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Abstract—Heterogeneity in HPC nodes appears as a promising
solution to improve the execution of a wide range of scientific
applications, regarding both performance and energy consump-
tion. Unlike CPUs and GPUs, FPGAs can be configured to fit
the application needs, making them an appealing target to extend
traditional heterogeneous HPC architectures. However, exploiting
them requires an in-depth knowledge of low-level hardware
and high expertise on vendor-provided tools, which should
not be the primary concern of HPC application programmers.
In this paper, we present the first results of the HEAVEN
project that aims at designing a framework enabling a more
straightforward development of scientific applications over FPGA
enhanced platforms. Our work is concentrated on providing
a framework, which will require the minimum knowledge of
the underlying architecture, as well as fewer changes to the
existing code. To fulfill these requirements, we extend the StarPU
task programming library that initially targets heterogeneous
architectures to support FPGA. We use Vivado HLS, a high-level
synthesis tool to deliver efficient hardware implementations of the
tasks from high-level languages like C/C++. For the evaluation
of our proposal, we present code snippets for a blocking version
of matrix multiplication, illustrating the ease of development our
approach delivers. We also show preliminary results regarding
the performance of the FPGA version, which validate our proof-
of-concept implementation.

Index Terms—FPGA, StarPU, Vivado HLS, Task programming
system, Heterogeneous runtime system

I. INTRODUCTION

Computer architectures are getting more and more compli-
cated, exposing massive parallelism, hierarchically-organized
memories, and heterogeneous processing units. The complex-
ity of the platforms above imposes a compromise between
portability and performance. To exploit heterogeneous process-
ing units integrated into a single machine, programmers often
need to deal with hardware-specific low-level mechanisms
explicitly. For example, they must expressly handle memory
transfers between the main memory and the private memories
of the accelerators.

Solutions have been proposed to tackle the portability
versus performance dilemma. Existing parallel programming
models and tools evolved towards the support of heterogeneous
architectures, broadly adopting the Graphical Processing Units
(GPU) as complementary computational resources to the gen-
eral purpose processors (CPU).

Many of these parallel programming systems rely on the
concept of tasks. A task is an autonomous work unit that can
be seen as a portion of code with inputs and outputs, possibly
depending on other tasks. Within this model, an application
is organized in the form of a dynamically created task graph.
Tasks are later assigned to processing units by a software layer
called the runtime system.

Tasks prevalence is mainly due to their affordable cost
and flexibility, enabling the implementation of dynamic load
balancing strategies with very low overhead. Unfortunately,
none of the well-established task-based parallel program-
ming models for heterogeneous architectures support Field-
Programmable Gate Arrays (FPGA).

Unlike CPUs and GPUs, FPGAs can be configured to fit
the application needs. They contain arrays of programmable
logic blocks that can be wired together to build a circuit
specialized to the targeted application. For example, FPGAs
can be configured to accelerate portions of code that are
known to perform poorly on CPU or GPU [1]. The energy
efficiency of FPGAs is also one of the primary assets of this
kind of accelerators compared to GPUs, which encourages the
scientific community to consider them as one of the building
blocks of large-scale low-power heterogeneous platforms.

Unfortunately, their programming complexity has prevented
High-Performance Computing (HPC) developers from using
them broadly. When the entry point to hardware design was
a Register Transfer Level (RTL) description, with Hardware
Description Languages (HDL) like VHDL and Verilog, FPGAs
were mostly confined to hardware designers. The capabilities
delivered by modern High-Level Synthesis (HLS) tools bridge
the gap between software programmers and FPGA. HLS
tools generate an RTL description of an algorithm, provided
typically in C or C++. Despite their rapid evolution, those
tools, like Catapult from Calypto or Vivado HLS from Xilinx,
still requires a certain level of expertise in hardware design to
benefit from their abilities fully.

Our contribution is a framework, which enables developers
to use FPGA as another accelerator within a traditionally het-
erogeneous HPC platform. This framework relies on existing
HLS tools and heterogeneous task programming frameworks.
We focused on ease of development and portability without
sacrificing performance.



