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Abstract—Security can be seen as an optimisation objective in
NoC resource management, and as such poses trade-offs against
other objectives such as real-time schedulability. In this paper,
we show how to increase NoC resilience against a concrete type
of security attack, named side-channel attack, which exploit the
correlation between specific non-functional properties (such as
packet latencies and routes, in the case of NoCs) to infer the
functional behaviour of secure applications. For instance, the
transmission of a packet over a given link of the NoC may hint
on a cache miss, which can be used by an attacker to guess specific
parts of a secret cryptographic key, effectively weakening it.

We therefore propose packet route randomisation as a mech-
anism to increase NoC resilience against side-channel attacks,
focusing specifically on the potential impact of such an approach
upon hard real-time systems, where schedulability is a vital de-
sign requirement. Using an evolutionary optimisation approach,
we show how to effectively apply route randomisation in such
a way that it can increase NoC security while controlling its
impact on hard real-time performance guarantees. Extensive
experimental evidence based on analytical and simulation models
supports our findings.

I. INTRODUCTION

The design of Network-on-Chip (NoC) interconnects for

embedded systems requires the careful balance of multiple

trade-offs. Over the past decades, a significant amount of work

has addressed the trade-offs between performance and other

secondary objectives such as energy [24], fault-tolerance [17],

and chip area [16]. Less work has addressed such trade-

offs in NoCs with hard real-time constraints, with some

inroads towards improving energy [18] and area efficiency (by

optimising buffering in virtual channels [14]) while meeting

deadlines of all packets even in the worst-case scenario.

In this paper, we consider NoCs with hard real-time con-

straints, and address a novel trade-off that has increasing

importance in embedded systems: security. Because of their

key role in interconnecting the multiple components of an

embedded system, NoCs can be seen as a major security vul-

nerability. If an attacker can extract information from the NoC

interconnect, they can potentially compromise the security of

the complete embedded system. Therefore, many mechanisms

have been designed to improve NoC security (as reviewed in

Section II) and many more will certainly be developed in the

coming years. However, most of such mechanisms impose per-

formance overheads, and therefore can potentially jeopardise

the ability of the NoC to provide real-time guarantees. So we

argue in this paper that, just like in the previously mentioned

trade-offs, security can be seen as an optimisation objective in

NoC resource management: designers must carefully consider

the resources they have available to increase NoC security

without sacrificing performance guarantees (which in the case

of hard real-time NoCs will always be the primary objective).

The specific problem we address is a security mechanism

that aims to improve the NoC resilience to side-channel

attacks. Such attacks try to break a secure system by gath-

ering information from the system’s timing behaviour, power

consumption, temperature or electromagnetic emissions. Just

like some of the related work [25] [20], we aim to improve

resilience against side channel attacks by randomising the

behaviour of the NoC, aiming to make it difficult for an

attacker to identify patterns and correlations between the

functionality of the system and the timing, power, temperature

and electromagnetic behaviour of the NoC. As expected, such

an approach has a direct impact on NoC resource usage, and

therefore on its real-time guarantees, so we identify techniques

that support NoC designers in improving NoC resilience

against side-channel attacks while still maintaining full system

schedulability.

II. RELATED WORK

Multiprocessor embedded systems are target of attacks by

means of malicious hardware or software [4]. Hardware-

based attacks depend on design-time access to the system,

which is then modified in a way that can be exploited during

operation (e.g. by adding hardware able to leak information

by changing chip temperature [8]). Software-based attacks are

the most common cause of security incidents in such types

of systems [15], and are carried out by malicious software

installed at design time or after deployment.

NoC-based systems have been shown to be vulnerable to a

variety of attacks, both hardware and software-based. Active

NoC attacks, such as code injection [1], malware [5] and



control hijacking [12], or passive NoC attacks, such as side-

channel exploitation, can be used to read sensitive commu-

nications, modify the system behaviour or prevent correct

NoC operation. NoCs are especially vulnerable to side-channel

attacks that exploit traffic interference as timing channels

[26] [20]. The shared nature of NoCs can be exploited by

an attacker to obtain sensitive information. By forcing traffic

collision with sensitive packet flows, an attacker can observe

the throughput variations and infer sensitive data, as shown in

[26] [20] [25].

