
Fast and compact evolvable systolic arrays on
dynamically reconflgurable FPGAs

Javier Mora; Andrés Otero; Eduardo de la Torre; Teresa Riesgo

Abstract—Evolvable hardware may be considered as the result
of a design methodology that employs an evolutionary algorithm
to find an optimal solution to a given problem in the form of a
digital circuit.

Evolutionary algorithms typically require testing thousands of
candidate solutions, taking long time to complete. It would be
desirable to reduce this time to a few seconds for applications
that require a fast adaptation to a problem. Also, it is important
to consider architectures that may operate at high clock speeds
in order to reach very speed-demanding situations.

This paper presents an implementation on an FPGA of
an evolvable hardware image filter based on a systolic array
architecture that uses dynamic partial reconfiguration in order
to change between different candidate solutions. The neighbor to
neighbor connections of the array offer improved performance
versus other approaches, like Cartesian Genetic Programming
derived circuits. Time savings due to faster evaluation compensate
the slower reconfiguration time compared with virtual reconfig­
uration approaches, but, at any rate, reconfiguration time has
been improved also by reducing the elements to reconfigure to
just the LUT contents of the configurable blocks.

The techniques presented in this paper lead to circuits that may
operate at up to 500 MHz (in a Virtex-5), filtering 500 megapixels
per second, the processing element size of the array is reduced
to 2 CLBs, and over 80 000 evaluations per second in a multiple-
array structure in an FPGA permit to obtain good quality filters
in around 3 seconds of evolution time.

Index Terms—FPGA, evolvable hardware, systolic array,
partial reconfiguration, LUT

I. INTRODUCTION

Evolvable hardware (EH) is the result of a design method­
ology that allows obtaining hardware solutions to problems
not known in depth by using an evolutionary algorithm (EA)
to test different solutions until finding one that fulfills the
requirements of the given problem. Moreover, it provides a
way to make hardware adapt to tasks and requirements that
change over time, allowing the same hardware to be reused.

EAs usually require evaluating several thousands or even
millions of candidate solutions to find a satisfactory one. This
training stage can take minutes or even hours to complete,
during which the system will not be operative or will be
working at a sub-optimal configuration. In order to minimize
this training time, it is important to speed up the evaluation
process as much as possible.

Although it is possible to perform evaluations by simulation,
it is often faster to perform them directly on the target
hardware. This is possible with FPGAs, which allow changing
the digital circuit they implement via reconfiguration rather
than implementing a fixed one. Moreover, some FPGAs can
perform partial reconfiguration, which permits the incremental
modification of the circuit in a similar manner to how some
EAs refine a solution by making incremental changes on them
and evaluating the newly obtained solution.

Certain FPGAs are able to do this from within the FPGA
itself, allowing such partially reconflgurable systems to be
implemented autonomously on the FPGA, without requiring an
external agent to run the EA and manage the reconfiguration.
This is known as dynamic partial reconfiguration (DPR).

The training time of an implementation of EH based on
DPR will be determined by these times:

. The reconfiguration time in which a candidate solution
is set up.

• The evaluation time in which the candidate solution
is executed in order to measure its performance and
conformance to the requirements.

. The time overhead involved in the EA, which is usually
performed in software. Most of this time will involve
generating a new candidate solution.

For simple EAs, the latter will be small and can be neglected
compared to the other two.

This paper shows an implementation that presents very good
reconfiguration times and processing speeds, thus increment­
ing the number of candidate solutions evaluated per second
and reducing drastically the evolution time.

The rest of the paper is structured as follows: Section II
introduces the state of the art and possible alternatives.
Section III describes the chosen solution and implementation
details. Section IV evaluates the implementation and lists
the results obtained from it. Finally, section V shows the
conclusions.

II. TECHNICAL BACKGROUND AND PREVIOUS WORK

Common EH-based processing systems consist of a large
number of basic processing units, known as processing

elements (PEs), which are interconnected in a specific manner.
Each of these PEs has a certain number of inputs coming
from the system input or from other PEs, implements a
specific operation on the data it receives from these inputs, and
sends the processed result to other PEs, typically registering
the result in order to create a pipelined data processing
architecture. The mission of the EA is to determine which
operation will be performed by each PE and how the PEs
will be interconnected; these parameters constitute a specific
candidate solution.