The remainder of the paper is organized as follows. Sec-
tion II describes related work. Section III introduces the
background for this work. Section IV presents the fundamental
concepts behind our framework and the way we implemented
it. Section V gives an evaluation of the HEAVEN framework,
while conclusion and future works lie in Section VI.

II. RELATED WORK

Numerous proposals to ease the programmability of an
FPGA enhanced platform have appeared with different fea-
tures regarding the types of supported processing units, the
programming abstraction (from tasks to threads), the way they
manage data transfers as well as their scheduling support.

OpenCL [2], [3] is a standard framework offering both a
device-side language and a host management layer to exploit
multiple hardware accelerators from a single application, cre-
ated initially for GPU and later on extended for FPGA. The
device-side language, called OpenCL C, implements both task
and data parallelism and provides ways to map data efficiently
on specialized processor devices. The application programmer
can attach command queues to processing elements and explic-
itly assign them tasks from the application. This way, OpenCL
stands as a great programming environment to experiment
with heterogeneous architectures and implement higher-level
layers, like runtime systems but may appear too low-level for
application programmers, as the assignment of tasks and the
data transfers between host and device memories are explicit.

At thread level, hthreads [4], is a unifying programming
model aiming to specify application threads running within a
hybrid CPU/FPGA system. A unified multiprocessor abstracts
every component of the platform. Application developers can
express the concurrency of their computations using threads,
arranged in a single program, which can either be compiled
to run on a CPU or synthesized to run on an FPGA.

The Heterogeneous System Architecture Foundation [5]
(HSA) is a consortium of industrial and academic partners dis-
cussing ways of standardizing a whole ecosystem for hetero-
geneous programming. In particular, HSA provides a unified
view of fundamental computing elements. HSA allows writing
applications that seamlessly integrate CPUs (called latency
compute units) with GPUs (called throughput compute units)
while benefiting from the best attributes of each. The essence
of the HSA strategy is to create a single unified programming
platform providing a strong foundation for the development
of languages, frameworks, and applications that exploit par-
allelism. The HSA platform is designed to support high-level
parallel programming languages and models, including C++,
OpenCL, OpenMP, Java, and Python, to name a few. HSA-
aware tools generate program binaries that can execute on
HSA-enabled systems supporting multiple instruction sets and
also can run on existing architectures without HSA support. An
HSA implementation is a system consisting of a heterogeneous
hardware platform that integrates both CPUs and GPUs, which
operate coherently in shared memory, a software compilation
stack, a user-space runtime system, and some kernel-space
system components.

The OpenMP accelerator support provides explicit ways
of offloading portions of applications to accelerator devices.
Relying on this OpenMP support, recent work [6] have been
proposed to handle FPGA. This work focuses on making data
transfers automatic based on dependencies provided at the
OpenMP level and does not discuss heterogeneous scheduling
questions. Relying on StarPU, our proposal will benefit from
smart scheduling heuristics based on cost models for both
computation and data transfers times.

OmpSs is a programming environment developed at BSC
that enables the execution of task-based applications on het-
erogeneous platforms. It can be seen as a fork of OpenMP with
original extensions. Like OpenMP, OmpSs provides compiler
directives to turn serial C, C++ and Fortran applications into
parallel applications initially able to offload computations on
GPU. The programming environment comes with a dedicated
compiler and a runtime system responsible for distributing
tasks over the CPUs and the accelerator devices, manag-
ing data transfers between host and devices memories in a
transparent way. OmpSs has then been extended to support
offloading on FPGA [7]. Compared to our proposal, this
extension focuses on embedded heterogeneous architectures
such as the Zynq from Xilinx integrating a CPU and an FPGA
on the same die. Blaze [8] provides programming and runtime
support that enables rapid and efficient deployment of FPGA
accelerators at warehouse scale. It builds upon Apache Spark,
a widely used framework for writing Big Data processing
applications.