Randomised arbitration [20], virtual channel allocation [21]

and routing [25] have been investigated and evaluated as

countermeasures against timing attacks. By randomising the

characteristics of sensitive packet flows, it is possible to break

the correlation between the traffic characteristics (e.g. volume

and access patterns) and the sensitive data thus avoiding in-

formation leakage. Among those mechanisms, random routing

has achieved the best levels of security enhancement with the

lowest energy and area overhead [25]. By spreading sensitive

traffic over the NoC, the spatial distribution makes it harder for

compromised cores or external attackers to gather sufficient

side-channel information to infer correlations with sensitive

data.

The focus of state-of-the-art randomisation approaches is

to increase security, and none of those works consider the

performance requirements of the applications. In this paper,

we argue that NoCs supporting real-time applications require

a careful balance of a trade-off between security and perfor-

mance. In most cases, we envisage that the level of security

will be constrained by the NoC’s ability to support attack

countermeasures while at the same time ensuring performance

guarantees to the application.

Thus, the main contributions of this paper are the identi-

fication of a test to evaluate whether performance guarantees

can hold under a specific side-channel attack countermeasure

(namely route randomisation), and a technique that uses that

test to better balance the trade-off between performance guar-

antees, resource usage and security.

III. PROBLEM DESCRIPTION

A. Network-on-Chip Architecture

While the contribution of this paper can be applied to a

large variety of NoC architectures, we believe it is easier

to explain it with the help of a concrete architecture. We

assume a NoC architecture with a 2D-mesh topology and

wormhole switching protocol, because such features are com-

monly used in embedded systems for their simplicity and

moderate resource overheads. There is a downside to this

choice, which is the difficulty in predicting packet latencies. In

wormhole networks, a packet can be simultaneously occupying

multiple NoC buffers and links, so there is a significant

amount of competition for resources throughout the NoC at

all times. The wide variety of interference patterns makes it

hard to predict how long it takes for a packet to reach its

destination. Different resource arbitration policies can make

such predictions more or less difficult, especially in the case of

hard real-time NoCs when an upper-bound worst-case latency

is needed. Previous work has considered NoC arbitration based

on packet priority [23], time multiplexing [19] and round

robin [2], and has devised analytical models that can be used

to find latency upper-bounds for packet flows transmitted over

such NoCs [11]. Any of those approaches could be used in

this paper, and we chose a priority-arbitrated NoC because

of its ability to provide upper-bound latency guarantees that

are customisable to different levels of packet urgency while

allowing for high NoC link utilisation [9].

B. Threat Model

We assume that the NoC and its interfaces to the cores

are secure. We also assume that secure tasks execute in

secure cores (i.e. cores that do not allow the execution of

unsecured tasks). For this threat model, we assume that the

NoC communicates sensitive information between two secure

tasks, which we refer as the sensitive communication. We

then assume an adversary that has knowledge about the NoC

architecture, about the mapping of secure tasks to (secure)

NoC cores, and is able to gain control of at most two non-

secure NoC cores.

A successfull attack happens when the adversary is able

to infect two cores that can communicate over a route that

intersects with that of the sensitive communication. In that

case, the adversary is able to use one of the infected cores

to inject low priority packets into the NoC towards the

second infected core. The latency interference imposed by the

sensitive communication over the malicious low priority traffic

can provide the attacker with valuable information about the

timing, frequency and volume of the secure communication.

This threat model is not new, and its variations have also

been used in best-effort NoC-based systems by [26] and [21].

The timing nature of the threat is also the same used in hard

real-time uniprocessor systems by [27].

