cpAE0Caep07 , ""); break ;
273 default : badInstIdx = true;
274 }
275 break ;
276
277 // AE1
278 case 1:
279 switch (instIdx) {
280 case 0: copcall_fmt (mSig , & cpAE1Caep00 , ""); break ;
281 case 1: copcall_fmt (mSig , & cpAE1Caep01 , ""); break ;
282 case 2: copcall_fmt (mSig , & cpAE1Caep02 , ""); break ;
283 case 3: copcall_fmt (mSig , & cpAE1Caep03 , ""); break ;
284 case 4: copcall_fmt (mSig , & cpAE1Caep04 , ""); break ;
285 case 5: copcall_fmt (mSig , & cpAE1Caep05 , ""); break ;
286 case 6: copcall_fmt (mSig , & cpAE1Caep06 , ""); break ;

77

David C. Uliana Chapter A. CPLib Software Library

287 case 7: copcall_fmt (mSig , & cpAE1Caep07 , ""); break ;
288 default : badInstIdx = true;
289 }
290 break ;
291
292 // AE2
293 case 2:
294 switch (instIdx) {
295 case 0: copcall_fmt (mSig , & cpAE2Caep00 , ""); break ;
296 case 1: copcall_fmt (mSig , & cpAE2Caep01 , ""); break ;
297 case 2: copcall_fmt (mSig , & cpAE2Caep02 , ""); break ;
298 case 3: copcall_fmt (mSig , & cpAE2Caep03 , ""); break ;
299 case 4: copcall_fmt (mSig , & cpAE2Caep04 , ""); break ;
300 case 5: copcall_fmt (mSig , & cpAE2Caep05 , ""); break ;
301 case 6: copcall_fmt (mSig , & cpAE2Caep06 , ""); break ;
302 case 7: copcall_fmt (mSig , & cpAE2Caep07 , ""); break ;
303 default : badInstIdx = true;
304 }
305 break ;
306
307 // AE3
308 case 3:
309 switch (instIdx) {
310 case 0: copcall_fmt (mSig , & cpAE3Caep00 , ""); break ;
311 case 1: copcall_fmt (mSig , & cpAE3Caep01 , ""); break ;
312 case 2: copcall_fmt (mSig , & cpAE3Caep02 , ""); break ;
313 case 3: copcall_fmt (mSig , & cpAE3Caep03 , ""); break ;
314 case 4: copcall_fmt (mSig , & cpAE3Caep04 , ""); break ;
315 case 5: copcall_fmt (mSig , & cpAE3Caep05 , ""); break ;
316 case 6: copcall_fmt (mSig , & cpAE3Caep06 , ""); break ;
317 case 7: copcall_fmt (mSig , & cpAE3Caep07 , ""); break ;
318 default : badInstIdx = true;
319 }
320 break ;
321
322 default :
323 badAEIdx = true;
324 }
325 # endif
326
327 // Check for invalid AE index
328 if (badAEIdx)
329 fprintf (stderr , " ERROR : CPLib :: execCPInstr (): Bad AE index (%d)!\n", aeIdx);
330 // Check for invalid instruction index
331 if (badInstIdx)
332 fprintf (stderr , " ERROR : CPLib :: execCPInstr (): Bad instruction index (%d)!\n",

instIdx);
333 if (badAEIdx || badInstIdx) return ;
334
335 // Time stats
336 t0.stop ();
337 if (mDebugLvl >= 1) {
338 if (aeIdx < 0)
339 printf ("INFO: CPLib :: execCPInstr (): caep %02d completed in %fms\n",

instIdx ,
340 t0. elapsed ());
341 else

78

David C. Uliana Chapter A. CPLib Software Library

342 printf ("INFO: CPLib :: execCPInstr (): caep %02d.ae%d completed in %fms\n",
instIdx ,

343 aeIdx , t0. elapsed ());
344 }
345
346 // Other stats
347 mCPCallCt ++;
348 }
349
350 // Simplified register write for LabVIEW designs
351 void CPLib :: writeReg (uint64 data , int index) {
352 if (index > 3) {
353 fprintf (stderr , " ERROR : CPLib :: writeReg (): Bad register index (%d)!\n",

index);
354 return ;
355 }
356 writeAEGReg (data , index + 20);
357 }
358
359 // Simplified register read for LabVIEW designs
360 uint64 CPLib :: readReg (int index) {
361 if (index > 3) {
362 fprintf (stderr , " ERROR : CPLib :: readReg (): Bad register index (%d)!\n", index);
363 return 0;
364 }
365 return readAEGReg (index + 10);
366 }
367
368 // Simplified command execution method for LabVIEW designs
369 void CPLib :: execCmd (int index) {
370 if (index > 3) {
371 fprintf (stderr , " ERROR : CPLib :: execCmd (): Bad instruction index (%d)!\n",

index);
372 return ;
373 }
374 // Assert bit <index > of aeg [0] and then clear it
375 writeAEGReg (0 x1 << index , 1);
376 writeAEGReg (0, 1);
377 // Wait util busy flag goes low
378 while (readAEGReg (2) & 0x1);
379 }