A. Interconnection topologies

Given that allowing every PE to get its inputs from any
other possible PE in the system would lead to excessively
complex routing (which is generally bad for FPGA design) and
to having excessively big multiplexers at the inputs of the PEs,
the way in which PEs can interconnect is usually restricted so
that only a few possible interconnections are allowed.

One of these interconnection topologies is the cartesian
genetic programming (CGP) [1], which consists of a series
of PEs arranged in columns, as seen in Fig. 1. Each of these
PEs can take data from the inputs and the columns to the left,
and usually implements a stateless simple function such as
arithmetic addition or logic AND. In order to further simplify
the system in terms of multiplexers and routing, the number
of inputs available to a certain PE can be constrained to
a maximum number of columns to the left (typically one
column, to avoid large multiplexers).

IN1o-
IN2o-
\N3^

^1 PE

^
^

P E -

HA P E ­

PE

P E ­

P E -

PE-,

PE - 3 > o OUT

PE-1

Fig. 1. Example of a 3×3 CGP topology with 3 inputs and 1 output. Each
PE in this example has 1 output and 2 inputs, from either the system input
or a PE in the previous column.

The main problems with this topology are that the routing
of the nets may still be too complex, and that the multiplexers
introduce extra delay in the logic path reducing the frequency
of operation, although this can be solved by registering the
output of the multiplexers in addition to the PE outputs.

Multiplexers also have the drawback of using a high amount
of resources. For example, while an 8-bit adder processing
element only needs 2 slices in total (1/4 per bit, corresponding
to a single LUT) in modern Xilinx FPGAs, a single 13:1
multiplexer as proposed in [2] (9 inputs + 4 PEs) requires

1 slice per output bit [3], 16 slices in total for 2 input
multiplexers. Therefore, multiplexers alone would represent
an 89% of the resource usage for this topology.

Another topology which does not suffer this problem is the
systolic array, first defined in [4], as a generic computing
engine, and used as a reconfigurable fabric for implementing
EH in [5]. It was originally intended for complex PE
operations but it can be used with simpler PEs as well.
Opposite to CGP, inputs to each PE are fixed, connecting each
of them to its neighbors (Fig. 2).

^ > o O U T

Fig. 2. Example of a 3×3 systolic array with 3 inputs and 1 output. Notice
how the routing has been simplified and the multiplexers removed except for
the ones at the input and output of the system.

This topology simplifies the routing between processing
elements, allowing for shorter data paths and thus lower delay.
Also, smaller logic resources per every PE permits PEs to be
closer between neighbors. Additionally, it removes the need
of having a multiplexer at the input of every PE (except
at the system input), thus again reducing the delay as well
as the resource usage. Its simplicity is also an advantage in
dynamically scalable systems such as [6].

The disadvantage of this solution is the degradation of
connectivity, which would force EAs to take longer evolution
cycles to obtain correct mappings.

B. Reconfiguration methods

As said before, PEs must be able to switch between different
functions according to the configuration of a specific solution.

The most straightforward way to achieve this is by simply
implementing all possible circuits and using a multiplexer to
select which function the PE uses (Fig. 3), in a similar way to
how an ALU works. This is known as virtual reconfigurable
circuit (VRC), and has the advantage of being highly portable
(independent of the FPGA used). However, this approach is
considerably resource and energy consuming, since all the
possible functions have to be implemented at once, and the
extra multiplexer to select the used function has the same
problems CGP has: it introduces extra delay and resource
usage.

This approach is used in [7] in combination with CGP in
order to implement an evolvable image filter.

IN1

IN2

fi O,
HTM

-••OUT

CFG

Fig. 3. VRC with 3 functions. Output may be registered (not shown).

An alternative to VRCs consists in using DPR if the FPGA
supports it. With this methodology, rather than having to
implement all possible PE circuits physically in the FPGA,
only one of them is present at a time. A reconfiguration engine
will later be able to replace this circuit with another one stored
in a PE library by partially reconfiguring the area of the FPGA
corresponding to the PE. (Fig. 4)

RECONFIG

SfflfflS

* - O U T

Fig. 4. By using DPR instead of VRCs, the output multiplexer can be
removed and only one function is implemented, reducing the amount of
resources used.