By using a route randomisation approach, it is possible

to prevent the adversary from obtaining accurate information

about the sensitive communication. Since each packet of the

secure communication may follow a different route, only some

of them will be intercepted by the probing packets injected

by the infected cores. Thus, the information about timing,

frequency and volume the attacker can obtain will be less

accurate: inferred frequency and total volume of sensitive

packets will be lower than the real value, since not all packets

will be detected by the attacker; inferred timing will deviate

from the real value because the amount of blocking that a

sensitive packet could suffer will have more variability due to

the randomness of the routes of the packets that may block

them. This, as a consequence, increases the resilience of the

NoC against the threat. There are many ways to introduce

route randomisation in NoCs, and we will discuss our design

decisions in subsection IV-A.

Figure 1 shows an example of the described threat model.

It shows an adversary controlling cores F and G, and using a

malicious packet flow (shown as a purple dashed line) to infer

data about a sensitive communication between secure cores C



A 

D 

B 

C 

E 

F G 

Fig. 1: Threat model, and examples of route randomisation

with pseudo-adaptive XY (from A to B) and west-first (from

C to D and C to E) algorithms

and E (shown as a red dotted line, representing the case of

a NoC with deterministic XY routing). In the case of a NoC

with randomised routing, all routes between C and E will be

used (red dashed and dotted lines), preventing the adversary

from inspecting the complete sensitive communication.

C. System Model

To increase NoC resilience against side-channel attacks

while providing hard real-time guarantees to the application

tasks running on it, we must make assumptions about the

application behaviour such as upper-bounds on resource us-

age by every application task and packet. In this paper, we

follow the well-known and widely used sporadic task model,

which makes assumptions about the worst-case execution time

(WCET) of all tasks and their shortest inter-arrival interval (i.e.

their period). Since we are concerned about NoC communi-

cations, we follow an extension of the sporadic task model

that considers that tasks inject packets to the NoC only after

their execution completes, and that the maximum packet size

is known [9].

Thus, a hard real-time application Γ comprises n real-time

tasks Γ ={τ1, τ2, . . . , τn}. Each task τi is a 6-tuple τi = (Ci,

Ti, Di, Ji, Pi, {φi}) indicating respectively its worst case

computation time, period, deadline, release jitter and priority.

The sixth element of the tuple is an extension to the sporadic

task model proposed by [9], and represents the communication

packets sent by τi at the end of its execution. Each packet φi is

defined as a 3-tuple φi = (τd,Zi,Ki) representing its destination

task, size and maximum release jitter. In this paper, we assume

for simplicity that a single packet is released at the end of each

execution of each task, but the contributions presented here can

be generalised for any number of released packets.

Such applications are executed over a NoC platform like

the one described in subsection III-A above. We model such

a platform as a set of cores Π ={πa, πb, . . . , πz}, a set of

switches Ξ ={ξ1, ξ2, . . . , ξm}, and a set of unidirectional links

Λ ={λa1, λ1a, λ12, λ21, . . . , λzm, λmz}. We also model the

mapping of tasks to cores with the function map(τi) = πa.

The routing of packets over the NoC can be modelled by

the function route(πa, πb) = {λa1, λ12, . . . , λmb}, denoting

the subset of Λ used to transfer packets from core πa to

core πb. We can then extend the function map to also

model the mapping of a packet to its route: map(φi) =

route(map(τi),map(τd)).
With the knowledge of the NoC architectural characteristics

such as the latency to cross a link or to route a packet header,

and with the knowledge of the length of a packet’s route (i.e.

its hop count, or |route(πa, πb)| as expressed in [9]), it is

possible to calculate the no-load latency Li of every packet φi:

the time it takes to completely cross the NoC from its source to

destination without any interference or contention from other

packets. For the NoC described in subsection III-A, and for

most commercial and academic NoCs, the no-load latency of a

packet can be deterministically obtained, and will not change

if its route and the NoC operation frequency do not change.

IV. NOC ROUTING RANDOMISATION

A. Design Choices and Constraints

The architecture of a NoC defines whether and how it

can implement route randomisation. For example, some NoC

architectures use deterministic routing [13], meaning that there

is only one possible route between a source and a destination,

effectively preventing the approach proposed here. Among

NoCs supporting dynamic or adaptive routing, which are the

ones we target, there is a key design choice affecting the

randomisation approach: source or distributed routing.

