

Urlea, C., Vanderbauwhede, W. and Nabi, S. W. (2020) Efficient FPGA

Cost-Performance Space Exploration Using Type-driven Program

Transformations. In: 2019 International Conference on Reconfigurable

Computing and FPGAs (ReConFig 2019), Cancun, Mexico, 9-11 Dec 2019,

ISBN 9781728119571 (doi:10.1109/ReConFig48160.2019.8994801).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/202011/

Deposited on: 15 November 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ReConFig48160.2019.8994801
http://eprints.gla.ac.uk/202011/
http://eprints.gla.ac.uk/

Efficient FPGA Cost-Performance Space
Exploration Using Type-driven Program

Transformations
Cristian Urlea

School of Computing Science
University of Glasgow

Glasgow, United Kingdom
c.urlea.1@research.gla.ac.uk

Wim Vanderbauwhede
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

wim.vanderbauwhede@glasgow.ac.uk

Syed Waqar Nabi
School of Computing Science

University of Glasgow
Glasgow, United Kingdom
syed.nabi@glasgow.ac.uk

Abstract—Many numerical simulation applications from the
scientific, financial and machine-learning domains require large
amounts of compute capacity. They can often be implemented
with a streaming data-flow architecture. Field Programmable
Gate Arrays (FPGA) are particularly power-efficient hardware
architectures suitable for streaming data-flow applications. Al-
though numerous programming languages and frameworks tar-
get FPGAs, expert knowledge is still required to optimise the
throughput of such applications for each target FPGA device.

The process of selecting which optimising transformations to
apply, and where to apply them is dubbed Design Space Explo-
ration (DSE). We contribute an elegant and efficient compiler
based DSE strategy for FPGAs by merging information sourced
from the compiled application’s semantic structure, an accurate
cost-performance model and a description of hardware resource
limits for particular FPGAs. Our work leverages developments
in functional programming and dependent type theory to bring
performance portability to the realm of High-Level Synthesis
(HLS) tools targeting FPGAs. We showcase our approach by
presenting achievable speedups for three example applications.
Results indicate considerable improvements in throughput of up
to 58× in one example. These results are obtained by traversing
a minute fraction of the total Design Space.

Index Terms—fpga, compiler, functional programming, design
space exploration, high level synthesis, cost model

I. INTRODUCTION AND BACKGROUND

The High-Performance Computing (HPC) arena has seen an
increase in the adoption rate of FPGAs as a target hardware
platform. This is primarily driven by the increased need for
energy efficient computation at scale.

HLS tools allow programmers to quickly develop applica-
tions targeting FPGAs. Instead of describing computation as
a circuit, as is the case with Hardware Description Languages
(HDL), developers using HLS solutions specify the algorithms
and functionality of the application leaving the task of synthe-
sising an equivalent circuit to the compiler.

In the context of HPC applications, we argue that even this
abstraction level too low. Both HDL and HLS solutions require
expert programmers to guide the process of finding an efficient
parallel implementation with explicit annotations.

The TyTra project is funded by the EPSRC Grant EP/L00058X/1 Exploiting
Parallelism through Type Transformations for Hybrid Manycore Systems

We address this situation by contributing an efficient DSE
strategy. Our compiler computes the optimal parallel program
structure from the provided sequential application, a cost-
performance model and the target hardware device’s resource
bounds. This search strategy builds upon our earlier work
published in [1] by avoiding regions of the design space that
would lead to inefficient hardware resource utilisation. This is
done automatically, without instruction from the application
developer.

We contrast our approach to the industry standards such
as OpenCL implementations and other HLS tools. OpenCL
[2] is a heterogeneous framework for general purpose parallel
programming on CPUs, GPUs and even FPGAs [3]. FPGA
vendors provide OpenCL programming flows, as well as
other HLS solutions. Xilinx’s Vivado [6] and Intel’s HLS
Compiler [8] for example both require specialist programmers
to annotate their applications with explicit pragma directives
to generate efficient parallel solutions.

II. DESIGN SPACE EXPLORATION

Design Space Exploration can be viewed as the application
of two processes: a program variant generator and a pro-
gram variant filter. The generator produces program variants
through the application of term-level program transformations
to each node in the Abstract Syntax Tree (AST). Term-level
transformations are generated from type-level transformations
as detailed in print [1]. The filter process removes program
variants from the design space by comparing their relative
performance and expected resource cost utilisation.

Within our formalism, the leaf nodes of the AST represent
opaque functions, computations that work on scalar-inputs and
produce scalar outputs. Branch nodes represent higher-order
functions such as map, fold, zip and unzip that take functions
as inputs and produce functions as outputs. A map node is the
functional equivalent of a for loop in an imperative language.