Among many industrial attempts to use FPGA as an ac-
celerator in a heterogeneous environment, Amazon EC2 F1
instances can be considered to deliver high flexibility to
developers [9]. Instances come in two sizes, with up to eight 16
nm Xilinx UltraScale Plus FPGA devices connected to each
one of them through PCIe. They provide all the necessary
tools to develop an AFI (Amazon FPGA Image) that can later
be used to configure one of the devices of the instance. The
runtime decisions are yet to be managed by the developer
though.

III. BACKGROUND

We now introduce the background required for our work. In
this paper, we use the term host to refer to the general purpose
processor of the machine along with its main RAM, and with
all its software environment including its operating system.

A. Vivado HLS and Vivado

Vivado HLS is one of the broadly used HLS tools. From a
C++ description of a kernel, Vivado HLS automatically gener-
ates an RTL description. Vivado HLS delivers performance by
allowing the developer to monitor and tune the behavior of its
kernel by using some pragmas to exploit the fundamentally
concurrent parts of it. From an HPC developer, a relatively
efficient hardware description of a C/C++ application should
arrive after a basic understanding of the design principles
through the rich documentation and code examples the tool
provides. Once an RTL description has been generated by



Vivado HLS, it needs first to be instantiated along with all
the other required components for the final design. Then, the
complete RTL description of the final design is synthesized to
logic gates by Vivado.

B. RIFFA: The link between the host and the FPGA

RIFFA (Reusable Integration Framework for FPGA Accel-
erators) is a simple framework for communicating data from
a host to a FPGA via a PCIe bus [10]. It is then made of a
host part and a FPGA part. RIFFA is available on Linux and
for several series of boards, from different vendors such as
AVNet, Xilinx and Altera.

On the host side there is a clean interface to exchange data
between the host and the device, that relies on a custom Linux
kernel driver. The communication is managed using direct
memory accesses transfers and interrupt signaling.

On the FPGA side, RIFFA provides a clean interface for ac-
cessing up to twelve signal controlled completely independent
bidirectional channels. Each channel has two sets of signals;
one for receiving and one for sending data. For a transac-
tion, the sender has to notify the receiver for the upcoming
operation, providing supplementary information regarding the
data size, a potential offset, and whether other transactions are
expected or not. Once they receive the acknowledgment from
the receiver, they synchronize themselves using a two signals
handshaking protocol for the consumption of the data.

C. StarPU

StarPU [11] is a task-based runtime system targeting het-
erogeneous machines comprising several kinds of processing
units, from traditional multicore CPUs to GPU accelerators
and coprocessors like the Intel Xeon Phi. StarPU comes with
an API to express task parallelism from a C/C++ or Fortran
application. StarPU is data-flow based, meaning the program-
mer has to specify for each task the input and output data,
thus creating dependencies between tasks. This way, a StarPU
application generates a graph of tasks at runtime, with edges
representing the dependencies between them. Unlike most
task-based parallel programming libraries, each StarPUtask
can embed multiple implementations, one for each kind of
processing unit for example. When a task becomes ready,
the StarPU tasks scheduler dynamically assigns it to what it
considers to be the best processing unit at the given time. To
do so, StarPU takes into account the availability of target-
specific implementations for the current task, the availability
of the hardware resource at the given time and some model-
based performance estimation of the task on the different
processors/accelerators. On top of that, StarPU also handles
data transfers automatically and transparently, and can make
smart decisions on whether some data should stay in the
accelerator memory or not, depending on the input data of
the next tasks to be executed.

In this work, we focus on using the C/C++ API of StarPU.
In this case, once the different tasks making the application
have been identified, the programmer has to define task
types, called codelets in the StarPU terminology. A codelet

establishes the number of inputs and outputs of a task along
with all its implementation for one or more different types
of processing units. Once codelets have been defined, the
application developer has to create the main StarPU program.
This program first registers in the StarPU runtime, the inputs
and outputs data that will be read and produced by tasks. Then
the program creates tasks along with their codelets and their
inputs and outputs and submits them to the StarPU runtime
system. The task graph represents the execution of a StarPU
application.As a consequence, it is fully dynamic and can, for
example, depend on user-specified inputs.