In source-routed NoCs, the routing decision is done by the

source core or its respective NI. This is usually implemented

as multiple packet header flits that contain the next-hop

information for each of the switches along the packet’s route.

Once a switch routes one of the packet headers by assigning

its output port, it discards that header flit and forwards the rest

of the packet through that port. The next switch will route the

subsequent header flit, discard it, forward the rest of the packet,

and this is repeated all the way towards the packet destination.

By following this approach, it is possible to program the source

core or its NI to perform full route randomisation before every

packet release.

In NoCs with distributed routing, the next-hop decision is

made by each switch individually. Typically, they have far

less resources than the cores (and often than the NIs), so

the routing decisions are based on simple rules related to

the relative position of the destination core with regards to

the switch holding the packet header (e.g. pseudo-adaptive

XY [3], turn model [6]). In those cases, it is only possible

to randomly choose from a predefined subset of all possible

routes. For instance, pseudo-adaptive XY switches can only

randomly choose between two routes between a source and

a destination (e.g. routes between cores A and B in Figure

1). Switches implementing turn model routing may have a

larger number of alternative routes to randomly choose from in

most cases, but must behave deterministically for some specific

cases. Figure 1 shows two routes created by a west-first turn

model: packets between core C and D have only one possible



route, as the destination is located on the west of the source,

while packets from core C to E can take a variety of possible

routes.

In both source and distributed routing, the NoC component

making random decisions must have access to a source of

random data, such as a pseudo-random number generator

(PRNG, generated by a deterministic algorithm) or a true

random number generator (TRNG, often generated out of

low level noise signals). Such sources can have significant

hardware overhead, thus favouring source routing because of

the low area constraints for NoC switches.

Additional issues when randomising packet routes include

the potential increase of the packet route, the possibility of

deadlocks, and the potential increase of packet latency (and

therefore the potential violation of real-time constraints). Let

us now address each of them.

All the routing approaches reviewed above are minimal: the

route they choose has the smallest possible hop count between

source and destination. This is because of their obvious

advantages in terms of latency, network contention and energy

dissipation. However, from the point of view of side-channel

attack resilience, it may be interesting to exploit non-minimal

randomised routing in order to decorrelate the side channels

with the functional properties of the packet communication

(e.g. short packet transmission between neighbouring cores

would not necessarily have the shortest latency and lowest

energy dissipation if they are forced to take a long route across

the chip).

Deadlock-free packet communication is a critical character-

istic for NoCs. This can be achieved at the link arbitration

layer, e.g. with priority-preemptive virtual channels [9], or

at the network layer by restricting the possible turns of the

routing algorithm (either in source or in distributed routing).

In NoCs that ensure deadlock-freeness at the network layer,

special care must be taken by the route randomisation ap-

proach to avoid introducing turns that can lead to deadlocks.

Finally, route randomisation is likely to change the laten-

cies of packets, both because for every release their routes

may have different hop counts (leading to different no-load

latencies) and because different routes may trigger different

contention scenarios (leading to different blocking times). In

our approach, such variability is actually desirable because

it is a key aspect to increasing the NoC’s resilience against

side channel attacks. In the case of hard real-time systems,

however, it is critical that such variability is bounded and that

the worst-case latencies of all packets are always less than their

deadlines. In the next subsection, we propose an extension to

existing schedulability analysis to evaluate if that is the case

for a given application mapped to a given NoC architecture.

The proposed approach is simple, yet general enough to

analyse randomised routing approaches following any of the

design choices reviewed above: source or distributed, minimal

or non-minimal, and with deadline-freeness ensured at the link

or network layer.

B. Schedulability Analysis

Schedulability analysis for a set of sporadic packets trans-

ferred over a priority-preemptive wormhole switching NoC

was presented in [22]. A set of packets is deemed schedulable

if the worst-case latency of each packet is less than their

deadline. By coupling that analysis with classical response

time analysis for uniprocessor fixed-priority scheduling, an

end-to-end schedulability analysis for that type of NoC was

proposed in [9], considering the worst-case response times of

tasks and the worst-case latency of the packets they generate.

