

Several observation can be made from these results:

Observation 1: Different task mappings for the same BIPs’
implementations lead to different system performance, while
consuming the same area. Hence, there is a task mapping
which dominates the others. This fact is mainly due to the fact
that the masters cannot feed the slaves continuously with data
due to bus congestion problems. The bus arbitration policy
also affects this. In this work the bus arbiter is set in all cases
to round robin arbitration.

Observation 2: Based on observation 1 it can be further
observed that for each BIP, there are smaller designs, which
can lead to the same performance of the entire system, while
consuming less area than an equivalent system composed
of only BIPs of highest performance and largest area. It is
therefore not needed to fully parallelize the BIPs to achieve the
highest performance. Hence a slower, but smaller version of
these BIPs can be used in each of the MPSoC configurations.
Designs A(fit) in Fig. 1 and Table I show the smallest designs
obtained after analysing the amount of idle time of each slave.
The smallest design for each BIP depends on the number of
masters on the MPSoC and on the mapping of tasks on each
master.

Observation 3: The number of mappings follows the Stirling
numbers of the second kind sequence. In this work we do not
consider the task execution order once the tasks are mapped
onto the same master. For the first case only a single task
mapping is possible, because there is only a single master
available ({1,2,3,4}) as shown in Table I. Similarly, only
one task assignment is possible in the case that 4 masters
are available as each task is mapped onto its own master
({(1),(2),(3),(4)}). For the other two cases, 7 and 6 possible
task mapping are possible. This will be explained in more
detail in the next sections as this impacts the running time of
our technique.

Observation 4: The area savings are more pronounced for
systems with less masters, as each accelerator (slave) has now
to wait longer to receive and send data from, and to the master
(shared bus saturation problem), as also shown in Table I,
which shows that area savings range between 26.1 and 21.9
% for systems with 1 to 4 masters for the highest performance
systems.

The uniqueness of this work is that it enables the generation
of systems with different trade-offs quickly, and allows to
measure their performance accurately. Two main enablers are
responsible for this. Firstly, the use of BIPs for each of
the dedicated hardware modules, which allows the automatic
generation of different micro-architectures. Secondly, the abil-
ity to generate cycle-accurate models for the entire MPSoC,
including the bus, to accurately estimate the performance of
the entire system. Other works make use of virtual platforms
which model the communication part loosely through pay-
loads. The problem with this approach is that it completely
ignores the shared bus congestion problem. It also ignores
the bus arbitration. Hence, previous work cannot accurately

measure the performance of complete systems.

III. PREVIOUS WORK

Much work has been done in the past in the area of
MPSoC Design Space Exploration (DSE). We thus, only
highlight some representative work. Most previous works can
be classified in three different categories: (a) Using aggressive
pruning techniques to reduce the search space [2], [3] (b) make
use of meta-heuristics to search the design space [4], [5] or (c)
use static analytical techniques to guide the explorer [6], [7].
Once the candidate solutions have been generated, these have
to be evaluated either through simulation (i.e. [7]) or through
predictive models (i.e.[6]).

Most of these previous work on MPSoC consider these as
homogenous SoCs and mainly explore their bus bandwidth,
processor cache sizes, etc... As mentioned previously, newer
MPSoCs are mainly heterogenous, which make use of dedi-
cated hardware accelerators. These on-chip HW accelerators
can be coarsely classified as tightly coupled accelerators and
loosely coupled. In the first case, the accelerator is directly
attached to a specific core. Some examples of this include [8],
[9]. In the latter case, the accelerator is directly attached to a
global bus and is shared among multiple cores (e.g. [10]). This
work focuses on these second type of accelerators, which can
be accessed by different masters in the system, which in [11]
was shown to lead to very good results for particular systems
(e.g. applications with clear memory access patterns).

Some work on loosely coupled accelerators connect these
accelerators through custom interconnects e.g. NoCs combined
with DMAs for quick data transfer. In [12] the authors present
a global management of NoCs in accelerator-rich architectures.
In our case, the HW accelerator is connected to the system
through a standard AMBA AHB/AXI bus.

Our work can be categorized as simulation based, as it
generates cycle-accurate simulation models for each new con-
figuration in order to evaluate their area and performance. Pre-
vious work, vary based on the type of simulation abstraction
used to model the MPSoC ranging from sequential simulators
(e.g. QEMU [13] and SimpleScalar [14]), transaction level
models (TLM) (e.g. OVP [15]) to cycle-accurate modelling
(e.g. HORNET [16]). In most of this previous work, the main
objective is to explore system parameters like e.g. cache sizes,
number of processors, bus bitwidth, memory latency.

