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Abstract—Our work proposes a hardware architecture for a
Long Short-Term Memory (LSTM) Neural Network, aiming to
outperform software implementations, by exploiting its inherent
parallelism. The main design decisions are presented, along with
the proposed network architecture. A description of the main
building blocks of the network is also presented. The network is
synthesized for various sizes and platforms, and the performance
results are presented and analyzed. Our synthesized network
achieves a 251 times speed-up over a custom-built software
network, running on an i7-3770k Desktop computer, proving the
benefits of parallel computation for this kind of network.

Keywords—Neural Networks, Long Short-Term, FPGA, Re-
configurable Hardware, Machine Learning

I. INTRODUCTION

Neural Networks are one of the most commonly used
techniques in Deep Learning. This particular type of network,
a Long Short-Term Memory (LSTM) Network, is a recursive
network, in which the neuron outputs in a certain time step are
also fed as inputs in the next time step, and since it possesses
memory, the system can make sense of patterns within data
sequences, unlike classical recursive neural networks. These
algorithms have been profusely implemented in software,
and their practical applications are plentiful. However, the
benefits of the inherent parallelism offered by a dedicated
hardware platform are not exploited, and there are relatively
few implementations of Machine Learning algorithms in these
kind of platforms.

Hardware platforms could achieve a considerable speed-up
over software implementations, which would prove useful for
high data throughput systems, where the calculation overhead
is critical and limits the performance. Furthermore, a hardware
implementation can even benefit offline Deep Learning tasks
by providing the results of a given experiment faster than in
a regular CPU, increasing scientific productivity.

Hitherto, there is only one implementation, the one of [1],
but its performance is undermined by the external memory
access. Our implementation aims to make use of internal
FPGA memory resources, and therefore achieve a higher
throughput.

This article begins by explaining what are LSTM networks
in Section II, followed by a quick overview of their state of
the art in Section III. Section IV outlines the proposed hard-
ware architecture and its main constituent modules, and the
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performance and synthesis results are reported in Section V.
Concluding remarks are given in Section VI.

II. LSTM NEURAL NETWORKS

LSTM Networks were originally formulated in [2], but their
formulation has been incrementally updated in [3] and [4], and
the most recent version is [5]. One of the inital proposers of
LSTM, Prof. Jiirgen Schmidhiiber, did a survey on the most
common variations of the model [6], which is the reference
for this short discussion.

The structure of an LSTM neuron is presented in [6]. LSTM
Networks retain recurrent connections from the regular RNNs,
but now there are multiple entry points that control the flow
of information through the network. Furthermore, all the gates
are biased, as defined in Equations 1. The role and relevance
of the main components can be summarized as follows.

o Input Gate — this is the input gate, where the relative
importance of each feature of the input vector at time
t, x(), and the output vector at the previous time step,
y (=1 are weighed, producing an output i(*).

e Block Input Gate — as the name implies, this gate
controls the flow of information from the input gate to
the memory cell. It also receives the input vector and
the previous output set, producing an output z(*). The
activation function of this gate can both the logistic

sigmoid, % or the hyperbolic tangent, tanh(x) but
the most common choice is the hyperbolic tangent.

o Forget Gate — its role is to control the contents of
the Memory Cell, either to set or reset them, using the
Hadamard vector multiplication of its output at time ¢,
c*=V. The activation function of this gate is always
sigmoid, and the resulting signal is f(*).

e Output Block Gate — this gate has a role very similar
to that of the Block Input Gate, but now it controls
the information flow out of the LSTM neuron, namely
the activated Memory Cell output. The control signal it
produces is o(*).

o Memory Cell — the cornerstone of the LSTM neuron.
This is the memory element of the neuron, where the
previous state is kept, and updated according to the
dynamics of the gates that connect to it. Also, this is
where the peephole connections come from.



o Output Activation — the output of the Memory Cell goes
through this activation function that, as the gate activation
function, is the hyperbolic tangent.

o Peepholes — direct connections from the memory cell
to the gates, that allow them to ‘peep’ at the states of
the memory cell. They were added after the initial 1997
formulation, and their absence was proven to have a
minimal performance impact [6]. For this reason, they
were omitted in this architecture.

