
Application Control and Monitoring in
Heterogeneous Multiprocessor Systems

Charles Leech, Graeme M. Bragg, Domenico Balsamo, Eduardo Wachter,
Geoff V. Merrett and Bashir M. Al-Hashimi

School of Electronics and Computer Science, University of Southampton, UK. Email: c.leech@soton.ac.uk

Abstract—Multiprocessor systems provide both high-
performance and energy-efficient execution of applications
on mobile and embedded systems under dynamic workload
requirements, and can provide increased lifetime for devices
in energy-constrained environments. However, their increasing
complexity means that management at runtime has become
a non-trivial task, especially in heterogeneous multiprocessor
systems. In addition, there is no standardised mechanism to
expose and manage the sources of control and monitoring
from within applications and hardware resources at runtime.
This paper presents an analysis of applications, platforms
and runtime management approaches to motivate the need
for a standardised framework that enables fully application-
and platform-agnostic runtime management. The exposure of
application controls and requirements through the presented
framework is demonstrated with a stereo matching algorithm,
including runtime management of multi-threading and frequency
scaling on the 61-core Xeon Phi platform. In addition, the
trading of application parameters, such as throughput and
accuracy, is demonstrated within the framework using a
runtime controller on the Odroid-XU3 platform. An open-source
implementation of this framework has been released. 1

Keywords—Heterogeneous systems, application-awareness,
runtime management, software frameworks.

I. INTRODUCTION

Mobile and embedded systems have turned to multipro-
cessor system-on-chip (MPSoC) designs in order to increase
platform performance. Initially, these systems were homoge-
neous architectures consisting of a group of identical cores.
However, heterogeneous multiprocessor (HMP) systems have
emerged as an alternative solution to meet higher perfor-
mance requirements and support diversity amongst a range
of next-generation applications. This is achieved by providing
specialised hardware resources that target specific application
behaviour and present a trade-off between power and perfor-
mance [1]–[3]. As the computational power of these systems
increases, a greater number of challenges can be addressed
across a diverse range of fields. Applications from domains
including computer vision and machine learning can now be
deployed directly into embedded systems to provide high-
quality and low-latency solutions to real-world challenges such

This work was supported by the PRiME programme grant EP/K034448/1
(http://www.prime-project.org) and EPSRC grant EP/L000563/1.

Data supporting the results presented in this paper will be made available
online upon acceptance.

1Available at: https://github.com/PRiME-project/PRiME Framework

Ap
pl

ic
at

io
n

Pe
rfo

rm
an

ce

Device Power Consumption

Operating space
using device controls

Operating space
using application
and device controls

Higher performance

Lower power

Higher
energy-efficiency

Fig. 1. The direct control and monitoring of applications at runtime expands
the available operating space in HMPs to higher performance, lower power
and more energy-efficient points.

as autonomous driving, healthcare monitoring, robotics and
security [4]–[6].

However, energy-saving opportunities exist in how soft-
ware applications currently execute on HMP platforms. HMPs
introduce additional complexity and therefore management
processes are required to maximise energy-efficiency under
changing constraints. In addition, to exploit the capabilities
of these systems, applications have becoming increasingly
elaborate, with multiple programming models and libraries
implemented to access the specialised hardware resources.
This has created a range of adjustable parameters that must be
tuned at design-time or runtime to optimise their behaviour.
Furthermore, applications are being deploying in increasingly-
constrained or dynamic environments, therefore they must
be capable of adapting their behaviour to maintain system
energy-efficiency. As a result, the proactive optimisation of
application performance is a key research challenge, especially
the management and control of applications at runtime on
embedded HMP systems [7], [8].