79

Appendix B

MPIP Server Emulator

Listing B.1: mpipserver.h
1 # ifndef _MPIPSERVER_H
2 # define _MPIPSERVER_H
3
4 # include <stdio .h>
5 # include <stdlib .h>
6 # include <boost / shared_ptr .hpp >
7 # include <boost / thread .hpp >
8 # include <boost /asio.hpp >
9

10 using boost :: asio :: ip :: tcp;
11
12 typedef unsigned long long int uint64 ;
13
14 class CPLib ;
15
16 class MPIPServer {
17 public :
18 // Constructor -- does not start the server thread
19 MPIPServer (CPLib *cpl , int debugLvl = 0, int listenPort = 2544) ;
20
21 // Destructor -- stops the server thread if still running
22 ~ MPIPServer ();
23
24 // Returns true if thread is running
25 bool isRunning ();
26
27 // Runs the server thread (run ())
28 void start ();
29
30 // Sets " stop requested " flag and waits for thread to terminate
31 void stop ();
32
33 private :
34 // Pointer to CPLib instance
35 CPLib *mCpl;
36

80

David C. Uliana Chapter B. MPIP Server Emulator

37 // Thread object
38 boost :: thread mThread ;
39
40 // Boost io_service pointer
41 boost :: shared_ptr < boost :: asio :: io_service > mIOService ;
42
43 // Flags
44 bool mRunning ;
45
46 // Config
47 int mDebugLvl ;
48 int mListenPort ;
49
50 // Thread function
51 void run ();
52
53 // Asynchronous accept routines
54 void startAccept (tcp :: acceptor & acceptor);
55 void handleAccept (boost :: shared_ptr <tcp :: socket > socket ,
56 const boost :: system :: error_code & error ,
57 tcp :: acceptor & acceptor);
58
59 // Asynchronous socket read routines
60 void startRead (boost :: shared_ptr <tcp :: socket > socket);
61 void handleRead (boost :: shared_ptr <tcp :: socket > socket ,
62 const boost :: system :: error_code & error ,
63 char *data ,
64 size_t len);
65
66 // Parses , runs , and returns the results of incoming commands
67 std :: string processCmd (std :: string cmd);
68
69 // Cleans up the received command string
70 std :: string cleanupCmd (std :: string s);
71
72 // Converts hex string (’0 x1234 ’) to uint64
73 uint64 hex2uint64 (std :: string s);
74 };
75
76 # endif // _MPIPSERVER_H

81

David C. Uliana Chapter B. MPIP Server Emulator

Listing B.2: mpipserver.cpp
1 # include <stdio .h>
2 # include <stdlib .h>
3 # include <string >
4 # include <boost / thread .hpp >
5 # include <boost /asio.hpp >
6 # include <boost / regex .hpp >
7 # include <boost / lexical_cast .hpp >
8 # include <boost / algorithm / string .hpp >
9

10 # include " mpipserver .h"
11 # include " cplib .h"
12
13 # define CSR_REQ_AEG_ADDR 0
14 # define CSR_REQ_CSR_ADDR 0 x8007
15
16 using boost :: asio :: ip :: tcp;
17
18 MPIPServer :: MPIPServer (CPLib *cpl , int debugLvl , int listenPort)
19 : mCpl(cpl),
20 mDebugLvl (debugLvl),
21 mListenPort (listenPort) {
22 // ...
23 }
24
25 MPIPServer ::~ MPIPServer () {
26 if (mRunning)
27 stop ();
28 }
29
30 bool MPIPServer :: isRunning () {
31 return mRunning ;
32 }
33
34 void MPIPServer :: start () {
35 if (mDebugLvl >= 1)
36 printf ("INFO: MPIPServer : Starting server \n");
37 mThread = boost :: thread (& MPIPServer ::run , this);
38 mRunning = true;
39 }
40
41 void MPIPServer :: stop () {
42 // Check for stupid usage
43 if (! mRunning) {
44 fprintf (stderr , " ERROR : MPIPServer : Attempting to stop non - running MPIP server

thread !\n");
45 return ;
46 }
47
48 // Stop io_service
49 if (mDebugLvl >= 1)
50 printf ("INFO: MPIPServer : Stopping server \n");
51 mIOService ->stop ();
52
53 // Wait for server thread to terminate
54 mThread .join ();
55 mRunning = false ;
56 }