The operation of each set of gates of the layer is given by
the following set of equations, where vectors are represented
by bold, lower-case letters, and matrices are bold, upper-case
letters
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where © is the Hadamard multiplication. The i-th element of
the previous vectors in bold corresponds to the value of the -
th neuron in the layer, which is a very convenient and compact
representation of the whole layer. Furthermore, if the layer has
N LSTM neurons and M inputs (i.e. the size of the layer that
precedes this), we see that the input weight matrices W, have
size N x M, and the recurrent weight matrices R, are square
matrices of size N x N, and that the bias weight vectors b,
and the vectors y(*) through c(*) have size N.

III. RELATED WORK

LSTM Networks are nowadays one of the state-of-the-art
algorithms in Deep Learning, and their performance is superior
to that of other kinds of RNNs and Hidden Markov Models. A
very comprehensive description of applications can be found
in one of the initial authors webpage dedicated to the subject '.

The uses of LSTM Networks are plentiful: in Handwriting
Recognition [7], where they surpass HMM-based models
for optical character recognition [8]; in Speech Recognition,
where, for instance, Graves et al. [9], in 2013, set a new
record on the TIMT Phoneme Recognition Benchmark, and
also in Large Scale Acoustic Modelling of Speech [10].
Other uses include Handwriting Synthesis [11], Transla-
tion [12], Biomedical Applications such as protein homology
detection [13], Music Analysis and Composition, such as
the transcription of piano music to MIDI [14] and automated
composition [15] and improvisation [16], and lastly Video and
Image Analysis as in [17]-[19].

Hitherto, there is but one actual implementation of an LSTM
network in hardware, published recently (March 2016) by
Chang et al. [1]. A 2 layer LSTM network was implemented,
with 128 neurons each, which, for processing 1000 samples,
had an execution time of 0.932s. Assuming two equal layers,

Thttp://people.idsia.ch/“juergen/rnn. html

this yields an approximate execution time of 466 ps per incom-
ing sample (dividing the total execution time by 2 x 1000),
and if the computation time increases linearly with time, an
8 neuron layer would have an execution time of 29.13ps.
Therefore, an 8-neuron network of [1] would be able to
perform around 34.3 x 10% forward propagations per second,
while this work achieves 487 x 102 forward propagations per
second, for that network size. This is because the work in [1]
does not have a full level of parallelism when compared to the
proposed design of Section IV, and it makes use of external
memory to store the weights. On the other hand, the authors
use it as a co-processor for the main CPU, and not as a
standalone implementation.

IV. PROPOSED ARCHITECTURE

The building blocks of the network in Section IV-E are
presented in Sections IV-A through IV-D. The number rep-
resentation system used for this network was a signed fixed-
point Q6.11 system in two’s complement. The are 7 integer
bits (one of which is the sign bit), and 11 fractional bits, adding
to a total of /8 bits. The reason we use 18 bits, is to make
full use of the DSP48E1 slices available in the FPGAs.

A. Activation Function Calculation

In order to evaluate the transcendental activation functions
o(x) and tanh(x), Polynomial Approximations were used,
as detailed in [20], since evaluating a polynomial does not have
high memory usage requirements and, if the polynomial degree
is sufficiently low, the number of multiplications needed is
small enough to not pose a restriction both on resources (now
DSP slices, and not memory) and on speed (number of clock
cycles needed to output a result).

The error minimization strategy used to find the optimal
polynomial was the Least Maximum Approximation, where
the maximum error is minimized, making use of Remez’s
Algorithm, which produces a system of n + 2 linear equations
such as Equation 2

pla) — flag) = (-1)"e &
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where ¢ € [0,n + 1]. Both functions have horizontal asymp-
totes, which were used as the value in the edges. Instead
of performing the optimization in the single interval in be-
tween the chosen points from where the module evaluates
the function as the value of the asymptote, the interval was
further split in 4, in order to have lower degree polynomials
— simpler to evaluate — at a reduced error cost. The algorithm
was run using Python, and targeted second degree polynomials
for each interval. The coefficients achieved for the Sigmoid
and Hyperbolic Tangent functions are reported in Tables I
and II. The maximum approximation errors were, respectively,
1.408 x 1072 and 1.21 x 1072,