One way in which this can be addressed is by the exposure
and adaptation of tunable parameters from the application, in

order to control and monitor its behaviour at runtime. This is
illustrated in Fig. 1 as the expansion from the red region to
the blue region. The red region represents an operating space
using only device controls, while the blue region represents
the expanded operating space that is achieved through the
addition of application controls. Additional control knobs
have the potential to enable greater performance and power
scaling as well as providing finer control over the exact
operating point of the application. For example, introducing
dynamic control of multi-threading can allow the application
to be scaled down when or tuning the precision of arithmetic
operations. Applying runtime management algorithms to op-
timise this operating space presents a solution that enables
the optimisation and tradeoff between computational quality,
application throughput and energy efficiency for applications
with dynamic requirements.

This approach can be generalised through a standardised
software framework and the use of an application program-
ming interface (API), to enable the exposure of control and
monitoring sources from any application. However, current
frameworks do not allow the simultaneous monitoring and
control of both hardware components and applications at
runtime [9]–[13]. Moreover, most existing frameworks do not
inherently support HMP platforms or support the management
of concurrent applications. Therefore, there exists no holistic
approach to exposing sources of control and monitoring within
applications in a standard way, which is extensible to any
application-management scenario.

This paper presents the first fully application- and platform-
agnostic framework for runtime management approaches that
control and optimise software applications and hardware re-
sources. The novel contributions of this work are:

1) analysis of emerging applications for HMP systems, run-
time management approaches and existing frameworks
to motivate the need for a standardised framework;

2) design and implementation of an application- and
platform-agnostic framework for application manage-
ment in HMP systems;

3) evaluation of how the exposure of sources of control and
monitoring increases energy-efficiency and enables the
trade-off of application requirements.

The presented framework is demonstrated with a stereo
matching application, a process for depth estimation, on the
61 core Intel Xeon Phi co-processor. This highlights how ap-
plication control and monitoring can enable greater power and
performance scaling. A run-time management approach, which
achieves a required performance threshold whilst minimizing
power consumption, is used to control multi-threading in the
application and perform frequency scaling of the platform.
In addition, a runtime controller is developed, to demonstrate
that application parameters, such as throughput and accuracy,
can be traded through the framework to optimise overall
quality of service and minimise power consumption. This
experimentation uses the Odroid-XU3 HMP platform. An
open-source C++ implementation of the framework and its

TABLE I
APPLICATION DOMAINS AND UNDERPINNING ALGORITHMS FOR HMP.

API has also been released.1

The remainder of the paper is organised as follows: Sec-
tion II presents analysis of applications and benchmarks
for HMPs. This highlights the importance of application-
aware runtime management approaches, which are presented
in Section III, along with existing frameworks that enable
runtime management. The proposed framework for application
control and monitoring is presented in Section IV. Experi-
mental results of how application control and monitoring can
increase system energy-efficiency, as well as a demonstration
of tradeoffs between application requirements, are presented
in Section V. Finally, Section VI concludes the paper.

II. HMP APPLICATIONS AND PLATFORMS

When considering a wide range of applications, it can be
observed that each application domain relies on similar un-
derlying methods or algorithms. For example, applications for
automotive driver assistance, healthcare monitoring based on
distributed webcams, or robotic sensing using stereo cameras
are all built upon computer vision algorithms. In a similar
manner, applications for object detection, image classifica-
tion, speech recognition, or pedestrian detection and traffic
in autonomous driving are all built upon machine learning
methods such as neural networks. These applications contain
similar patterns of computation and communication based on
the similar data structures and algorithms that they employ.

Table I shows the current and emerging algorithms that
underpin particular application domains. These algorithms
have different resource requirements that can not be satisfied
with homogeneous multi-core processors. For this reason,
heterogeneous multi-core platforms, which contain processors
with differing capabilities, can offer significant advantage in
terms of performance when facing complex and dynamic
applications.