82

David C. Uliana Chapter B. MPIP Server Emulator

57
58 void MPIPServer :: run () {
59 // Create new io_service
60 mIOService = boost :: shared_ptr < boost :: asio :: io_service >(new

boost :: asio :: io_service ());
61
62 // Construct acceptor object with io_service and start accepting
63 tcp :: acceptor acceptor (* mIOService , tcp :: endpoint (tcp :: v4 () , mListenPort));
64 startAccept (acceptor);
65
66 // Run io_servce -- this can be interrupted by io_service :: stop ()
67 mIOService ->run ();
68 }
69
70 void MPIPServer :: startAccept (tcp :: acceptor & acceptor) {
71 // Setup socket with io_service
72 boost :: shared_ptr <tcp :: socket > socket (new tcp :: socket (acceptor . get_io_service ()));
73
74 // Wait for connection asynchronously
75 if (mDebugLvl >= 2)
76 printf ("INFO: MPIPServer : Waiting for TCP connection on port %d\n",

acceptor . local_endpoint ().port ());
77 acceptor . async_accept (* socket , boost :: bind (& MPIPServer :: handleAccept , this ,

socket ,
78 boost :: asio :: placeholders :: error , boost :: ref(acceptor)));
79 }
80
81 void MPIPServer :: handleAccept (boost :: shared_ptr <tcp :: socket > socket ,
82 const boost :: system :: error_code & error , tcp :: acceptor & acceptor) {
83 // Check for fail
84 if (error) {
85 fprintf (stderr , " ERROR : MPIPServer : Error accepting connection : %s\n",

error . message (). c_str ());
86 return ;
87 }
88
89 // We have a client !
90 if (mDebugLvl >= 2)
91 printf ("INFO: MPIPServer : Connection established with %s\n",
92 boost :: lexical_cast <std :: string >(socket -> remote_endpoint ()). c_str ());
93
94 // Setup asynchronous callbacks on the socket
95 startRead (socket);
96
97 // Done with socket , start
98 startAccept (acceptor);
99 }

100
101 void MPIPServer :: startRead (boost :: shared_ptr <tcp :: socket > socket) {
102 // Allocate buffer
103 char *data = new char [256];
104
105 // Asynchronous read with callback
106 socket -> async_read_some (boost :: asio :: buffer (data , 256) ,

boost :: bind (& MPIPServer :: handleRead , this ,
107 socket , boost :: asio :: placeholders :: error , data ,

boost :: asio :: placeholders :: bytes_transferred));
108 }

83

David C. Uliana Chapter B. MPIP Server Emulator

109
110 void MPIPServer :: handleRead (boost :: shared_ptr <tcp :: socket > socket ,
111 const boost :: system :: error_code & error , char *data , size_t len) {
112 // Check for fail
113 if (error) {
114 if (error == boost :: asio :: error :: eof) {
115 if (mDebugLvl >= 2)
116 printf ("INFO: MPIPServer : Connection closed by client \n");
117 } else
118 fprintf (stderr , " ERROR : MPIPServer : Error reading from socket : %s\n",

error . message (). c_str ());
119 return ;
120 }
121
122 // Check if socket was closed
123 if (! socket -> is_open ())
124 return ;
125
126 // Parse command
127 std :: string s = cleanupCmd (std :: string (data));
128 if (!s. empty ()) {
129 std :: string ret = processCmd (s);
130 boost :: asio :: write (* socket , boost :: asio :: buffer (ret));
131 }
132
133 // Deallocate buffer
134 delete [] data;
135
136 // Start next asynchronous read
137 startRead (socket);
138 }
139
140 std :: string MPIPServer :: cleanupCmd (std :: string s) {
141 using namespace boost :: algorithm ;
142
143 // Return trimmed first line of string
144 std :: vector <std :: string > lines ;
145 split (lines , s, is_any_of ("\r\n"));
146 trim(lines [0]);
147 return lines [0];
148 }
149
150 std :: string MPIPServer :: processCmd (std :: string s) {
151 using namespace boost :: algorithm ;
152
153 if (mDebugLvl >= 3)
154 printf ("INFO: MPIPServer : Parsing ’%s ’\n", s. c_str ());
155
156 // Default response is syntax error
157 char ret [128];
158 sprintf (ret , " Syntax error !\n");
159
160 // Match command
161 boost :: regex pat("(?<cmd > ae_csr_write | ae_csr_read)\\s+ae \\s+"
162 "(?<aeidx >[0 -3]) \\s+(? < addr >0x[a-f0 -9]{4}) "
163 " (?:\\ s+(? < data >0x[a-f0 -9]{16}) (?:\\ s+(? < mask >"
164 "0x[a-f0 -9]{16}))?)?",
165 boost :: regex :: perl | boost :: regex :: icase);