The Verilog model was described, where the correct coeffi-
cients are loaded according to the interval where the incoming



TABLE I
POLYNOMIAL COEFFICIENTS FOR THE SIGMOID APPROXIMATION
Po p1 D2 Interval
0 0 0 < —6
0.20323428 0.0717631 0.00642858 | —6 <z < —3
0.50195831 | 0.27269294 | 0.04059181 —-3<z<0
0.49805785 | 0.27266221 | 0.04058115 0<x<3
0.7967568 0.07175359 | 0.00642671 3<xz<6
1 0 0 z>6
TABLE 11

POLYNOMIAL COEFFICIENTS FOR THE tanh(z) APPROXIMATION

Po P1 P2 Interval

-1 0 0 r < —3
-0.39814608 | 0.46527859 | 0.09007576 —3<zx< -1
0.0031444 1.08381219 | 0.31592922 -1<z<0
-0.00349517 | 1.08538355 | -0.31676793 0<z<1
0.39878032 | 0.46509003 0.09013554 1<x<3

1 0 0 >3

operand is located. The evaluation of the polynomial was
accomplished using Horner’s Rule, that is

p(x) =po+prx+ pox? = po + z(p1 + xp2) 3)

and, therefore, the calculation is simply the procedure of
multiplying the operand by a value and adding a constant
to the result, repeated two times. An internal machine state
controls which values are multiplied and added according to
the pipeline state, and due to it, each module takes 5 clock
cycles to output one result.

B. Matrix-vector Dot Product Calculation

From the Set of Equations 1, we see that the weight matrices
W, and R, are multiplied by the input vector x and the
layer output vector y, respectively. This block implements
matrix-vector multiplication to perform those calculations,
and its description is parameterized in order to accommodate
networks of various sizes, since W, has size N x M, and R...
has size N x N, because x has length M (the number of inputs
to the layer), while y has length N (the number of neurons
in the layer). If a layer with different parameters is needed,
we only need to change the respective parameter before the
synthesis stage, instead of having to redesign the whole block.

The matrix-vector dot product of a matrix A of size N x M
by a vector = of size M, if performed in a linear non-parallel
way, can be described in terms of Algorithm 1

Algorithm 1 Matrix-vector multiplication of a matrix
for i =1:N do
for j =1: M do
Yi =y + Ay - xj
end for
end for

This operation has a computational complexity of O(n?).
Each of the i-th components of the output vector y can be cal-
culated in parallel, each one only requiring the corresponding

i-th line from the matrix. Using this approach, matrix-vector
multiplication can now be performed in linear time.

Although this solution only requires one multiplication per
row of the input matrix (i.e. N multiplications), if the row
size is large, we may run out of resources in the FPGA;
therefore, some sort of resource multiplexing strategy must be
used to ensure the flexibility of the solution to accommodate
networks of larger dimensions. The solution found for this
design was to share the multiplication slice among the rows
of the matrix: in a direct implementation of Algorithm 1,
each multiplication slice is responsible for producing the -
th element of the output vector y (of size V), therefore the
final result for the vector would be ready in M clock cycles
(i.e. the number of columns); now, defining a parameter K,
such that

Number of rows

Kg “4)

~ Number of multipliers’
This parameter represents the number of rows that share the
same multiplier: it is responsible for producing several i-th
elements of the output vector, in consecutive time slots of M
clock cycles. For instance, in an 8 x 2 matrix scenario, with
Kg = 2, we would have 4 multipliers, and the output vector
elements o, Y2, ¥4 and yg would be ready after M = 2 clock
cycles, and the remaining — 1, y3, ys and y7 — are ready after
another two clock cycles, that is 2M = 4 clock cycles after
the calculations began.