Both the original analysis from [22] and the end-to-end exten-

sion from [9] assume static routing, so a different formulation

is needed before it can be used for the purpose of this paper.

First, we review those formulations, but using the notation

described in subsection III-C.

According to [22], the worst-case latency Si of a packet

φi can be obtained from Equation 1. This equation is defined

recursively and iterated until a stable fixed point is discovered.

Si = Li +
∑

φj∈interf(i)

⌈

Si +Kj +KI
j

Tj

⌉

Lj , (1)

The set interf(i) is the set of higher priority packets φj

whose route shares at least one link with the route of φi

and therefore can interfere with it. Precisely, interf(i) =

{φj ∈ φ : map(φi) ∩ map(φj) 6= ∅}. The two terms Kj

and KI
j denote respectively the maximum release jitter of the

interfering packet φj and its maximum indirect interference

jitter. As shown in [9], Kj is equal to the worst case response

time Rj of task τj which produces φj , assuming that φj will

be released immediately after the end of τj’s execution. Rj

can be calculated using uniprocessor response time analysis,

considering the type of task scheduling by the operating

system at each core (e.g. priority-preemptive). And as shown

in [22], the indirect interference jitter KI
j can be bound by

Sj − Lj .

It can be seen in Equation 1 that the route of a packet

affects its worst-case latency because it defines the set of

packets that can add to the interference term of the equation

(i.e. sum operator). Route randomisation would change the set

interf(i) at each packet release, since different routes would

produce different interference patterns. An intuitive way to find

the worst-case latency of a packet with a randomised route

would be to calculate the worst-case latency of each of its

possible routes with Equation 1, and pick the highest value.

However, that approach works only if there is a single packet

with randomised route, and all others following deterministic

routes.

A general analysis where all packets could potentially have

randomised routes is more complex: all possible routes of

a packet would have to be tested with all possible routes

of all other packets before the worst case could be found.

Furthermore, if one cannot make probabilistic assumptions on

the randomisation approach, pathological cases must also be

taken into account (e.g. the same route could be chosen again



and again for a single packet over a long period of time, even

though that is very unlikely).

In this paper we assume that, in the worst case, if there is a

way for a high-priority packet to interfere with a low priority

packet, it would interfere with it in every possible release. This

means that even though there may be routes when packets do

not interfere with each other, we assume that in the worst case

the random choice of route would always pick the ones where

there is interference. This is perfectly reasonable when packets

have similar periods, but it gets more and more pessimistic

as we reduce the periods of higher priority packets. In that

case, high priority packets would have a larger number of

releases within a single release of a low priority packet, thus

interfering more often with it, even though the larger number

of releases would make less likely that an interfering route

would be chosen every time.

To calculate worst-case latencies for the general problem

where all packets could have randomised routes, we define

the set interfr(i) as the set of higher priority packets φj

who could, with any of their possible routes, interfere with

any of the possible routes of the packet of interest φi. To

precisely define that set, we must first define a new function

router(πa, πb) = {λa1, λ12, λ13, λ14, . . . , λmb}, denoting the

subset of Λ that contains all the links that could be part

of any of the routes that could be randomly chosen to

transfer packets from core πa to core πb, and a new function

mapr(φi) = router(map(τi),map(τd)). Then, interfr(i) =

{φj ∈ φ : mapr(φi) ∩mapr(φj) 6= ∅}.

By applying Equation 1 with the summation over the set

interfr(i) instead of the original interf(i), we can then

find an upper bound to the packet latencies over a NoC with

randomised routing.