84

David C. Uliana Chapter B. MPIP Server Emulator

166 boost :: smatch what;
167 if (boost :: regex_search (s, what , pat)) {
168 // Extract parameters common to both read and write commands
169 int aeIdx = boost :: lexical_cast <int >(what[" aeidx "]. str ());
170 int addr = hex2uint64 (what["addr"]. str ());
171
172 // Only do stuff on reg 0 x8007
173 if (addr != CSR_REQ_CSR_ADDR) {
174 sprintf (ret , "This emulator handles transactions to only CSR register

0 x8007 \n");
175 return ret;
176 }
177
178 // Handle reads and writes
179 if (what["cmd"] == std :: string (" ae_csr_read ")) {
180 // Retrieve read data and send to client
181 uint64 data = mCpl -> readAEGReg (CSR_REQ_AEG_ADDR , aeIdx);
182 sprintf (ret , "AE %d 0x%04x: 0x%016 llx\n", aeIdx , addr , data);
183 } else {
184 // Extract write - specific args
185 if (! what["data"]. matched)
186 return ret;
187 uint64 data = hex2uint64 (what["data"]. str ());
188 uint64 mask = what["mask"]. matched ? hex2uint64 (what["mask"]. str ()) :

0 xffffffffffffffffLL ;
189 data &= mask;
190
191 // Send write request and send confirmation to client
192 mCpl -> writeAEGReg (data , CSR_REQ_AEG_ADDR , aeIdx);
193 sprintf (ret , " Wrote AE %d 0x%04x to 0x%016 llx with mask 0x%016 llx\n",

aeIdx , addr , data , mask);
194 }
195 }
196
197 return ret;
198 }
199
200 uint64 MPIPServer :: hex2uint64 (std :: string s) {
201 uint64 ret;
202 std :: stringstream ss;
203 ss << std :: hex << s;
204 ss >> ret;
205 return ret;
206 }

85

Appendix C

Smith-Waterman in bFlow

Smith-Waterman processing element object.

86

David C. Uliana Chapter C. Smith-Waterman in bFlow

Recursive definition of processing element object. This enables replication of the PE as
directed by the width of the S input port.

Top-level Azido canvas for the Smith-Waterman implementation.

87

David C. Uliana Chapter C. Smith-Waterman in bFlow

Object responsible for maintaining the best alignment’s score and index.

Query collector object, which feeds the query sequence to the pipline (see Figure 3.14).

88

Appendix D

Smith-Waterman in ConVI

Smith-Waterman processing element sub-VI.

89

David C. Uliana Chapter D. Smith-Waterman in ConVI

The top-level VI of the ConVI SW implementation. Centric to this VI is a large case
container, which controls requests to and responses from memory, as well as inputs to the
pipeline.

The systolic processing pipeline sub-VI generated by the LabVIEW script in Figure 3.18.

90

David C. Uliana Chapter D. Smith-Waterman in ConVI

The keepMax sub-VI, responsible for maintaining the maximum alignment score produced
by the pipeline. In the second workshop, as discussed in Section 4.1.2, the students extended
this to track multiple best alignment locations.

91

	Introduction
	Motivation
	Contributions
	Organization

	Background
	Big Data
	Heterogeneous Computing
	FPGAs
	Convey Hybrid-Core
	Usability Challenges

	FPGA Design Productivity
	Contributors to Productivity
	Non-Engineer Usability

	Non-Traditional Development Flows
	High Level Synthesis
	Graphical Environments
	Role

	Azido
	System Descriptions

	LabVIEW
	Summary

	Approach
	Azido Flow (bFlow)
	System Description
	Software Routines
	Incremental Compilation

	LabVIEW Flow (ConVI)
	VI Compilation
	Front-Panel Control

	Smith-Waterman
	Overview
	Implementation

	VBI Workshops

	Results & Analysis
	Workshop Results
	2012 Workshop (bFlow)
	2013 Workshop (ConVI)

	Usability Challenges
	bFlow
	ConVI

	Compilation Performance
	bFlow

	Resource Utilization

	Conclusions
	Summary of Results
	Future Work

	Bibliography
	CPLib Software Library
	MPIP Server Emulator
	Smith-Waterman in bFlow
	Smith-Waterman in ConVI