Figures 1 and 2 depict a diagram of the memory access
for the Matrix, and the row multiplication units within the
module, respectively, where K = 4 and for the same matrix
and vector sizes as before. Note that in this situation, we would
only have 2 multipliers, and the module would be composed
of two multiplication units, such as those in Figure 2, working
in parallel. They address a particular column using the signal
colSel, which is used by the RAM module to output the
corresponding column of the matrix (in regard to the input
vector, obviously this signal selects only a single position),
depicted in Figure 1. The dark shaded part of the memory
is used by the first multiplier, and the light shaded one is
used by the other, in parallel for a fixed rowMux. This signal
is produced by the control unit of the module, and operates
the left multiplexer and right demultiplexer of Figure 2, that
allows choosing the proper position of the weight column
and writing to the correct output vector position, respectively.
In this example, for rowMux=0, the control unit increments
colSel from 0 to M, and thus evaluates yy and y,. After
this, rowMux is incremented to 1, and the process repeats
until rowMux reaches K — 1. Therefore, we have the correct
result vector in a time proportional to K x M: a 3 clock cycle
overhead is added to the previous estimate, since the memory
only outputs the appropriate column in the next clock cycle,
and this module is pipelined both at the input and at the output.

C. Weight storage

The weights are stored in LUTRAM, and for that purpose,
they are declared as a matrix of registers, where the access,



rogyMux = 0

Multiplier 1 rogyMux = 2
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w(Kg + 1, colSel)
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Fig. 1. A column of the matrix that serves as input to the module. The dark
shaded part is for the first multiplier, and the light shaded is for the other, in
parallel. The rowMux signal addresses the position within each shaded area

both in terms of write and read operations, is made to each
column. The write/read access can be performed simultane-
ously, since the memory has separate communication ports for
input/output, provided that the addresses do not coincide.

D. Gate Module

The Gate modules are responsible for producing the internal
signal vectors for z(), i®), £(!) and o). This way, each Gate
module needs to perform three tasks

1) Multiply matrix W, by the input vector x(*)
2) Multiply matrix R, by the previous layer output vector
(t=1)
y
3) Sum the bias vector b, to the remaining matrix-vector
dot product results.

Assuming that the network size N is always larger than the
input size M, if we use the matrix-vector dot product units of
Section I'V-B, the multiplication in task 1 takes approximately
Kg - M cycles and the one in task 2 takes Kg - N cycles.
This way, tasks 1 and 2 can be performed in parallel, and
we can use the extra time that task 2 takes, relative to task
1, to perform task 3, and sum the bias vector to the output
of task 1, whose result is ready by that time. The module
is triggered by a beginCalc input signal that activates the
internal state machine, and outputs a dataReady signal that
informs the network that the calculations have been concluded.
Taking into account the internal state-machine and that the
internal datapath is pipelined, the exact number of clock cycles
this module takes to produce an output is 6 + Kg - N.

E. Network Architecture

Equations 1 suggest that the signals z(*), i, £(*) and o(*)
do not depend on each other — they operate only on the
current input vector x(*) and the previous layer output y(*=1)
— and therefore can be calculated in parallel. For that, we
need four Gate Modules working in parallel, each one with
its respective weight RAMs for W, and R., and followed
by the respective activation function calculator (detailed in
Section IV-A). There are three elementwise multiplications,
two for producing signal c¢(*) (which can be done in parallel
and then summed elementwise) and one for y®) (which can
be done only after applying the activation function c(®)).

Furthermore, we can avoid a naive translation of the Equa-
tions 1, which would replicate unnecessary resources (such
as elementwise multipliers and activation function calculators)
and require more area to save a negligible number of clock
cycles, by noting that one of the operands is the output of
a tanh(x) block and the other of a o(x), and they are then
multiplied, elementwise, together. Instead of replicating these
‘tanh-o-(-)wise’ structures, we use a single one and choose
the operand according to the state that the network is currently
in. The issue about the elementwise multiplier for ¢, which
does not use the tanh activation function, can be solved by
adding another multiplexer that chooses between the output
of the tanh(x) module or the signal c(*~!). These ideas
resulted in the LSTM network design of Figure 4, which is
mathematically equivalent to Equations 1.

The two left multiplexers control the operands that are fed
to the activation function modules, and the selecting signal
is generated by the network’s state machine, and its value is
incremented after each complete usage of the ‘tanh-o-(-)wise’
structure: this is where the time multiplexing of the structure
takes place. Since in state Sel = 1 the left operand of the
elementwise multiplier (the one that preceded the flip-flops in
the previous design) is the signal ¢(*~1), another multiplexer
was added before the elementwise multiplication, to select the
c=1) signal in that particular case, and the output from the
tanh(x) block, otherwise.