C. Optimising the Performance-Security Trade-off

The analysis proposed above can only be used to test

whether a particular randomised NoC configuration can meet

all hard real-time constraints of an application, but offers no

alternatives in case of negative results. In this subsection we

show how such analysis can be exploited as a fitness function

in a design space exploration process. Similarly to [18] and [9],

we follow an evolutionary approach to navigate over a key

part of the design space: task-core mapping. By changing that

mapping, it is possible to achieve fine-grained improvements

on schedulability of tasks over cores and packet flows over

NoC infrastructure (e.g. tasks that are barely unschedulable

can become schedulable by a simple remapping of one of the

higher priority tasks that interfere with their computation or

communication, thus changing the set interf in Equation 1).

The same can happen in the case of route randomisation, since

changes on mapping can determine which randomised routes

interfere with each other and in turn affect schedulability

through changes in the interfr set.

Figure 2 shows the evolutionary pipeline proposed here,

which start with an arbitrary population of task mappings

using a given route randomisation approach and a given

level of security. It then uses evolutionary operators such as

mutation and crossover to improve the mapping population

with regards to the percentage of schedulable tasks and packets

calculated using the proposed modification of Equation 1.

For every generation of the population, those with the larger

number of schedulable tasks and packets are selected to the

next generation, where they will be again mutated, crossed-

over, evaluated and selected to the subsequent generation. The

pipeline stops after a fully schedulable mapping is found, or

a predefined maximum number of generations is reached.

Unlike many constructive task mapping approaches, the

evolutionary pipeline proposed here does not necessarily try

to map communicating tasks to the same or neighbouring

cores. Its fitness function can be tuned, for instance, to keep

communicating tasks as far apart as possible while keeping

their communication packets schedulable over a variety of

randomly-chosen routes.
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Fig. 2: Evolutionary pipeline

In this paper, we consider two types of route randomisation

which can be implemented either as source or distributed

routing, namely random XY/YX and random west-first. Ran-

dom XY/YX is a randomised version of pseudo-adaptive XY

routing used in [3], so the route of the packet to its destination

is randomly chosen between the XY or the YX route prior

to the injection of the packet header into the network. In

random west-first, we randomise one of the turn model routing

approaches [6] so that whenever a packet is allowed more

than one route it randomly chooses one of them (i.e. uniform

probability among all alternatives).

We then allow for multiple levels of security by changing

how many packet flows are allowed to have their routes

randomised. A baseline with no randomisation should have

the best results regarding schedulability, given that packets

suffer less interference and therefore are more likely to be

schedulable. Then, increased levels of security can be achieved

by randomised larger percentages of packet flows, up to a fully

randomised configuration where all packets follow randomised

routes on every release. In the next section, we show experi-

mentally that the proposed schedulability test and evolutionary

optimisation pipeline can produce NoC configurations able

to hold hard real-time guarantees with maximised security

potential.



V. EXPERIMENTAL WORK

We evaluate the proposed approach in two distinct ex-

perimental setups. The first uses the proposed schedulability

test and evolutionary pipeline to balance the trade-off be-

tween performance guarantees and security over a large set

of synthetically generated applications. The second uses a

cycle-accurate NoC simulator to show the effects of route

randomisation upon latency with a realistic application.

A. Schedulability-driven optimisation of route randomisation

To evaluate the challenge of optimising different applica-

tions with different levels of load, we synthetically generate

thousands of applications, each of them composed of tasks

that communicate with each other with different numbers

of packet flows. We then apply the evolutionary pipeline

presented in Figure 2 to each one of those applications, aiming

to optimise the mappings of tasks in such a way that the whole

set of tasks and flows is schedulable at the highest possible

level of security. We then plot the percentage of schedulable

applications we could achieve for each level of security and

each level of load. For the sake of reproducibility, we provide

below more details on the whole process.

For a single experiment upon a given NoC and set of

parameters (e.g. topology, operating frequency, switch and link

latencies), a range of packet flow counts are identified, each

of which represents a level of load upon the NoC. For each

flow count, a set of tasksets and packet flowsets are generated,

each containing the chosen number of flows. The number of

tasks is kept roughly constant, and all of them are either source

or destination of at least one packet flow. Therefore, flowsets

with higher flow counts represent increasing packet contention

between the same endpoints. Flows are assigned to particular

source and destination tasks with uniform random probability.