In the naı̈ve approach, the generator produces, for each
leaf node, a number of program variants. Each corresponds
to a particular degree of expressed parallelism. For branch
nodes program variants are generated by selecting items from

TABLE I
BEST PERFORMING BOARD/EXAMPLE

Example FPGA Throughput Ratio Registers Block Ram DSP LUT Program Variants DSE Ratio Relative Speedup
SOR baseline 0.017 2432 3 40 4631 0 0 1x
SOR XC6SLX4 0.031 3136 6 44 5473 8 0.001 1.8x
SOR XC6SLX9 0.218 21248 39 304 37469 19 0.01 12x
SOR XC6SLX16 0.375 36224 66 520 63992 33 0.02 22x
SOR XC6SLX25 0.625 59904 108 864 106092 55 0.03 36.7x
SOR XC6SLX45 1.0 95424 171 1380 169242 88 0.05 58.0x
1DS baseline 0.043 64 0 4 0 0 0 1x
1DS XC6SLX4 1.0 1472 0 92 0 23 1.0 23x

Synth baseline 0.037 1388 7 13 3380 9 0 1x
Synth XC6SLX4 0.26 8520 42 82 21122 13 0.02 7x
Synth XC6SLX9 0.69 22496 112 214 55343 34 0.05 18x
Synth XC6SLX16 1.0 32308 161 307 79424 49 0.07 27x

the Cartesian product of program variants associated to their
respective sub-expressions. The filter process enumerates and
selects program variants based on the performance-cost model.
The search space is thus a rapidly growing function of the
number of AST nodes and their expected latency.

III. APPROACH

We contribute a DSE strategy implemented in the Haskell
programming language. We compose the generator and filter
processes by expressing the former as an Anamorphism and the
latter as a Catamorphism over the base Functor of our AST
representation. The resulting Hylomorphism is a fused and
optimised version of the two. This formulation traverses the
search space according to implicit data dependencies allowing
for a single bottom-up traversal of the AST.

We begin by conceptually assuming infinite computational
resources. For each leaf node we produce program variants
expressing the maximum level of parallelism leading to a
balanced pipeline implementation with an aggregate through-
put of 1 work item per clock cycle. The maximum degree
of parallelism corresponds to the opaque function’s input-to-
output latency as provided by the cost-performance model,
details of which may be found in print [7]. Assuming infinite
computational resources allows our search-strategy to start
from a globally optimal solution that may or may not fit on
the target device. We thus avoid the problem of getting stuck
in a local-maximum, as may happen with a gradient-decent
strategy with random starts.

For branch nodes we make the observation that their
throughput can only be as high as its least performing sub-
expression. We thus generate branch node variants that express
the same degree of parallelism as the node’s sub-expression
having the smallest number of variants. For each of these, all
other sub-expressions only retain the minimum resource-cost
variants that expresses that degree of parallelism.

This observation allows us to prune away entire regions of
the design space at each step in our bottom-up AST Traversal.
We account for the target FPGA device’s resource constraints
by immediately discarding program variants that exceed those
bounds at each step. Once we have reached the root node,
representing the application’s output, only the Pareto-optimal
frontier of program variants remains.

IV. RESULTS

We applied our DSE strategy to the compilation of three
example applications with results visible in Table I. The first
two of these are derived from real-world applications: a large-
eddy weather simulator [4] and an ocean model [5]. The last
example is synthetically derived from second. During DSE
we supplied hardware resource bounds for a number of Xilinx
Spartan 6 FPGAs namely: XC6SLX4, XC6SLX9, XC6SLX16,
XC6SLX25, XC6SLX45 and XC6SLX150T.

The first columns reflect the example name, FPGA device
targeted and the relative throughput compared to a fully
balanced pipeline. Following that are the number of registers,
block ram, DSP blocks and look-up tables slices required
by the best performing variant found. The Program Variants
column is the total number of variants generated by our
DSE strategy. DSE Ration shows the proportion of considered
variants compared to the total naı̈ve search space. Finally the
Relative Speedup is the expected gain in throughput, compared
to that of the sequential input application.

REFERENCES

[1] W. Vanderbauwhede, S. W. Nabi, and C. Urlea, Type-driven automated
program transformations and cost modelling for optimising streaming
programs on fpgas, International Journal of Parallel Programming , pp.
123, 2019

[2] Khronos OpenCL Working Group, The opencl specification,
https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf, 2009

[3] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh, From opencl to
high-performance hardware on fpgas, in 22nd international conference
on field programmable logic and applications (FPL) . IEEE, 2012, pp.
531534.

[4] H. Nakayama, T. Takemi, and H. Nagai, Large-eddy simulation of urban
boundary-layer flows by generating turbulent inflows from mesoscale
meteorological simulations, Atmospheric Science Letters, vol. 13, no.
3, pp. 180186, 20

[5] J. Kämpf, Ocean modelling for beginners: using open-source software.
Springer Science & Business Media, 200

[6] T. Feist, Vivado design suite, White Paper , vol. 5, p. 30, 2012.
[7] S. W. Nabi and W. Vanderbauwhede, FPGA design space exploration for

scientific HPC applications using a fast and accurate cost model based on
roofline analysis, Journal of Parallel and Distributed Computing, 2017

[8] M. Sussmann, T.Hill Intel HLS Compiler: Fast Design, Coding, and
Hardware White paper , 2017