The registers on the right hand side of Figure 4 are activated
by signals generated within the network’s state machine that
enable the appropriate register, placing the output from the
elementwise multiplier in the correct place. The first activated
register is the middle one, which keeps the result from the ele-
mentwise mutiplication of the z(®) and i® vectors, then, after
a full operation of the ‘tanh-o-(-)wise’ structure, the bottom
register saves the other portion of the sum that evaluates to the
c® signal. Lastly, the top register saves the network output
y®), which in the next incoming sample becomes y*~1) and
is used by the Gate modules in this next batch of calculations.

Now, since there is only a single elementwise multiplier and
only two activation function calculators, the total requirement
for DSP slices is simply

2N 8
4—+2N+N=N|—+3 5
KG+ + (Kc+>’ 4)

where we see that we saved 5N multipliers, which for a
large value of N can have a decisive impact. In terms of
speed performance, although the Gate calculation time remains
the same, now the ‘tanh-o-(-)wise’ structure runs for 3
consecutive times. After adjustments to the state machine,
and accounting for pipelining and synchronization within the
datapath, the number of clock cycles needed after the gate
module calculations is 27, so the total clock cycles needed to
perform a complete forward propagation are

(N-Kg+6)+27=33+N-Kg (6)

which is only 13 clock cycles more than a fully-parallel, naive
architecture. For instance, an N = 32 neuron network would
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Fig. 2. The i-th row multiplication unit of the Module, where rowMux and colSel are internal signals produced by the control unit of the module. The
flip-flop accumulates the sum, and the output demux selects the appropriate memory position on where to store this value, within the slot attributed to this

multiplication, from i - Kg to i - Kg + [Kg — 1]

Fig. 3. Diagram of the hardware block that implements the Gate

require 320 DSP slices, while this new architecture uses 160,
at the expense of 13 more clock cycles.

V. RESULTS
A. Validation

The functionality of the network was verified against a
Python model of an LSTM network that was developed as a
reference, both for the forward propagation of the network,
as well as for the training algorithm. Python and Numpy
were used rather than MATLAB, since the former has higher
performance for the same level of code complexity. The model
was trained using the SPSA method [21].

The learning problem presented to both the software and
hardware network is the addition of two binary numbers of
8 bits. The i-th bit of each number is fed to the network as
a vector, and the network outputs its prediction of the correct
value of the i-th bit of the result. After the whole number is
processed, the memory cells of the LSTM network are reset
and a new addition task can be presented to the network. Even
though this seems a rather simple problem, it accounts for all
the essential issues at which this network excels: first, this
is a classification problem in which the Machine Learning
algorithm needs to output a prediction based on the input
feature vector, and that prediction has to take into account the
history of predictions and inputs so far, because the current bit
is the sum of not only the bits of the two operands, but also
the carry generated at the last few positions — this is where the
memory cells of this special Recurrent Neural Network come
into effect.

The software network was trained for 50 epochs. In each
epoch, 5000 training sequences were presented, and then
tested with 100 sequences, where the prediction error was
evaluated for that epoch. The trained weights were loaded

into the network and several addition problems were fed to
the Network in the testbench, which yielded no errors.

B. Synthesis

The proposed network was first synthesized for a Xilinx
XC7Z020 SoC, for sizes N € {4,8,16,32}, varying the
resource sharing parameter K, while keeping the number of
inputs set to M = 2. For a network size of 32 and Kg = 8§,
the LUT usage exceeded the LUT resources available in the
FPGA, so only lower values of K were successfully synthe-
sized. This is because of the complexity of the sharing logic
for the multipliers of the Matrix-vector Dot Product Module
in IV-B. To synthesize the design for sizes N € {64,128}
a Virtex-7 VC707 board was used, which as a XC7VX485T
(speed grade -2) FPGA core.

1) Maximum Frequency: The maximum clock frequency
that does not cause timing violations of any sort is plotted
in Figure 5. For N = 4, since there are only 4 rows to be
multiplied, the maximum value of K¢ is 4, and hence no
synthesis was performed for K = 8 (N.A.); also, since Ko =
2 and N = 32, a network such as theses would use 32(8/2 +
3) = 224 DSP slices, that exceeds the 220 slices available
in the XC7Z020, so there is no synthesis data for that value
(N.D.), as well.