This implies that the average number of flows transmitted

is even across all tasks, although as a result of the random

assignment there may be hotspots.

An experiment is initialised by defining a population of

initial mappings, and a setting the target level of security. The

levels of security settings are defined as either unsecured, or

25%, 50%, 75% and 100% secured flows. The secured flows

are those that will use randomised routing, providing increased

potential protection against side-channel attacks. In case of a

partial provision of security e.g. 50%, security is assigned to

the flows in their order of priority, with the highest priority

flows being randomised. The rationale is to enforce overall

random interference patterns, since higher priority packets are

the ones causing interference.

We then follow the evolutionary pipeline from Figure 2,

using a fitness function based on the modified Equation 1

to evalute each individual mapping. This is done separately

for each level of security, each of them generating a different

interfr(i) set representing the randomised routes of different

packet flows.

By applying the modified Equation 1 for every packet flow

of the application, it is possible to check whether each of

them is schedulable within a given mapping, i.e. their end-to-

end latency is less than the respective deadline. The overall

fitness of a mapping is then assumed to be the number of

schedulable packet flows it can achieve. After such evaluation,

the population is culled to retain only the mappings that are at

the top of the fitness ranking. The pipeline ends if a mapping

can make all flows schedulable, or a maximum number of

generations is reached.

To show the impact of the level of security on performance

guarantees and resource usage, we have produced several

experimental series:

No security (NS) Deterministic routing, fitness function in-

corporates schedulability calculated using Equation 1

with the original interf(i) set.

Percentage security (PS(%)) A given percentage of the

packet flows use randomised routing, fitness function

evaluated using Equation 1 with the proposed interfr(i)
set reflecting that percentage.

Application of security a posteriori (SAP) Evolution

is performed using a fitness function that tests the

schedulability without any security mechanisms (only

deterministic routing), aiming to find a schedulable

mapping without security considerations. Following the

completion of this evolutionary process, the evolved

best application mapping has 100% of its packet routes

randomised, and is then evaluated with Equation 1 with

the proposed interfr(i) set. This experiment therefore

aims to show that the optimisation of the mapping should

take into account route randomisation, and that poor

results can be expected from applying randomisation to

a mapping that was optimised for deterministic routing.

The first plot in Figure 3 shows that, for experiments with

increasing number of flows (i.e. increasing load over the NoC),

the propotion of schedulable flows decreases as expected.

Different levels of percent security (PS) produce similar results

as the unsecured setup (NS), showing that the evolutionary

pipeline was able to find mappings that randomised routes

only when the additional overheads could be tolerated. In the

SAP setup, route randomisation is added to a mapping that has

evolved without any concern for randomisation, and its poor

results serve as evidence of the superiority of the approach

proposed here, where the evolution pipeline aims to jointly

optimise mapping and randomisation. The second plot is based

on the same data, but plots the percentage of schedulable

TABLE I: Evaluation parameters

NoC/Packet flowset parameters Value

Maximum packet flow no-load latency 100 ms
Maximum period 500 ms
Priority assignment Deadline monotonic
Route randomisation Random XY/YX
Standard NoC topology 4x4
Enlarged NoC topology 8x8
Flowsets per data point 100

GA parameters

Population size 100
Mutation individual task moving probability 0.3
Maximum generations 50
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Fig. 3: Flow and flowset schedulability results for 4x4 (left) and 8x8 (right) NoCs

flowsets (i.e. a flowset is only considered schedulable if every

flow within it is schedulable). The third and fourth plots also

show percentage of schedulable flows and flowsets, but for

larger flowsets mapped over a larger NoC (8x8). Those results

show a greater separation between the NS and PS series after

NoC evolution, due to the greater complexity of interference

patterns over longer network paths when randomised routing

is enabled.

B. Cycle-accurate simulation of route randomisation

This section uses simulation to evaluate the impact of

route randomisation on the latency of an autonomous vehicle

application described in [9].