Similar to our work [17] uses HLS to design the HWaccs in
MPSoCs and develop a HLS DSE method to obtain MPSoCs
with unique area vs. latencies. In this work a fast static area
and latency estimator is used, hence the bus congestion is not
taken into account in their work. In [11] the authors use HLS
to generate a set of dominating micro-architectures mapped as
loosely coupled HWaccs in an SoC, similar to this work. They
then propose a system-level exploration method based on a
pre-defined system template and emulate these configurations
on an FPGA. In these previous works, the access pattern
and workload was always considered regular. The authors in
[18] recently showed that workloads in modern MPSoC-based
embedded systems are becoming increasingly dynamic, which

can cause changes in the nature of the workload demand
over time. They introduce the concept of system scenarios,
which group system behaviors that are similar in such a
way that the system can be configured to exploit this cost
similarity. Quan et al. [19] extended this work by introducing
a hybrid task mapping method that combines static mapping
exploration and a dynamic mapping optimizer. Our proposed
method generates different workload patterns by considering
different task mappings on the masters.

Our work is different from the above previous works in
various aspects. First, we assume that the overall system
architecture has already been fixed. This implies that the
bus structure, memories, HWAccs have already been fixed.
This also implies that the HW/SW partition is fixed. Sec-
ondly, we take as inputs BIPs in the form of explorable
C/SystemC inputs. This allows us to generate a variety of
micro-architectures of unique area vs. performance trade-offs
for each BIP. Thus, the input to our system explorer is a set
of trade-off curves for each slave. The objective of our work
is to find unique combinations of micro-architectures of each
BIP which lead to Pareto-optimal system configurations, once
the overall architecture has already been fixed. Therefore, we
can define the problem to be solved as:

Problem Definition: Given N BIPs to be mapped
onto a memory mapped shared bus MPSoC as
loosely-coupled HWAccs, each with a testbench
BIP1/TB1, BIP2/TB2, . . . , BIP

N

/TB
N

firstly explore
each BIPi to obtain a trade-off curve (TDC) of Pareto-
optimal micro-architectures for each BIP TDC(BIP

i

) =
{micro1,micro2, . . . ,micro

p

} with the following area
{A(micro1) > A(micro2), . . . , > A(micro

p

)} and latencies
{L(micro1) < L(micro2), . . . , < L(micro

p

)}. Secondly,
given M masters find a list of M Pareto-optimal trade-off
curves (TDCL) for TDCL = {TDC1, TDC2, . . . , TDC

M

}
for systems with 1 to M masters, such that each TDC is com-
posed of unique micro-architectures for each BIP TDC

i

=
{BIP1(micro

x

, BIP2(micro
y

, . . . , BIP
N

(micro(z)}.

We believe that this work is extremely important for system
integrators, in order to guide them to choose the best micro-
architecture for each BIPs when integrating them in a complex
SoCs. It should be noted that previous work on system-level
design could be extended by adding our proposed BIP micro-
architecture search method as another search dimension. We
thus believe that our work is fully orthogonal to previous work.

IV. PROPOSED SYSTEM EXPLORATION METHOD

The proposed method, called Fast Explorer for Behav-
ioral Systems FEBS, takes as inputs N behavioral IPs
(BIPs) given in synthesizable ANSI-C or SystemC and
their testbenches (TB), which form a complete System S,
S = {BIP1/TB1, BIP2/TB2, ..., BIP

N

/TB
N

}. Therefore
the HW/SW partition is already decided a priori. The TB
will be executed on the SoC’s master and acts as traffic
generator, while the BIPs are synthesized and mapped as
slaves in the system. The output of our method is a set

of dominating systems with unique area vs. performance,
for different number of masters ranging between [1,N] and
different task mapping combinations. In this work, throughput
is used as performance metric. This means that all of the tasks
can be either mapped onto a single master or each task can
have its own master or any combination in-between. The result
of FEBS are N trade-off curves, one for each system with
different number of masters. The core of the system explorer
is the optimization of each slave’s micro-architecture for each
unique task mapping. The task mapping is important because
it decides upon the ultimate traffic pattern in the SoC. The
next subsection describes this optimization first.