It is clear that with increasing K, the maximum clock
speed decreases, and that decrease is steeper for larger val-
ues of K. This means that there is a critical path in the
Matrix-Vector multiplication unit, whose multiplexer becomes
increasingly complex for higher values of K. On the other
hand, when K is the same, smaller networks are faster than
larger networks. The fastest design is an N =4 and Kg = 2
network, with a clock frequency of 158.228 MHz, and the
slowest one is an N = 32 and Ko = 4 network, clocked
at 101.523 MHz. The reference design used for validation in
Section V-A is an N = 8 and Ko = 2 network clocked
at 154.321 MHz, which yields a clock period of 6.48 ns. The
maximum clock achievable for the VC707 networks is 140.854
MHz, for N = 64 and N = 128.

2) DSP Slices Usage: The estimates made in Equation 5
were shown to be accurate, as Figure 6 confirms. The reference
network design with N = 8 uses 56 DSP slices, which
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Fig. 5. The maximum achievable clock frequency for feasible network sizes
in the XC7Z020

corresponds to 25.45% of the total number of DSP slices
available.

The DSP usage for the VC707 was also accurate.

3) Other Resources Usage: The LUT, LUTRAM and Flip-
Flop usages are discussed here. In Table III, the usage of LUTs
is reported. We can see that although there is not a clear trend
on how the LUT usage varies with increasing K¢, it is clear,
and expectable, that the LUT usage increases with the size
of the network by an approximate factor of 2, from N = 2
to N = 16. As for N = 32, the usage does not follow this
apparent trend, and rises sharply to 91%. For K5 = 8 the
usage surpasses the maximum amount of LUTs available in
the XC7Z020.

As for LUTs, the FF usage also scales according to a
2% factor. In terms of LUTRAM, used to store the network
weights, the amount used increases by 2 with increasing values
of N, as before, and does not depend on K. This is because
the amount of weights only depends on the network sizes
M and N, and not on K. Furthermore, unlike LUTs, it
scales well with increasing network sizes, and does not pose

120+

100 |-

80

60 -

Number of DSP Slices used

20

©

Fig. 6. The number of DSP slices used for several Network Sizes
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TABLE III
LUT USAGE FOR DIFFERENT N AND K¢ IN THE XC7Z020
Kg=2| Kg=4 | Kg=38
N=41 6.87% 6.04% N.A.
N =38 14.64% 13.03% 14.11%
N =16 28.97% 27.72% 29.85%
N =32 N.A. 91.09% N.D.

a limitation on the network size. The
XC7Z020 are reported in Table IV; the results for the VC707
are in Table V.

N and

usage results for the

TABLE IV
FLiP-FLOP AND LUTRAM USAGE FOR THE XC7Z020
LUTRAM FF
N =4 0.18% 3.39%
N =38 4.41% 6.7%
N =16 8.83% 13.36%
N =32 17.66% 26.45%




TABLE V
FLIP-FLOP, LUTRAM AND LUT USAGE FOR THE VC707

LUTRAM FF LUT
N =64 24.22% 9.14% | 24.22%
N =128 14.09% 183% | 41.82%
TABLE VI
TOTAL PROCESSING TIME FOR A SINGLE FORWARD PROPAGATION ON THE
XC72020
Kg =38 Kg=14 Kg =2 Python | Speed-up
N =4 N.A. 309.68 ns | 259.12 ns 65 us x 251
N =28 793.46 ns | 421.12 ns | 317.52 ns 72 us X228
N =16 | 1497 pus | 738.19 ns | 461.336 ns | 96 us %208
N =32 N.D. 1.586 us N.A. 185 us x117