This approach reduces considerably the amount of resources
used by a single PE and potentially improves its maximum
frequency of operation, at the expense of making the system
specific to a certain FPGA model. Additionally, DPR intro­
duces a reconfiguration time overhead, unlike VRCs where
this time is negligible since it would only involve changing the
input of some multiplexers; however, in [8] the reconfiguration
time is still small compared to the evaluation time.

The design of modules interchangeable by means of partial
reconfiguration requires the input and output nets of the
module to be compatible with the ones on the static system.
Xilinx tools provide a solution for this requirement in their
partial reconfiguration flow [9]. However, this flow does not
support using the same circuit on different positions even
though this is theoretically possible due to the uniformity of
FPGAs.

Bus macros present an alternative to Xilinx’s partial
reconfiguration flow, and are used in in [5] in conjunction with
a systolic array topology. A bus macro is a circuit with fixed
routing used for anchoring nets, making the inputs and outputs
of partial circuits compatible. As a downside, bus macros
introduce extra delay and resource usage.

Custom tools such as Dreams [10] or GoAhead [11] allow
anchoring certain nets through specific routes without needing
bus macros. Additionally, they ensure that no other nets cross

the reconfigurable area boundaries. The Dreams tool is used
in [6] to implement a scalable systolic array of up to 8×7 PEs.

A third way to change the functionality of a circuit is
to change the content of the FPGA LUTs that are used to
implement logic functions, which is not as flexible as changing
the complete circuit including interconnection nets, but can
still be a good solution if the PEs are similar, and is easier to
accomplish given that no special routing considerations have
to be taken. This was done in [12] on a Xilinx Virtex-II Pro
by temporarily using the LUTs as shift registers in order to
write a new content. However, the amount of LUTs that can
work as shift registers has decreased in more modern Xilinx
FPGA families, and currently only 25–30% of the LUTs in
Virtex-5 [13] and 7 series [3] FPGAs have this functionality,
unlike Virtex-II Pro which allowed this in all of its LUTs [14].

[2] uses a similar L U T reconfiguration approach in a CGP
topology, but using DPR instead of relying on a shift register
functionality, thus being able to use all the LUTs in the FPGA,
not only the aforementioned 25–30% of them.

I I I . IMPLEMENTATION

The chosen implementation is based on a systolic array with
a size of 8×8 PEs that uses dynamic partial reconfiguration
of lookup tables for changing the functionality of both PEs
and multiplexers given its speed and ease of implementation.

Each PE has two 8-bit inputs, fixed to its north and west
PEs respectively, and transmits its 8-bit output to both the east
and south PEs, as was shown in Fig. 2. At array level, data
are fed through the north and west sides, and the output is
selected from the east outputs, leaving the south ones unused.

The target platform is a Xilinx Virtex-5 LX110T FPGA.
One advantage of this FPGA family over more modern
alternatives such as the 7 series families is that its minimum
reconfiguration unit (frame) is a 60% smaller [15], [16], thus
reducing reconfiguration times for small areas.

The reconfiguration engine has been implemented as a
custom hardware peripheral that is able to write one word per
clock cycle to the internal configuration access port (ICAP)
of the FPGA. It differs from the one described in [8] in
that it has been simplified and specifically adapted to fine
grain reconfiguration. Xilinx’s XPS H W I C A P [17] is not used
because its speed is constrained by single word transactions
on the SoPC bus, resulting in very low reconfiguration speeds.

A. System description

The application of this implementation is a noise image filter
based on a 3×3 pixel sliding window. This filter will be used
to filter grayscale images of 128×128 8-bit pixels at a speed
of 1 pixel per clock cycle.

The E H system is implemented as a MicroBlaze peripheral
with the described systolic array; 3 B R A M memories of
16 K B each, for storing the 128×128 pixel input, output,
and reference images; and a comparator that calculates the
difference between output and reference as the sum of absolute

errors (SAE), which is obtained pixel by pixel as

SAE = 2 , /_. \aij — t>ij\

where a and b are the output and reference images, and i and
j the pixel coordinates.

Both the memories and the comparator have a throughput of
4 pixels per clock cycle, and are connected to the systolic array
through dual-clock asymmetric FIFOs so that they can operate
at different clock speeds and do not become the bottleneck of
the system.