A. Single Mapping Behavioral IPs Optimization
The core of our fast exploration method is the optimization

of the individual IPs for a specific task mapping. This step is
composed of 4 main steps and 1 pre-characterization phase as
follow:
Pre-Step: BIP Design Space Exploration. As a pre-
characterization step, our method starts by performing a HLS
DSE for each individual BIP. As mentioned previously, C-
based design has the advantage over traditional RTL-based
design that micro-architectures with unique area vs. perfor-
mances can be obtained by setting different synthesis options.
The pre-characterization step of our flow is based on a genetic
algorithm to explore just the synthesis directives of each
BIP. The HLS DSE used in this stage is a modified genetic
algorithm presented in [20]. We will not go into details about
how the GA works as it has been presented in previous work.
Basically, each explorable operation OP is represented as a
gene to which a synthesis attribute (pragma) p or global option
opt is assigned. The list of all genes built a chromosome
Cr, which is then combined and mutated based on pre-
defined crossover and mutation probabilities (pc and pm).
Each new configuration is synthesized using as many FUs as
needed to fully parallelize the generated micro-architecture,
and then again with only one FU of each type to create the
smallest micro-architecture for that particular Cr. The result
of this step is a trade-off curve of dominating designs for
each BIP with unique micro-architectures, TDC(BIP

i

) =
{micro1,micro2, . . . ,micro

p

}.

Step1: SoC Generation. This first step generates N number
of SoCs consecutively (from 1 to N), where N is equal
to the maximum number of masters allowed, and for each
new configuration generates all possible task mappings. The
order in which the tasks are executed on each master is not
considered as all tasks are completely independent from each
other. The number of mappings follows the Stirling numbers
of the second kind sequence if the task execution order is
not considered. If it is considered, all possible permutations
would be required. Based on preliminary simulation results,
we could observe that for the case of periodically repeating
tasks this was not the case and thus, the task execution order
is not considered. The Stirling numbers of the second kind
S(n, k) count the ways to divide a set of n objects into
k nonempty subsets. In our case n = N , and k = [1, N]

TABLE II
COMPLEX SYSTEM BENCHMARKS.

Bench DSE S1 S2 S3 S4 S5 S6 S7 S8 S9
md5c 5 1 1 1 1 1 1

kasumi 4 1 1 1 1 1 1 1
interp 6 1 1 1 1 1 1

fir 5 1 1 1 1 1 1 1
adpcm 4 1 1 1 1 1 1 1
qsort 5 1 1 1 1 1 1
aes 6 1

Tasks 3 3 3 4 4 5 5 6 7
Designs 14 14 15 20 18 24 24 29 35
Masters 1-3 1-3 1-3 1-4 1-4 1-4 1-4 1-4 1-4

V. EXPERIMENTAL RESULTS

Different computational intensive applications, amenable to
HW acceleration, were selected and grouped together into
complex systems in order to test our proposed method. These
designs were taken from the open source Synthesizable Sys-
temC Benchmark suite (S2CBench) [22]. Table II shows how
these complex benchmarks were formed. The first column
indicates the name of benchmark, the second column indicates
the total number of dominating designs reported by the DSE
for each benchmark. Columns S1-S8 indicate the number of
instantiations of each test case used to build each complex
benchmark. The last two rows report the total number of
applications used in each system benchmark and total number
of design candidates contained (adding up the results of the
DSE of each application).

The experiments were run on an Intel dual 2.40GHz Xeon
processor machine with 16 GBytes of RAM running Linux
Fedora release 19. The HLS tool used is CyberWorkBench
v.5.52 [23]. The target architecture, as mentioned previously,
is a multi-core processor system with masters ranging from 1
to 4 depending on the benchmark. The masters and slaves
are connected through a 32-bit AMBA AHB bus using a
round robin arbiter. The target technology is Nangate’s 45nm
Opencell technology and the HLS target frequency for all of
the processes in the system is set to 100MHz.

Table III and Table IV show the qualitative and quantitative
results respectively of our method (FEBS), compared to an
exhaustive search method (ES) which for each system tries
all possible micro-architectures reported by the DSE, and
thus leads to the optimal solution. The main problem when
comparing different multi-objective optimization methods is
how to measure the quality of the results. Several studies
can be found in the literature that address the problem of
comparing approximations of the trade-off surface in a quan-
titative manner. Most popular are unary quality measures, i.e.
the measure assigns each approximation set a number that
reflects a certain quality aspect, and usually a combination of
them is used ([24],[25]). A multitude of unary indicators exist
e.g. hybervolume indicator, distance from reference set and
spacing. In this work we measure the quality of the different
methods using the following criteria, which are also the main

TABLE III
EXPERIMENTAL RESULTS: QOR (ADRS AND DOMINANCE) COMPARISON
BETWEEN EXHAUSTIVE SEARCH (ES) AND PROPOSED METHOD (FEBS)

TAKEN THE ES AS REFERENCE IN %.