When a task is submitted, the StarPU runtime first checks
for input dependencies. If these dependencies are satisfied,
the scheduler decides on which processing units the task will
execute, among all the possible ones specified in the task
codelet. At this time, the runtime pushes the task into the
ready queue of the chosen processing unit. If some input
dependencies are not satisfied, the runtime pushes the task
into a global waiting queue instead.

At initialization time, StarPU creates a worker for each pro-
cessing unit of the underlying machine. A worker is a thread,
running on the host, responsible for popping tasks the runtime
has scheduled in its ready queue and for executing them. The
worker is also responsible for handling data transfers required
for the task execution.

Regarding the scheduling decisions, StarPU comes with
many policies which can be chosen by the application. Many
of these strategies rely on cost models for task execution and
data transfers. These models can either be initialized from a
previous run of the application or from within the runtime
system itself, by profiling during the execution.

IV. THE HEAVEN FRAMEWORK

This section describes in details the HEAVEN framework.
We first present the components involved in the framework
with a focus on our contributions. Then, we present the
HEAVEN framework from the user point of view, showing
how to use it.

A. Architecture
Figure 1 shows all the components involved in the HEAVEN

framework. Because we target heterogeneous machines includ-
ing FPGA accelerators, the framework is split between the
host part shown on the top of the figure, and the FPGA part
displayed on the bottom. The red components of the figure are
the contributions of this work. Because we base our framework
on StarPU, a complete figure would also include the already-
supported GPU side. For clarity, only the FPGA side which
is our contribution is shown here.

On the host’s side, we then had to extend StarPU to
integrate the capability to use FPGA accelerators. To ease
the communication between this extended version of StarPU
and the FPGA, we developed Conor, a library providing
abstractions on top of RIFFA.

On the FPGA’s side, we developed a connector allowing to
send inputs and get outputs to and from hardware tasks gener-
ated from Vivado HLS. This connector enables the extended
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Fig. 1: Overview of the different components involved in the
HEAVEN framework. The upper part of the diagram shows
the components on the host’s side, while the lower part shows
the components on the FPGA’s side. The red components are
the contributions of this work and the dashed components are
the ones to be provided by the application developer.

StarPU runtime running on the host side to communicate with
the hardware tasks through PCIe without any intervention
of the application developer. In the current version of the
framework, the configuration of the FPGA must be done once,
before the execution of the StarPU application. The framework
supports up to five FPGA devices, while the number of tasks
StarPU can execute on each one of them is constrained by the
number of available communication channels as well as the
spatial constraints. In the current version of the framework,
if several hardware tasks are present in the system, either on
several FPGA devices and a single FPGA device, they must
all have the same type. Said differently, they must expect the
same inputs and provide the same outputs.

We now describe the internal of the components at the heart
of this work. The components provided by the application
developer, shown with dashes in Figure 1 will be described
in detail in Section IV-B.

1) Extended StarPU: To include FPGA support in StarPU,
we created a new type of worker dedicated to FPGA devices.
At initialization time, a worker is created for each hardware
task present on the FPGA devices of the machine as shown
in Figure 2. As any other StarPU’s worker, each one of these
FPGA workers has its own tasks ready queue which is filled
by the StarPU’s scheduler.

The role of the worker is then to pop tasks from this queue
and to launch their execution on the FPGA side. When the
worker is idle, it pops the ready task on the top of the queue
and first send its input data to the FPGA through Conor. This
sending operation is currently done by a function provided
by the programmer as shown in Section IV-B. Nevertheless,
the extended StarPU runtime has all the required information
so that it can automatically perform this operation. Sending

the inputs data triggers the computation on the FPGA side
automatically, as soon as all data have been transmitted. Then,
the function provided by the programmer must wait for the
output data to come back from the FPGA.
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Fig. 2: One FPGA worker is created for each hardware task
present in the machine. Workers communicate with the FPGA
through Conor only.