Heterogeneous multiprocessor platforms can be classified
into two broad categories: performance and functional hetero-

geneity. The first relates to cores with the same instruction-set
architecture (ISA) but different power-performance character-
istics. An available HMP system that relies on this is the ARM
big.LITTLE, which incorporates high-performance out-of-
order ARM Cortex-A15 cores and low-power in-order ARM
Cortex-A7 cores. Functional heterogeneity relates to cores
with different characteristics such as general-purpose CPUs,
graphics processing units (GPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs) and various
hardware accelerators. For example, the 61-core Intel Xeon Phi
co-processor can be integrated into a functional heterogeneous
system as an accelerator. The Samsung Exynos 5422 is an
example of combining both types of heterogeneity into a single
HMP system-on-chip (SoC), with two quad-core performance-
heterogeneous CPU clusters and a Mali-T624 GPU, which is
currently used in modern smartphones to increase both the
energy-efficiency and performance capabilities of a system
through functional heterogeneity.

Both categories require the management and control of
hardware settings such that emerging applications can exploit
the capabilities of these systems at runtime, with adjustable
parameters that can be tuned to optimized their behaviour.
Moreover, due to the differences in ISA, the management of
functionally-heterogeneous systems requires advanced parallel
programming models such as CUDA or OpenCL, so that
applications can be executed across heterogeneous processing
elements. As a result, the proactive optimisation of application
performance for system energy-efficiency is a key research
challenge. Run time management is a solution to this challenge
that enables optimization of, and trade-off between, application
throughput, computation quality and energy efficiency with
varying requirements.

III. EXISTING RUNTIME MANAGEMENT APPROACHES
AND FRAMEWORKS

Over the past few years, different runtime management
approaches have been proposed to optimize system behaviour
while satisfying application requirements. These include dy-
namic voltage and frequency scaling (DVFS) [2], per-core
power gating [14], dynamic task mapping and thread mi-
gration [3]. Runtime managers (RTMs) typically rely on the
exposure of dynamic knobs and monitors, which provide a
mechanism to communicate with the application and platform.
Knobs allow the tuning of application and hardware param-
eters by the RTM, while monitors enable the observation of
application behaviour (i.e. application requirements) and the
measurement of hardware properties by the RTM [4], [9],
[10], [15]. In addition, knobs and monitors can been used
to explore application-device tradeoffs, such as throughput-
power [11] and precision-throughput [7], and locate optimal
operating points for applications [16].

While RTMs are typically designed to address general
challenges, such as energy-efficiency or thermal management
in embedded systems, they are largely implemented on specific
platforms or with specific classes of application, e.g., multime-
dia [17] or image processing [5]. Hence, they cannot be easily

ported to different applications and platforms. Benchmarks
are typically used to assess relative performance and measure
specific aspects of RTMs and hardware platforms. A bench-
mark is a set of programs whose execution results provide the
evidence of the computational performance of a platform. A
large number of benchmark suites have been implemented over
the past few years to measure different aspects and evaluate
the performance of these systems. Most target uni-processor
systems (e.g. MiBench), or are only commercial available
(e.g., MultiBench by EEMBC). Some notable benchmarks
for multiprocessor-based systems are also available for both
performance-heterogeneous systems such as ParMiBench and
PARSEC, and functionally-heterogeneous systems such as
Rodinia and Parboil which rely on on CUDA and/or OpenCL
to execute on GPUs.

However, benchmarks do not typically expose application
requirements (i.e. error, accuracy or certainty) in addition
to performance through a mechanism such as knobs and
monitors. This limits the range of optimization opportunities of
run-time management approaches. As a result, exposing more
than just application performance gives more optimisation
opportunities to the RTM. One way in which this can be
achieved is through the exposure and adaptation of tunable
parameters, from the application to the RTM, through a
standardized framework interface.

Several frameworks have been proposed in the literature to
address the challenge of providing cross-layer communication
with knobs and monitors [10], [11], [15], [18]. The most
relevant framework is the Heartbeats API [12], which provides
a standardised interface for applications to communicate their
current and target performance to external observers, such as
an RTM. However, the Heartbeats API only allows applica-
tions to communicate their throughput (i.e. the heart rate), and
it does not allow other types of parameters to be exposed, such
as accuracy and error, and prevents tradeoffs between them.