FEBS
System Masters ADRS[%] Dom[%]

S1 M=1 0.0 100
M=2 1.1 50
M=3 1.8 60

S2 M=1 2.2 65
M=2 4.1 75
M=3 5.3 43

S3 M=1 1.4 71
M=2 3.7 50
M=3 1.4 71

S4 M=1 3.2 41
M=2 0.0 100
M=3 3.2 41
M=4 4.6 50

S5 M=1 0.0 100
M=2 0.0 100
M=3 0.4 75
M=4 1.4 82

S6 M=1 0.0 100
M=2 3.3 42
M=3 4.2 55
M=4 3.8 65

S7 M=1 0.0 100
M=2 4.3 42
M=3 3.8 58
M=4 4.5 75

S8 M=1 0.0 100
M=2 3.0 43
M=3 2.8 50
M=4 3.2 33

S9 M=1 0.0 100
M=2 3.3 31
M=3 2.9 50
M=4 3.7 25

Avg. 2.3 65

TABLE IV
RUNNING TIME RESULTS [MIN]

ES FEBS Comparison
System Run[min] Run[min] Speedup

S1 158 24 6.6
S2 213 23 9.3
S3 170 19 8.9
S4 1,827 102 17.9
S5 1,386 69 20.1
S6 1,911 334 5.7
S7 2,514 416 6.0
S8 3,575 487 7.3
S9 14,905 1,034 14.4

Avg. 10.7
Geomean 1,157 120

indicators used in this field:

Average Distance from Reference Set (ADRS):
This measure (ADRS) indicates how close a Pareto-
front is to the reference front. The smaller the
value the closer the obtained approximate front is to
the reference front. Given a reference Pareto front
� = �1 = (a1, t1), �2 = (a2, t2), ..., �n = (a

n

, t
n

)
and an approximate Pareto front ⌦ =

!1 = (a1, t1),!2 = (a2, t2), ...,!n

= (a
n

, t
n

)with a 2 A
and t 2 T , where A is the total area of the accelerators and
T its system’s throughput. It follows:
ADRS(�,⌦) = 1

|�|
P
�2�

min
!2⌦

f(�,!) where

f(� = (a
�

, t
�

),! = (a
!

, t
!

)) = max{|a!�a�

a�
|, | t!�t�

t�
|}.

The lower the distance value (ADRS) is, the more similar
two Pareto sets are. For example, a high ADRS value tells that
an entire region of the reference Pareto-front is missing in the
approximation set.

Pareto Dominance: This index is equal to the ratio between
the total number of designs in the Pareto set being evaluated
(obtained by executing one exploration method), also present
in the reference Pareto set.

When presenting DSE results it is also often custom to
show the trade-off curves graphically in order to provide
a quick visual representation of the quality of the results.
Unfortunately, in this work 33 trade-off curves would need
to be shown making this impractical.

Different conclusions can be drawn from the results shown
in Table III and Table IV. First, our proposed fast method
(FEBS) works well as indicated by the ADRS and dominance
when comparing the exhaustive search optimal solution (ES).
The ADRS is only 2.3% and our proposed method can find
65% of all optimal designs on average.

At the same time Table IV shows that the proposed method
is on average 10.7 ⇥ faster on average than the exhaustive
search further indicating the effectiveness of our method. It
can therefore be concluded that our method is very effective
and that it can lead to comparable results compared to an
exhaustive search much faster.

VI. SUMMARY AND CONCLUSIONS

In this work we have presented a characterization and
optimization method for hardware accelerators specified as
behavioral IPs (BIPs) mapped as loosely coupled slaves on
memory mapped shared bus systems. These systems are par-
ticularly popular in state-of-the-art configurable SoCs provided
by Xilinx and Altera. In particular, this work makes use
of advanced features available in modern HLS tools, which
allow the generation and cycle-accurate simulation of complete
SoC systems at the behavioral level. For different mappings
with different number of masters, generating different traffic
patterns, it was shown that our method is very effective
compared to an exhaustive search while being much faster.