To completely decouple the StarPU runtime and the StarPU
application from low level concerns about communication
with the FPGA, we developed a communication library
called Conor. All the FPGA communications happening inside
StarPU go through Conor using its simple API for sending and
receiving data.

2) Conor: The Conor FPGA communication library is built
on top of RIFFA as shown in Figure 1. RIFFA provides
a primitive infrastructure to send and receive non-structured
data to the device, where low-level information should still be
managed for a clean adaptation.

Conor first provides functions for the transmission of struc-
tured data, such as arrays and vectors, over the PCIe in an
optimal way. These functions abstract away all the low-level
hardware concerns, and just let the caller say “send this buffer
which size is that to the FPGA”. Conor also provides functions
to handle the control signals regarding the state of the device.
These functions allow controlling the coherency of the state
of the board.

3) Connector: On the FPGA side, as shown on the bot-
tom half of Figure 1, our framework includes a connector
allowing the communication between hardware tasks created
with Vivado HLS and RIFFA. Figure 3 shows the internals
of this connector. On the hardware tasks side, the framework
relies on the ap_hs protocol of Vivado HLS to handle the
communication. The data transfers are controlled by a two
signals handshake protocol. On the other hand, a RIFFA
channel has two sets of signals, one for receiving and one for
sending data. The transfers are also controlled by a handshake
protocol on two phases, one to inform the parties about the
type of the upcoming transaction, and another to perform the
transaction itself. The connector ensures the consistency of the
communication between these two different protocols using



information provided by the hardware tasks through the control
stream.

Fig. 3: The connector allows communication between RIFFA
and the hardware tasks.

B. Developing an application

To illustrate how to use the HEAVEN framework, we will
focus on a basic application consisting in computing the
product of two matrices by blocks, as shown in Figure 4.
In this example, each square block represents a sub-part of
a matrix with a specific size, let’s say 64 by 64. Then, the
matrix A is of size 192x64, B is of size 64x192, and C is of
size 192x192. To compute the content of the matrix C, we can
perform in parallel the computation of the nine blocks making
it. Each one of these sub-computations will require a sub-part
of matrix A and a sub-part of matrix B as inputs.

Fig. 4: Blocked matrix multiplication example. A is of size
192x64, B is of size 64x192 and C is of size 192x192.

To describe this application using the HEAVEN framework,
the application developer must write both the StarPU appli-
cation along with the hardware implementation of its tasks
as shown by dashed boxes in Figure 1. In the case of the
blocked matrix multiplication we use in this section, tasks are
completely independent. Nevertheless, because the HEAVEN
framework is an extension to StarPU, it also supports appli-
cations with task dependencies.

1) Writing the StarPU application: First, the programmer
must describe the codelet for the tasks computing one block in
the result matrix. Figure 5 shows how to do that using StarPU’s
C API. This codelet provides both a CPU implementation and
an FPGA one. It also specifies that the task has two inputs and
one output through the nbuffers and modes attributes.

static struct starpu_codelet cl = {
.cpu_funcs = {cpu_mult},
.fpga_funcs = fpga_mult,
.nbuffers = 3,
.modes = {READ, READ, WRITE}

}

Fig. 5: Task codelet for a task computing one block of the
result matrix. The task has two inputs and one output. The
codelet provides both a CPU implementation and an FPGA
one.

Then, the fpga_mult function referenced in the codelet
must be defined has shown in Figure 6. This function is mainly
divided in four steps:

• Ask to Conor to reserve an hardware task;
• Ask to StarPU where are inputs and outputs and on which

part of them the task must operate;
• Ask to Conor for the result and then copy back this result

into the C matrix.
In this function, the order used to send the inputs is crucial. It
must be aligned with the expected inputs order in the hardware
task implementations as explained in Section IV-B2.