In order to improve the evolution time and make a better use
of the FPGA area, 8 systolic arrays and 8 comparators have
been implemented that can filter the same image in parallel,
as was done in [18] and [2] with 3 and 6 filters respectively.
Only the output of one of the arrays is stored; the rest are
only used during the training stage for evaluating a specific
solution.

B. Processing element description

PEs are built by directly instantiating lookup tables,
following an approach based on the one used in [2]. Each
PE is implemented with only 2 Virtex-5 CLBs, using 2 LUTs
and 1 FF per bit and dedicated carry logic, as shown in Fig. 5.

carry .put

W r

""

A6
A5

A4LUT
A3
A2
A1

ñ
L carry out ̂

A6
A5

A4LUT
A3
A2
A1

FF - « • E ,

S,

Fig. 5. Fragment of a PE. Each PE is constituted by 8 fragments like this, 1
per bit. The sum/2 signal is the sum signal (extended with the carry out bit)
shifted 1 bit to the right.

PEs are composed of 2 stages, one for calculating a sum
and carry derived from the inputs and one for generating a
result based on the inputs, sum, and carry. The first stage can
also be used for multiplying one input by 2 (by adding it to
itself) or comparing the inputs.

The choice of LUT inputs is not arbitrary and is made in
order to minimize the circuit delay and reduce the amount of
FPGA frames that need to be reconfigured to 1 frame for the
first stage LUT and 2 frames for the second one, rather than
the 4 frames needed to reconfigure each LUT completely [2].

This configuration allows a broad range of processing
functions to be implemented. The current implementation uses
the 16 functions used in [5], which are listed in table I, all of
which can be implemented in the described circuit.

T A B L E I
FUNCTIONS IMPLEMENTED BY THE PES

Index

0

1

2

3

4

5

6

7

Equation

N + W mod 256

2 · N mod 256

2 · W mod 256
min(N-\-W, 255)

min(2 • N, 255)

min(2 • W, 255)
1 N+W 1

2

255

Index

8

9

10

11

12

13

14

15

Equation

^
2
^
2

N

w
max(TV, W)

min(TV, W)

max(7V — W, 0)

maxfVF — N, 0)

multiplexers, so they are switched by reconfiguring the FPGA
instead of changing an input signal.

Rather than implementing a 9:1 multiplexer, each input
selector uses a 2-stage model similar to that of PEs, shown in
Fig. 6. The first stage selects a row of the 3×3 pixel window,
and the second one adds a certain amount of latency in order
to shift the pixel to the left, since the window moves 1 pixel
per clock cycle to the right. A similar approach has been
previously done in [6].

E H *
E H *
E - *

SLIDING
WINDOW

gg
7

&

&

&

^

f
S Y S T O L I C A R R A Y

Fig. 6. Diagram of an input selector (dotted) showing its cascaded connection.
Each multiplexer symbol in the picture is implemented using 8 reconfigurable
LUTs, one per bit.

The output selector is implemented as shown in Fig. 7, using
one reconfigurable LUT per bit per systolic array output.

OUT

Fig. 7. Diagram of the output selector.

C. Input and output selectors
Input and output selectors are cascaded, delaying the data

Input and output selectors of the systolic array are also 1 clock cycle in every stage. This not only helps breaking
implemented using reconfigurable LUTs rather than actual long lines into shorter ones to avoid timing problems, but

also corrects the latency of data propagation, making it
independent of the path the data followed inside the systolic
array. This makes the latency of the systolic array constant
and predictable.

D. Evolutionary algorithm

The chosen E A is a simple mutation-only genetic algorithm
(GA) running in software. Each gene of the G A represents
either the function of a PE or the configuration of an input or
output selector. The G A has a population of a single parent and
an offspring of a single child ((1+1)-EA) and a mutation rate
of 2; this is, in each generation a new candidate is generated by
modifying 2 randomly chosen genes of the parent, evaluating
the resulting candidate, and substituting the parent with the
new candidate in case it has a better or equal performance, or
fitness value.

The random genes to modify are chosen so that all modifi­
cations in a single mutation take place in the same column
of the systolic array. This is done because reconfiguration
affects a whole column due to the nature of Xilinx FPGAs,
so reconfiguring multiple elements on a single column will
take as long as reconfiguring a single one, thus saving
reconfiguration time. A similar strategy is used in [2], to a
level of single frames rather than complete PE columns.