Most of the frameworks are based on the Heartbeats concept
and inherit its features, e.g. application monitors [9], [11],
[13], [15], [18], [19]. In order to perform tradeoffs within a
single application, multiple monitors of different types must
be exposed, e.g., throughput, accuracy or error rate, but many
frameworks do not support this functionality. In addition,
for an application to meet its requirements, a target can be
specified with the monitor. A small number of frameworks
support this feature but they do not indicate as to whether
the target is a maximisation or minimisation objective [9],
[11], [13], [15], [19]. Furthermore, only some frameworks
support concurrent applications, which is a common scenario
in real-world systems [10], [13], [18], [19]. As a result, these
approaches cannot be considered broadly applicable because
they do not allow fully application-agnostic behaviour.

Current frameworks provide partial abstraction of RTM
to device communication, but do not include both knobs
and monitors to control hardware components at runtime
[9], [12], [13], [19]. Moreover, most existing works do not
operate on heterogeneous platforms, which provide both high-
performance and energy-efficiency by combining conventional

App to RTM
API

RTM to device
API

Runtime management layer

Dev 1 e.g. CPU Dev ND

Device layer
e.g. GPU

Device
knobs

Device
monitors

Application
monitorsApplication

knobs

App 1 e.g. Image filter App NA

Application layer

Fig. 2. Cross-layer framework and API enabling communication between the
application, runtime management and device layers using knobs and monitors.
Examples are given for an image filter application on an HMP system.

CPUs with other accelerators. These platforms typically in-
crease the scalability of parallel applications and systems,
and therefore they need to be managed by a framework that
supports device-agnostic control. The only approach that is
based on a heterogeneous platform introduces a hardware
dependency in the process [9]. This restricts the cross-platform
capabilities of current frameworks, meaning that they do not
allow current RTM approaches to be portable across multiple
platforms. Finally, many of the current frameworks are not
made available, preventing their use and the extension of their
features by the research community.

IV. APPLICATION- AND PLATFORM-AGNOSTIC
FRAMEWORK

Section III presented a discussion of the limitations of
existing frameworks. To address these limitations, this section
presents an application- and platform-agnostic framework that
supports heterogeneous multiprocessor systems. This frame-
work enables the design and implementation of standardised
runtime management approaches by providing unified inter-
faces to both applications and hardware platforms.

Fig. 2 shows how the framework is created by separating
the system into three distinct layers, i.e. application, runtime
management and device. This reduces the design complexity
by enabling the runtime management layer to provide a
specific service to the applications (upper layer), e.g., to meet a
performance requirement, whilst meeting optimisation targets
by controlling the hardware resources (lower layer). These
layers are connected through an API and cross-layer constructs
called knobs and monitors (arrows in Fig. 2), which enable the
flow of information between the layers and the control and
monitoring of runtime-tunable and -observable parameters.
Specifically, the application layer comprises any number of
software processes, while the device layer includes the hard-
ware and its software drivers. The runtime management layer

Runtime management layer

Image filtering application

Monitor:
frame rate

[α,∞)

Knob:
filter mode

(single/
double)

(a) Application to RTM interactions.

Knob:
frequency
selection
{0,1,..,9}

General-purpose processor

Runtime management layer

Monitor:
temperature

 (−∞, T]

(b) RTM to device interactions.

Fig. 3. Cross-layer knob and monitor use within the presented framework.

comprises an RTM responsible for the control and monitoring
of the other two layers. The separation between the layers
ensures portability and cross-compatibility; applications and
device drivers only need to be written once to be used with
any implemented RTM.