Again, this function is not yet automatically generated by
the extended StarPU runtime but all the information required
to do so is available to it. Said differently, in the next version
of the framework, this function will no more be written by the
programmer. The runtime will automatically send and receive
inputs and outputs using the information associated with the
task.

Then the programmer must write the main part of the
application responsible for allocating matrices, register them
with StarPU, launch tasks and wait for their completion as
shown in Figure 7.

The procedure for launching the task is completely uniform;
it does not know anything about task types as shown in
Figure 8. It consists of creating the tasks, associating them
with the codelet defined in Figure 5, setting their dependencies,
and finally submitting them.

2) Writing hardware tasks: On the FPGA side, the applica-
tion developer must provide the implementation of hardware
tasks. The HEAVEN framework relies on Vivado HLS for this
task. Using this tool, the application programmer describes the
implementation of its hardware tasks in C++. This description
consists in:

• Receive the block from A and B;
• Compute the block of C as the product of the blocks from

A and B;
• Send this C computed block.
For receiving inputs and sending outputs, the application

developer is provided two high-level objects which type is
Vivado HLS hls::stream. The first one is used to receive
inputs and the second one to send outputs. The function also
has a third hls::stream parameter used for control. The
interface between these three high-level objects with the PCIe



void fpga_mult(void *d[]) {

/* Ask Conor for a channel, or
* equivalently for a hardware task
*/
int chnl = conor_reserve_a_chanel();

/* Get inputs from STARPU */
int* subA = SPU_MATRIX_GET_PTR(d[0]);
int* subB = SPU_MATRIX_GET_PTR(d[1]);
int* subC = SPU_MATRIX_GET_PTR(d[2]);

/* Get info on which part of the
* inputs the task must operate
*/
uint32_t nyA= SPU_MATRIX_GET_NY(d[0]);
uint32_t ldA= SPU_MATRIX_GET_LD(d[0]);
// Same for B and C

/* Send A and B */
int buf_s[nyA], buf_r[nxC*nyC];
conor_trans sent, recv;
for (uint32_t j = 0; j < nxC; j++){

for (uint32_t k = 0; k < nyA; k++)
buf_s[k] = subA[j+k*ldA];

conor_data_send(chnl, buf_s, nyA);
}
for (uint32_t i = 0; i < nyC; i++){

for (uint32_t k = 0; k < nyA; k++)
buf_s[k] = subB[k+i*ldB];

conor_data_send(chnl, buf_s, nyA);
}
/* Receive C. This is blocking */
conor_data_recv(chnl, buf_r, nxC*nyC);
for (uint32_t i = 0; i < nxC; i++){
for (uint32_t j = 0; j < nyC; j++)
subC[j + i*ldC] = buf_r[i*nyC+j];

}
conor_release_chanel(chnl);

}

Fig. 6: Definition of the fpga mult function.

/* Init and regist A, B and C */
init_and_register_data();
/* Partition data into blocks */
partition_data();
/* Submit all tasks */
ret = launch tasks();
/* Wait for termination */
starpu_task_wait_for_all();

Fig. 7: Main part of the StarPU application.

bus is handled transparently by the framework through the
connector and RIFFA as described in Section IV-A.

For the receiving part of the function, the programmer must
read the blocks for the A and B input matrices in a given
order and save them in local variables which are automatically
translated to BRAM blocks by Vivado HLS. This reading order
must be respected in StarPU when inputs are sent to the FPGA
as presented in Section IV-B1.

For the computation step, the application developer has first
to declare the C matrix as a local variable that will also
be allocated into BRAM blocks by Vivado HLS. Then the

for (uint32_t x = 0; x < 9; x++) {
for (uint32_t y = 0; y < 9; y++) {
spu_task* task = spu_task_create();
task->cl = &cl;
/* Get handlers for each block */
task->handles[0] = spu_get_sub_data(
A_handle, 1, y);

task->handles[1] = spu_get_sub_data(
B_handle, 1, x);

task->handles[2] = spu_get_sub_data(
C_handle, 2, x, y);

starpu_task_submit(task);
}

}

Fig. 8: Submit tasks to the StarPU runtime.

effective computation of C is done using three nested for loops
just as in a software implementation.