C. Performance

To evaluate the throughput of the system, a metric was
defined based on how many predictions it can produce per
second (i.e. produce a new result bit in the output sequence),
in millions. The metric in [1], as discussed in Section III, is not
very informative, since although a system can perform many
calculations per second, if those operations are redundant, that
metric has no relevant information regarding how fast the
system can perform the actual task it was meant to do,
which in this case is a complete Forward Propagation through
the network. The prediction time is the time elapsed from
the moment a new input vector is applied fo the moment
the LSTM Network produces an output vector. Hence, we
multiply the number of clock cycles yielded by Equation 6
by the equivalent clock period from the synthesis clock report
of Figure 5. Nevertheless, a comparison on the number of
Millions of operations both systems do will be presented
further ahead. This result is reported in Table VI, where the
calculation time of the Python module’s Forward Propagation
function is also included. This time was measured using the
timeit? module, which allows the evaluation of the execution
time of small pieces of code as well as complete functions
with arguments. The Python code was run on a Linux System,
powered by an 17-3770k Intel Processor, running at 4.2GHz,
with 8GB of RAM.

The performance increase is impressive, even for the slowest
of the designs (the N = 32 network). The hardware network
is, at best, x251 faster than the software counterpart, and at
worst X117 faster. Also, it is noticeable that increasing the
level of resource sharing increases the computation time, since
the level of parallelism is lower.

To know how many forward propagations we can perform
per second, we only need to invert the previous values. These
values are presented in Figure 7. While the N = 8 and
Kg = 2 network is able to perform around 3.15 million
predictions per second, the Python model can only output
around 14 thousand predictions, which is a very significant
result that proves the relevance of this implementation.

Zhttps://docs.python.org/3.5/library/timeit.htm]

Python
Hardware K =2 {4
Hardware Kg =4
Hardware Kg = 8

Million Classifications per Second

log,(N)

Fig. 7. Millions of classifications per second of each design according to the
network size N. The comparison is between the software Python model and
3 networks of different levels of resource sharing Kq.

As for the larger-sized networks synthesized in the VC707,
the results are also very promising. For network sizes of N =
64 and N = 128, a complete forward propagation takes 1.14
ws and 2.052 s respectively, and for both the maximum clock
frequency achievable was 140.845 MHz. Since the design [1],
for N = 128, takes an estimated 29.13 us (see Section III),
our design yields an improvement of 14x over it. In terms
of millions of operations per second (Mops), for an N = 128
network as the one of [1], our work achieves 4534.8 Mops per
second while theirs only achieves 264.4 Mops per second. This
is because, as stated in [1], a network of this size performs
132.1 x 10® Mops, and since our work outputs a sample every
m, we have that 4534.8 Mops per sec. = %ﬂm.

1) Power Consumption: Another important metric of the
performance of a design is its power consumption. These
power consumption estimates are post Place&Route, and have
a medium confidence level. All XC7Z020 designs yielded
a constant baseline value for the static power consumption
of around 120 mW, and the power consumption reported in
Figure 8 refers to the toral power consumptions, i.e. both the
baseline static power and the dynamic power consumption.
It is clear that the smaller the network is, the less power is
consumed, as one would expect. Furthermore, an increasing
level of resource sharing yields a substantially lower power
consumption figure: this is because less DSP slices are used as
K increases. Of course, even though the power consumption
is lower in that case, that comes at the expense of a lower
clock frequency and more clock cycles elapsed per forward
propagation.

For the networks synthesized on the VC707, the power
consumption was 1.34 Watt for N = 64, and 1.51 Watt
for N = 128. Since the network size is larger, the power
consumption is higher than before, but still within reasonable
levels given the complexity of the system. These estimates
were provided by Vivado, and have a medium confidence
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Fig. 8. Power Consumption estimates for several Network Sizes N and
resource sharing level Kg

level.

VI. CONCLUSION

The LSTM Hardware architecture presented surpassed the
performance of the custom-built software implementation by
251x, at best, and also the only current hardware imple-
mentation by 14x, and solely making use of internal FPGA
resources, achieving a higher level of parallelism. The higher
levels of parallelism of this work are achieved at the cost of
increasing design complexity, which limits its scalability to
higher sized networks, unlike the implementation of Chang et
al. [1]. On the other hand, the HDL description of this work
is parameterized, and is thus very flexible for networks of
any size, not requiring a redesign of the system every time
a differently sized network is required. Furthermore, making
use of internal memory makes it suitable for including an on-
chip learning system that can perform training on the network
weights.

Given these results, this architecture advances the current
state of the art in LSTM Neural Networks hardware implemen-
tations, providing the most efficient implementation to date.
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