Shown as arrows in the dashed regions in Fig. 2, and
in the two examples in Fig. 3, knobs and monitors enable
the communication of information between the layers of
the framework. Knobs allow the runtime configuration of
application and device parameters, while monitors enable the
measurement of hardware properties and the observation of
application behaviour at runtime. Bounds are attached to both
knobs and monitors, in the form of minima and maxima,
which allow applications and devices to inform the runtime
management process of targets and constraints. Bounds on
knobs represent a range of allowed values while bounds on
monitors represent a range of desired values. The monitor’s
value is acceptable anywhere between these two limits.

An example of application knobs and monitors is shown in
Fig. 3a with an image filter application that has the option
to select float or double precision for its numeric calcula-
tions at runtime. In the framework, this choice is exposed
as an application knob with options {0, 1} and controlled
by the RTM. If this application has differing constraints,
e.g. minimum latency, expressed as a time α, an application
monitor with this minimum bound could be given to the
RTM. In this case, the application periodically updates the
current latency so that the RTM can keep this within the
range (0, α]. On the hardware side, the example of a general-
purpose processor is considered in Fig. 3b within the device
layer. DVFS of the CPU is achieved using a device knob with
options {0, 1, . . . , 9}, enabling the RTM to switch between
ten distinct voltage-frequency pairs. Finally, to enable thermal
management by the RTM, a temperature sensor is considered
as an illustrative device monitor.

The combination of cross-layer knobs and monitors pro-
vides a mechanism to enable optimisation between appli-
cations and the device. The RTM’s primary objective is to
ensure that the true values of all application monitors remain
within the specified bounds. Beyond this, it is free to optimise
any unbounded monitors in either the application or device
layer to meet any secondary objectives, for example to reduce
power consumption. All knobs and monitors are expressed
in a standardised, unit-less format to maintain application

Cost Volume
Filtering

Grayscale &
Gradient

Cost Volume
Construction

Left
Image

Right
Image

Disparity
Selection

Post
Processing

Cost Volume
Filtering

Grayscale &
Gradient

Cost Volume
Construction

Disparity
Selection

Left
Image

Fig. 4. The stereo matching process composed of a series of image processing stages, in order to estimate the depth of a scene from a stereoscopic image
pair [4].

and device agnosticism. For example, DVFS intervals for the
Odroid-XU3 (introduced in Section V-B) are translated by
the device layer from MHz to a consecutive integer set as:
{200, 300, · · · , 2000} → {0, 1, · · · , 18} before being exposed
through the framework.

To provide maximal flexibility, all bounds and weights are
adjustable at runtime, and no restrictions are placed on when
update to these can occur. Most commonly, applications create
their knobs and monitors before being executed, however
no limitation is imposed on such events occurring partway
through application execution. Applications can also be at-
tached to and detached from the framework at any time, using
a specific set of registration and de-registration API functions.
This capability is in contrast to existing frameworks, most of
which assume a constant application set, contrary to the typical
use of many commercial embedded systems.

A. Application Knobs and Monitors

Integrating monitors into applications allows them to report
their requirements and acceptable ranges of operation. This
provides information to runtime management software about
how changes to a system configuration affects the behaviour
of applications. This also enables the system to be tuned holis-
tically to reach a more energy-efficient system-wide configu-
ration that also meets application requirements. Furthermore,
exposing tunable parameters from within applications as knobs
provides direct control over the application. Knobs extend the
operating space of an application into additional dimensions,
such as regulating the number of simultaneous threads. Knobs
and monitors also enable the adaptation of the application
in the presence of dynamic system constraints and tuning
the application at runtime avoids a dependency on design-
time information. This results in a more accurate optimisation
given real-time empiric knowledge of the behaviour of the
application and platform.

B. Application Monitor Weighting and Tradeoffs

Individual applications may have multiple performance
requirements and these may have differing priorities. For
example, an application that is aware of both its throughput
and accuracy may wish to prioritise the optimisation of one

over the other. These priorities may also be dynamic and vary
at runtime in response to external stimuli. In the proposed
framework, this priority is expressed with a numeric weight
attached to each monitor. These weights instruct the RTM to
expend proportional effort in optimising each monitor’s value.
Application monitor weights can be used to influence RTM
behaviour in two different ways. Firstly, the weight determines
which monitor to prioritise for optimisation. Other monitors
can either be kept within their bounds or not optimised if they
are below a given weight.