Finally, the C matrix must be sent back to host side using
the second hls::stream object provided to the function.
In case of tasks with several outputs, as for the inputs, the
sending order must be respected on the StarPU side when
receiving the data.

3) Generating the bitstream: Once the RTL description of
the hardware tasks has been generated with Vivado HLS, the
application developer must generate the final bitstream to be
used to configure the FPGA. For that task, the HEAVEN
framework provides a parametric wrapper written in Verilog.
This wrapper is only configured by the application developer
to specify the number of hardware tasks to be instantiated.
The wrapper combines the specified number of hardware tasks
along with the hardware part of RIFFA, and the connector
between RIFFA and the hardware tasks. The application
developer then uses Vivado to synthesize the complete design
to the final bitstream.

V. PRELIMINARY EVALUATION

A. Environment of experiments

We executed the experiments in a hybrid machine, where
the FPGA was connected to the host via PCIe. The host CPU
was a 64-bit Intel Xeon W3530, a two-way hyperthreaded
quad-core, for a total of 8 virtual cores, running at the speed
of 2.80GHz, with a smart cache of 8MB, 256KB of L2 and
8192KB of L3, a thermal design reference power of 130W,
and a semiconductor size of 45nm. It was coupled with 12GB
of DRAM at 1333MHz.

The FPGA we used for our experiments was Xilinx Virtex-
7 VC709, a board using the XC7VX690T chip, with 693,120
logic cells, 3,600 DSP slices, 52,920kb of BRAM memory,
up to 4GB of RAM at 1866Mbps, and an 8-lane PCIe edge
connector.

B. Application set-up

Within the context of this study, we opted to evaluate
the performance we could obtain using our platform on
the blocking version of matrix multiplication introduced in
Section IV-B. For the given analysis, we did not consider



Light-weight Task heavy-weight Task

FPGA 1.40 msec 7.01 msec
CPU 1.63 msec 113.37 msec

TABLE I: Performance of a single task for each architecture
and task size.

hybrid scenarios, where the scheduler could use within the
same execution CPU and FPGA implementations for the tasks.
Thus, for every experiment under test, we went through two
executions, one using only FPGA tasks and one using only
CPU tasks.

We expected that the communication overhead would signif-
icantly downgrade the performance of the FPGA version. As a
consequence, to study this effect, we focused on two constant
task sizes for the entire range of experiments. A light-weight
task operates on blocks of 64x64 integers while a heavy-weight
task operates on 256x256 blocks.

We also vary the size of the input matrices A and B. We
evaluated nine different sizes as shown in Figure 9. For each
one of these nine scenarios, the number of tasks that can be
deduced from the way the input matrices were sliced. Each
scenario is further divided in two by using either light-weight
of heavy-weight tasks. For example, the scenario in Figure 9e
corresponds to a setup for the 64x64 task size and to another
setup for the 256x256 one. In this scenario, for both 64x64
and 256x256 setups the A and B matrices are split into five
slices leading to a total of 25 tasks. In the 64x64 setup the
size of A is then 320x64 and the size of B is 64x320. In the
256x256 setup the size of A is then 1280x256 and the size of
B is 256x1280.

In all our experiments, the FPGA was configured with four
instances of the hardware task computing a single block of the
result matrix. Hence for both architectures, CPU and FPGA
we had an equal amount of independent computational entities
because in the CPU case, StarPU allocates by default a number
of workers equals to the number of physical cores in the host
(4 in our case).