VII. ACKNOWLEDGMENTS

This work was partially supported by the Spanish Ministry
of Education, Culture and Sports under the FPU grant pro-
gram, and the Consejo Social of the Universidad Politécnica
de Madrid.

REFERENCES

[1] Y. Liu and B. Carrion Schafer, “Optimization of behavioral ips in multi-
processor system-on-chips,” in ASP-DAC, Jan 2016, pp. 336–341.

[2] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for
Pareto-optimal configurations in parameterized systems-on-a-chip,” in
ICCAD, 2001, pp. 25–30.

[3] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria, “A Sensitivity-
Based Design Space Exploration Methodology for Embedded Systems,”
Design Autom. for Emb. Sys., vol. 7, no. 1-2, pp. 7–33, 2002.

[4] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective Optimiza-
tion and Evolutionary Algorithms for the Application Mapping Problem
in Multiprocessor System-on-chip Design,” Trans. Evol. Comp, vol. 10,
no. 3, pp. 358–374, 2006.

[5] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant colony
heuristic for mapping and scheduling tasks and communications on
heterogeneous embedded systems,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 29, no. 6, pp. 911–924, 2010.

[6] M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich, “Efficient symbolic
multi-objective design space exploration,” in ASP-DAC, March 2008, pp.
691–696.

[7] G. Beltrame, L. Fossati, and D. Sciuto, “Decision-theoretic design
space exploration of multiprocessor platforms,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 29, no. 7, pp. 1083–1095, 2010.

[8] J. Hauser and J. Wawrzynek, “Garp: a MIPS processor with a reconfig-
urable coprocessor,” in FCCM, Apr 1997, pp. 12–21.

[9] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A Many-core x86 Architecture for
Visual Computing,” in ACM SIGGRAPH 2008 Papers, ser. SIGGRAPH
’08. ACM, 2008, pp. 18:1–18:15.

[10] N. Clark, A. Hormati, and S. Mahlke, “VEAL: Virtualized Execution
Accelerator for Loops,” in ISCA, June 2008, pp. 389–400.

[11] P. Mantovani, G. Di Guglielmo, and L. Carloni, “High-level synthesis
of accelerators in embedded scalable platforms,” in Asia Sout Pacific
Design Automation Conference (ASP-DAC), January 2016, pp. 1–6.

[12] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and
G. Reinman, “On-chip Interconnect Network for Accelerator-Rich Ar-
chitectures,” in DAC, 2015, pp. 389–400.

[13] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
USENIX, 2005, pp. 41–41.

[14] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[15] OVP. (2015). [Online]. Available: www.ovpworld.org
[16] M. Lis et al., “Scalable, accurate multicore simulation in the 1000-core

era,” in ISPASS, 2011, pp. 175–185.
[17] Y. Corre et al., “HLS-based Fast Design Space Exploration of ad hoc

hardware accelerators: a key tool for MPSoC Synthesis on FPGA,” in
DASIP. IEEE, 2012, pp. 1–8.

[18] S. Gheorghita et al., “System-scenario-based design of dynamic embed-
ded systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 1,
pp. 3:1–3:45, Jan. 2009.

[19] P. van Stralen and A. Pimentel, “Scenario-based design space exploration
of MPSoCs,” in ICCD, 2010, pp. 305–312.

[20] B. Carrion Schafer and K. Wakabayashi, “Machine learning predictive
modelling high-level synthesis design space exploration,” IET Comput-
ers Digital Techniques, vol. 6, no. 3, pp. 153–159, May 2012.

[21] H. Sharp, “Cardinality of finite topologies,” Journal of Combinational
Theory, vol. 5, no. 1, pp. 82–86, 1968.

[22] B. Carrion Schafer and A. Mahapatra, “S2CBench:Synthesizable Sys-
temC Benchmark Suite for High-Level Synthesis,” IEEE Embedded
Systems Letters, vol. 6, no. 3, pp. 53–56, 2014.

[23] NEC CyberWorkBench, 2017. [Online]. Available: www.
cyberworkbench.com

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[25] D. A. V. Veldhuizen and G. B. Lamont, “On measuring multiobjective
evolutionary algorithm performance,” in Evolutionary Computation,
2000. Proceedings of the 2000 Congress on, vol. 1, 2000, pp. 204–211

vol.1.