Alternatively, the weights can be used to proportionally set a
target between the bounds of each application monitor while
taking into account whether the monitor is a maximisation
objective, i.e. throughput, or a minimisation objective, i.e.
error. The RTM then attempts to reach the weighted targets
for each of the monitors.

In addition, applications themselves can be assigned a
weighting value. In a multi-tasking scenario, applications
operating as foreground processes must ensure a higher level
of consistency, to meet the tighter response times demanded by
a user or dependent system, therefore these applications should
be assigned a higher weight than those in the background.
In contrast to existing frameworks, all bounds and weights
are adjustable at runtime in the presented framework, to
provide maximal flexibility and ensure that no restrictions are
placed on when these updates can occur. A demonstration
of application monitor weighting through the framework is
presented in V-B using a trade-off between the throughput
and accuracy of an application.

V. EXPERIMENTAL RESULTS

In this section, evaluation of the application control and
monitoring features of the framework are presented. The
ability of the framework to expose sources of control and
monitoring within applications is shown in Section V-A with a
stereo matching application. The reduction in energy consump-
tion on a multi-core platform is demonstrated using a runtime
management approach that uses linear modelling to predict
the power consumption of the platform and performance of
the application.

The weighting of application monitors is demonstrated in
Section V-B with the Jacobi iterative method. This application
expose two application monitors to the RTM, throughput and
error, providing a trade-off opportunity. The application is a
computational kernel used for solving systems of linear equa-
tions, commonly found embedded in real-world applications.

A. Energy Saving Through Application Knobs and Monitors

This section uses a stereo matching algorithm to demon-
strate the use of knobs and monitors to control application
behaviour and monitor bounding to guide optimisation at run-
time. Stereo matching performs depth estimation and 3D sens-
ing and is used across many embedded applications including
person counting and tracking [20], autonomous navigation [21]
and mobile robotics [22]. A stereoscopic pair of images is
provided as an input and a depth or disparity map is returned
that encodes the real-world depth of each pixel. Fig. 4 shows
how the stereo matching process is composed of a series of
parallel image processing kernels. A software implementation
of the application is used that supports the dynamic adaptation
of the level of multi-threading used by each kernel [4].
Parallelism control is exposed through the framework as the
Threads knob (line 1 of Table II). The performance of the
application, measured in frames-per-second (FPS), is exposed
through the framework as a monitor to the runtime manager.
This monitor has a minimum bound on its value, shown in
Table II as R ∈ [0.4,∞). No maximum performance bound
is specified, therefore it is set to ∞ to signify that it remains
unbounded.

The Intel Xeon Phi 7120P platform is used to analyse the
advantages of exposing knobs and monitors from applications
such as stereo matching. The Xeon Phi has 61-cores, which
share a common voltage island and support frequency scaling
between 619 and 1240 MHz in nine fixed steps, with a corre-
sponding voltage ranging from 0.995 V to 1.06 V. Frequency
control is exposed as a device knob, as shown in Table II,
and is made platform-agnostic by scaling the frequencies to
consecutive integer values through the framework.

The runtime manager ensures that the performance monitor
value remains within its bounds and that power consumption
is optimised if the performance requirement changes. This is
achieved using Multiple Linear Regression (MLR) models to
predict the power and performance from a given set of knob
values. The MLR models are built at runtime using training
samples collected from real-time execution of the application.
Once built, the RTM uses the models to make predictions and
conduct performance and power scaling at runtime in response
to changes in the performance requirement.