The fitness criterion used is the SAE between a noise-free
reference image and the result of filtering a noisy one, with
lower values representing better solutions. (The resulting filter
will not be specific to the training image and can be used with
other images with similar noise type and levels, as shown in
[5].)

In order to take advantage of the multiple parallel arrays,
8 independent evolutions are run in parallel, one in each
systolic array. At the end of the evolution, the best of the
8 results is chosen. Having multiple short evolutions is usually
a better strategy than having a single long one, since it reduces
the risk of getting stuck at a sub-optimal local minimum.
Additionally, in order to promote good evolutions and discard
bad ones, every 2048 generations the best evolution is forked
and the worst one is terminated.

Such strategy was already used in [19] to implement a
distributed E A on a network of intercommunicated nodes
capable of running independent evolutions in each, to keep
diversity, but exchanging candidates to give preference to best
populations.

I V . RESULTS

A. Hardware characteristics

The described system has been implemented in a Xilinx
Virtex-5 LX110T FPGA with a speed grade of - 1 . The resource
distribution is shown on Fig. 8. The 8 systolic arrays use
2688 slices (16% of the available FPGA slices), 336 per
array; and the rest of the system (MicroBlaze soft processor,
reconfiguration engine, and logic for controlling the systolic
arrays) 3433 slices (20%).

Fig. 8. Resource distribution of the system in a Virtex-5 LX110T FPGA,
with the 8 systolic arrays visible on the top right quadrant.

The systolic arrays work at a speed of 400 MHz
(400 megapixels per second, which is equivalent to 24 000
images of 128×128 px per second), the reconfiguration engine
at 200 MHz, and the MicroBlaze at 100 MHz. However, a
system with up to two 16×16 PE systolic arrays has been
tested with speeds of up to 500 MHz, showing that the system
is scalable and that the frequency bottleneck is probably not
in the systolic array but in the controlling logic.

Each PE uses 2 vertically arranged CLBs (4 slices), making
a column of up to 10 PEs fit in a single Virtex-5 clock region,
although a systolic array may span multiple clock regions. The
systolic arrays are compactly implemented, using 100% of the
slices in the local area, as shown in Fig. 9. This promotes short
nets and therefore improves timing.

B. Experimental results

Table I I shows the average SAE values obtained after
100 independent runs of the EA for a Lena image with salt and
pepper noise levels of 5%, 10%, and 20% (Fig. 10), comparing
the result of the current parallelized (1+1)-EA with the single-
threaded (1+8)-EA used in [5], both taking advantage of the
8 systolic arrays to accelerate the evolution. Both algorithms
are run for 32 768 generations, evaluating a total of 262 144
candidate solutions, although intermediate results after 65 536
(1/4 of the evolution time) and 131 072 evaluations (1/2) are
also shown.

Fig. 10 also shows some of the results obtained with the
filters resulting from the parallelized (1+1)-EA.

As can be seen, the results achieved using the former EA
are comparable to similar approaches [2], [5]. Nevertheless,
the current EA achieves better results even with 4 times fewer
evaluations (and in a time 5 times shorter). The final SAE

Fig. 9. A 16×16 PE systolic array as seen in FPGA Editor, with nets for
input selectors in red, output selector in black, and PEs in green.

T A B L E I I
AVERAGE S A E AND EVOLUTION TIME (LOWER IS BETTER)

(1+8)-EA

8x(1+1)-EA

65 536 evals

131072 evals

262 144 evals

65 536 evals

131072 evals

262 144 evals

5%

29253

20697

14770

10749

7 824

6317

Noise level

10%

56751

37 910

28 164

24 131

18465

14 801

20%

114794

95 783

79481

67 087

51050

41 361

Time

(s)

1.04

2.07

4.10

0.80

1.61

3.23

obtained after evaluating 262 144 candidate solutions is, in
average, half the one obtained with the former EA.

Additionally, by restricting mutations to a single column, the
overall evolution time has been reduced by more than 20%.