C. Results

We first evaluated the per task execution time for each
architecture. This corresponds to the scenario presented in
Figure 9a. In that case, the computation of the block corre-
sponded to the entire application. The per-task performance we
obtained is presented in I. The bigger task shows a significant
performance difference when executed on an FPGA compared
to when executed on a CPU. In the smaller task, the ratio
between the computation and the communication is small,
resulting in comparable behavior for both architectures. With
the increase of the task size, the cost of data transfer (linear)
has a minor impact compared to the cost of the computations
(cubic).

Then we evaluated how the extended StarPU runtime be-
haves when the number of tasks increases. In this case, the

expected total execution time should theoretically, follow the
formula:

Time =


tpt+ α ,#tasks < #conTasks

#tasks

#conTasks
× tpt+ α ,#tasks ≥ #conTasks

(1)
In this formula, Time refers to the total execution time of the
application, tpt to the execution time of a single task which
value is shown in Table I, #tasks to the number of tasks,
#conTasks to the number of concurrent tasks and α to a
constant representing the initialization overhead. Since within
our experiments we could execute up to four tasks concurrently
in every scenario, the expected total execution time should
follow the:

Time =

tp+ α ,#tasks < 4

#tasks

4
× tpt+ α ,#tasks ≥ 4

(2)

Figure 10 shows how the total execution time evolves with the
number of tasks both for the CPU only version and the FPGA
only version. For both light-weight and heavy-weight tasks,
Figures 10a and Figure 10b, we observe a linear evolution of
the total execution time validating the theoretically expected
one. We can then conclude that for the sizes studied in our
experiments, there is no additional overhead coming from task
management.

VI. CONCLUSION AND PERSPECTIVES

We have presented our ongoing effort to create a task
programming systems targeting heterogeneous architectures
including FPGA. Leveraging the StarPU programming sys-
tem and its runtime along with HLS tools, the HEAVEN
framework provides an easy and portable way for writing
and running applications on top of heterogeneous architectures
including FPGA.

The perspective of this work is numerous. First, as men-
tioned in Section IV-B1 we must make the communication
with the FPGA completely transparent for the application
developer. This is possible because the StarPU runtime already
knows what the inputs and the outputs of each task are. The
only thing the programmer will have to specify is the order
in which inputs must be sent and outputs must be received.
We also plan to extend the framework so that different types
of hardware tasks could be used at the same time. This
new feature will impact mainly the Conor library that must
be aware about the type and the location of each hardware
task in the FPGA devices. In this paper we have presented
results for executions using only the cores of the host or
only the hardware tasks in the FPGA. Because our goal is
to leverage heterogeneous architectures, now that we have
an operational framework, an immediate perspective is to
execute applications combining CPU tasks, GPU tasks and
FPGA tasks. We already started to study these executions and
we believe that it may lead to interesting research directions
regarding the scheduling heuristics of the StarPU runtime. As
presented in Section IV-B2, the framework is currently using



(a) 1 task (b) 4 tasks (c) 9 tasks (d) 16 tasks (e) 25 tasks (f) 36 tasks (g) 49 tasks (h) 64 tasks (i) 81 tasks

Fig. 9: The different inputs matrices size evaluated. Both the A and B matrices are split into N slices, with N from 1 to 9.

(a) Light-weight tasks.

(b) Heavy-weight tasks.

Fig. 10: Performance results for block sizes of 64x64 and
256x256 and both architectures (CPU, FPGA).

the FPGA BRAM memory to store inputs and outputs for
the hardware tasks. Because the amount of available BRAM
is usually in the order of megabytes, we are planning to
investigate how the framework should be extended so that
we can benefit from the biggest main memory coming along
with the FPGA in boards such as the VC709 we used in
our experiments. In this case, the application developer will
be provided pointers into this main memory as the entry
point for the implementation of hardware tasks. The StarPU
runtime will then be responsible for managing the memory
allocations in the board’s main memory with the help of an
additional hardware component in the FPGA. Finally, we want
to study how dynamic reconfiguration could be integrated
into the framework. For sure, this would be viable only if
reconfiguration time is low compared to the task granularity.

The StarPU scheduler will then need to take into account the
reconfiguration time.
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