The simulation framework used for this section is a cycle-

accurate NoC model with support for priority preemption and

virtual channels. This simulator has been extensively validated

in our previous work, frequently being used as a baseline for

results in latency and power analysis [10] [7].

1) Application Structure: The autonomous vehicle (AV)

application consists of 38 communicating flows between a

set of tasks that represent video processing, system monitor-

ing and control for a robotic vehicle. Priorities are defined

such that lower priority index values represent the highest

priority transmissions. The priorities, data transmission rates,

frequencies and deadlines of these application transmissions

are as defined in [9], although a different mapping has been

used in order to show the impact of routing protocols on a

randomly selected mapping without artificial tuning to favour

a particular routing protocol. The application has been mapped

onto a 4x3 NoC, and the video resolution of the AV application

video streams is 640x480. Since the application mapping is

static and a single priority level is used per packet, a packet

always travels between a fixed source-destination pair during

the simulation.

2) Routing Alternatives: We compare a baseline XY rout-

ing with two randomised approaches. The first uses XY/YX,

and traffic producers choose randomly upon injection whether

a data packet will use XY or YX routing. Following this

decision, a flag is set in the data packet to control the routing

behaviour. As a result, the chosen routing algorithm (either

XY or YX) is used throughout packet transmission.

The second approach is random west-first (RWF) routing.

Its semi-deterministic mechanism requires the packet always

to be forwarded towards the west when the destination node is
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Fig. 4: Communication latency results for the randomised

routing case on the AV application

west of the current node. However, any other destination port

can be chosen randomly (east, north or south) as long as the

direction taken is towards the destination. Therefore, the RWF

approach permits a more diverse range of transmission paths

than the XY/YX selection approach, providing more potential

protection against side channel attacks.

3) Evaluation Results: The results are presented in Figure

4, illustrating the max-min-mean latencies for the randomised

routing cases (XY/YX and RWF) versus the baseline. The

results illustrate that routing randomisation typically increases

the communication latencies for the majority of packets com-

pared to fixed XY routing. This is particularly evident in

the case of the packets with priority 8 under RWF routing,

which experience an increased latency due to contention with

other higher priority flows on some of the randomly chosen

routes. In the XY/YX routing case, increased latency is also

observed for the packets with priorities 21 and 26 in some

cases. Interestingly, for some of the packet transmissions with

priority 10 and 13, the use of randomised routing results in

reduced latency in the best case, either by routing a higher

priority packet so that it no longer causes interference, or

routing the current packet around the interferer.



VI. CONCLUSIONS AND FUTURE WORK

This paper has addressed the trade-off between security and

hard real-time performance guarantees in Networks-on-Chip.

It has proposed route randomisation as a way to increase NoC

resilience against side-channel attacks, and has discussed a

number of design alternatives for the randomisation approach.

It then has proposed a schedulability test for applications

running over a secure priority-preemptive NoCs using route

randomisation. Finally, the paper identifies an optimisation

pipeline which can be guided by the proposed schedulability

test towards configurations that can achieve full schedulability

while maximising the provided level of security. Extensive

experimental work using 4x4 and 8x8 NoCs with random

XY/YX routing running thousands of synthetically generated

applications show the performance guarantees that can be

achieved by the proposed approach at four different levels

of security, compared against two baselines (no security, and

full security applied a posteriori). Additional experiments with

a realistic application running over 4x3 NoCs with random

XY/YX and random west-first routing were performed with a

cycle-accurate simulator, aiming to show the impact of route

randomisation on latency variability, which in turn shows the

increased resilience against side-channel attacks.

Since this is the first paper addressing the trade-off between

security and hard real-time performance in NoCs, it had to

make several assumptions to be able to attack the problem.

Lifting some of those assumptions will certainly open new

avenues of research, such as using different NoC arbitration

mechanisms (e.g. TDM) or different route randomisation tech-

niques (e.g. if randomised routes of subsequent releases of

packets are never the same, a less pessimistic schedulability

test can be used). Addressing those cases will require new

schedulability tests, but could still reuse the proposed optimi-

sation pipeline.
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