Fig. 11 represents the median and 25%–75% quartiles for
both former and current EAs for a 5% noise level, extended to
twice the evolution time (524 288 evaluations), showing that
the former one quickly gets stuck at sub-optimal solutions
so continuing the evolution will barely improve the results,
whereas the current one is able to reach the same results about
4 times faster and does not get stuck so prematurely.

C. Time breakdown

Table III shows the contributions of each of the parts of
the evolution described in section I to the total evolution time,
both for 8 candidates (which are evaluated in parallel) and the
corresponding to a single candidate.

As can be seen, the time spent dynamically reconfiguring
the 8 filters with the new configuration is similar to the time
spent evaluating them. The time overhead due to execution of
the EA in software (mutation and selection) is small, about

Fig. 10. Top: 128x128 px Lena image, used as training reference. Middle:
the same image with 5% (left), 10% (center), and 20% (right) salt and pepper
noise, used as training input. Bottom: result of filtering the middle row images
with evolved filters. Array size is 8x8 .

40 000

30 000 f + 4

20 000

10 000

\
I I 1

1 1 1

\\ v\
\

m N
\i> \ \

\J K M
\t \ \\\ N
\\f» \ H hJ

W VIJ 1S\
r̂ Kl-Î T-- T\\ H~r44- i-

131 072 262 144 393 216

Candidates evaluated

524 288

Fig. 11. Median (solid) and 25%–75% quartiles (dashed) comparing the
former EA (orange) with the current one (blue), both for 5% noise level.

15% of the total.
Implementing a larger number of filters will not reduce

the evolution time proportionally, since only the evaluation is
performed in parallel, whereas reconfiguration, mutation, and
selection are sequential.

V. CONCLUSIONS

Systolic array topologies provide a compact and resource-
efficient solution for E H implementations: if a CGP architec-

0
0

T A B L E I I I
EVOLUTION TIME BREAKDOWN (MICROSECONDS)

x8 x1 %
Mutation 12.8 1.60 13%

Reconfiguration 41.2 5.16 42%
Evaluation 42.2 5.27 43%

Selection 1.4 0.18 2%
Total 98.5 12.31

(81 200 evaluations per second)

ture had been used in this work, the size of a single PE would
have grown from 4 slices to around 20 due to the resource
overhead introduced by the multiplexers at the input of each
PE.

The adoption of the LUT-based reconfiguration methodol­
ogy described in [2] has further compacted the array size,
from the 5 CLBs per PE in [6] to only 2. Furthermore,
this methodology has reduced the reconfiguration time about
20 times, providing much faster evolutions.

The compacity of systolic arrays allows great processing
speed, which has been tested to up to 500 MHz, as well
as permitting the implementation of more processing arrays
in the design, from one 8×7 array reported in [6] or three
4×4 arrays in [18], up to eight 8×8 arrays in a more
reduced area. This parallelization, the increase of frequency
of operation in the processing arrays, and the improved
reconfiguration methodology allow testing over 80 000 filters
per second (including reconfiguration and evaluation times for
each solution).

Additionally, the use of a multithreaded EA has greatly
improved the resulting quality of the obtained filters by
reducing the chances of getting stuck at local minimums,
allowing to make shorter evolutions for the same result.
Furthermore, this EA presents advantages in scalability, since
it is easily distributable among multiple separate processing
nodes, as proposed in [19].

The optimization of the processing architecture speed,
increase in maximum array size, speed-up of the reconfig­
uration methodology, parallelization of systolic arrays, and
improvement of the EA, all combined, have allowed shortening
the evolution time from 128 seconds reported in [5] to less
than 1 second (for 65 536 candidate evaluations) with better
results in the obtained filter, and showing excellent results after
3.23 seconds (for 262 144 evaluations). Therefore, the usability
of such techniques in algorithms which require faster dynamic
adaptation to varying situations (including fault recovery,
noise level or other external conditions) has been significantly
improved.

The low FPGA resource usage may allow implementing
this system in smaller FPGA models, or adding even more
systolic arrays to the system (although that would not
improve the reconfiguration time, only the filtering time). This
methodology simplifies this process, also allowing to make the
arrays larger or smaller in an easy way.

Also, given that the processing element library does not
need to be pre-synthesized anymore, it would be easy to extend
it with new functions, such as step functions or conditional
operations.

ACKNOWLEDGMENTS

This work was partially supported by the Spanish Min­
istry of Economy and Competitiveness under the project
REBECCA, with reference TEC2014-58036-C4-2-R, and the
FPI grant program of the aforementioned Ministry.

REFERENCES

[1] J . F. Miller, “An empirical study of the efficiency of learning
boolean functions using a cartesian genetic programming approach,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
W. Banzhaf, J . Daida, A . E . Eiben, M . H . Garzon, V. Honavar,
M . Jakiela, and R. E . Smith, Eds., vol. 2. Orlando, Florida, U S A :
Morgan Kaufmann, 13-17 Jul. 1999, pp. 1135–1142.

[2] R. Dobai, K . Glette, J . Torresen, and L . Sekanina, “Evolutionary
digital circuit design with fast candidate solution establishment in field
programmable gate arrays,” in Evolvable Systems (ICES), 2014 IEEE
International Conference on, Dec 2014, pp. 85–92.

[3] 7 Series FPGAs Configurable Logic Block (UG474), Xilinx, Inc., 2014.
[4] H . Kung and C . Leiserson, Systolic Arrays for (VLSI), ser. C M U - C S .

Carnegie-Mellon University, Department of Computer Science, 1978.
[5] R. Salvador, A . Otero, J . Mora, E . de la Torre, T. Riesgo, and

L . Sekanina, “Evolvable 2D computing matrix model for intrinsic
evolution in commercial FPGAs with native reconfiguration support,”
in Adaptive Hardware and Systems (AHS), 2011 NASA/ESA Conference
on, June 2011, pp. 184–191.

[6] A . Gallego, J . Mora, A . Otero, E. de la Torre, and T. Riesgo, “ A scalable
evolvable hardware processing array,” in Reconfigurable Computing and
FPGAs (ReConFig), 2013 International Conference on, Dec 2013, pp.
1–7.

[7] Z . Vašíč ek and L . Sekanina, “An evolvable hardware system in Xilinx
Virtex II Pro FPGA,” International Journal of Innovative Computing
and Applications, vol. 1, no. 1, pp. 63–73, 2007.

[8] A . Otero, R. Salvador, J . Mora, E . de la Torre, T. Riesgo, and
L . Sekanina, “ A fast reconfigurable 2D H W core architecture on FPGAs
for evolvable self-adaptive systems,” in Adaptive Hardware and Systems
(AHS), 2011 NASA/ESA Conference on, June 2011, pp. 336–343.

[9] Partial Reconfiguration User Guide (UG702), Xilinx, Inc., 2013.
[10] A . Otero, E . de la Torre, and T. Riesgo, “Dreams: A tool for the design

of dynamically reconfigurable embedded and modular systems,” in
Reconfigurable Computing and FPGAs (ReConFig), 2012 International
Conference on, Dec 2012, pp. 1–8.

[11] C . Beckhoff, D . Koch, and J. Torresen, “Go Ahead: A partial
reconfiguration framework,” in Field-Programmable Custom Computing
Machines (FCCM), 2012 IEEE 20th Annual International Symposium
on, April 2012, pp. 37–44.

[12] K . Glette, J . Torresen, and M . Hovin, “Intermediate level FPGA recon­
figuration for an online E H W pattern recognition system,” in Adaptive
Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on,
July 2009, pp. 19–26.

[13] Virtex-5 FPGA User Guide (UG190), Xilinx, Inc., 2012.
[14] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet

(DS083), Xilinx, Inc., 2011.
[15] Virtex-5 FPGA Configuration User Guide (UG191), Xilinx, Inc., 2012.
[16] Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All

Programmable SoC Devices (XAPP1159), Xilinx, Inc., 2013.
[17] LogiCORE IP XPS HWICAP (UG586), Xilinx, Inc., 2010.
[18] A . Gallego, J . Mora, A . Otero, R. Salvador, E . de la Torre, and T. Riesgo,

“ A novel FPGA-based evolvable hardware system based on multiple
processing arrays,” in Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2013 IEEE 27th International, May
2013, pp. 182–191.

[19] J . Vazquez, B . Lopez, J . Valverde, E . de la Torre, and T. Riesgo,
“Collaborative evolution strategies on evolvable hardware networked
elements,” in Design of Circuits and Integrated Systems (DCIS), 2014
Conference on, Nov 2014, pp. 1–5.