Fig. 5 shows a subset of the points which make up the
power-performance operating space of the stereo matching
application when executing on the Xeon Phi. Each point
represents a unique combination of frequency and number of
available cores. The MLR models convert this discrete oper-
ating space into a continuous model and enable interpolation
between these sample points, down to the single core gran-
ularity. The combination of device and application knobs, to

TABLE II
APPLICATION- AND DEVICE-LEVEL KNOBS AND MONITORS FOR THE

STEREO MATCHING APPLICATION AND XEON PHI PLATFORM.

Layer Name Construct Allowed/target values

Stereo
Matching

Threads knob N ∈ [1,∞)
Performance mon R ∈ [0.4,∞)

Xeon
Phi

CPU Frequency knob N {0, 1, ..., 9}
CPU Power mon R ∈ [0,MAX_POW)

10 20 30 40 50 60
Average Power per Frame (W)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pe
rfo

rm
an

ce
 (F

PS
)

 P1:
32 cores
952 MHz

 P2:
16 cores
619 MHz

M
ax

. P
ow

er
 B

ou
nd

Min. Performance Bound

Freq. (MHz)
619
667
714
762
857
952
1048
1143
1238

Fig. 5. Bounded operating space of the stereo matching application on the
Intel Xeon Phi. Points joined by the black line use DVFS only.

control both DVFS and multi-threading, allows the application
to scale across a wider range of power consumptions, from
10 to 60 W, and deliver a wider performance range, from
0.06 to 0.97 FPS, than would be possible through DVFS and
device knobs alone. The operating points of the application
under DVFS control alone are shown in Fig. 5 with the points
connected by a line (assuming all the cores are used).

Red shaded regions in Fig. 5 illustrate the process of
applying bounds to monitors through the framework, with the
application specifying a minimum performance of 0.2 FPS
and the user indicating a maximum power consumption of
40 W. The framework allows these bounds to be adjusted
at runtime. The RTM traverses the Pareto-optimal frontier of
the application’s operating space, whenever the bounds of the
performance and power monitors change, in order to adjust
the application and device knobs as required. For example, the
arrow in Fig. 5 demonstrates a scaling operation that could be
performed by the RTM in order to move the application to a
more energy-efficient operating point in response to changes
in the performance monitor bound. Starting from a high-
performance high-power point at P1 (32 cores at 952 MHz),

 100

 200

 300

 400

 500

B C

T
h
ro

u
g
h
p
u
t

(S
o
lv

e
s
 p

e
r

S
e
c
o
n
d
)

app_perf.min

app_perf.max

10
-20

10
-10

10
0

10
10

 A
p
p
lic

a
ti
o
n
 N

o
rm

a
liz

e
d
 E

rr
o
r

app_err.max

app_err.min

0

1

2

A
D

E

A
1
5
 F

re
q
u
e
n
c
y

 (
G

H
z
)

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

A
p

p
lic

a
ti
o

n
 I

te
ra

ti
o

n
s

Time (s)

Fig. 6. Demonstration of application monitor weights for performance and error being used to influence runtime management of the Jacobi application.
Vertical lines show when the monitor weights are updated by the application and black lines indicate the new target values.

the frequency and the number of threads are decreased in order
to transition to P2 (16 cores at 619 MHz).

B. Application Monitor Weighting and Tradeoffs

This section experimentally demonstrates the use of applica-
tion monitor weighting to guide runtime manager optimisation
and achieve a trade-off between performance and accuracy
for an application. The application considered is the Jacobi
iterative method, a mathematical algorithm used to solve the
system of N linear equations Ax = b, where A is an
N × N matrix and x and b are N × 1 column vectors. The
algorithm is commonly embedded in real-world applications
as a computational kernel, which can be used for the purpose
of generating an approximation to a physical process. If A is
decomposed into diagonal and remainder components D and
R, x can be computed iteratively via (1), also shown in an
element-wise fashion in (2), where k is the iteration index.
Therefore, (2) can be parallelised by computing each x

(k+1)
i

independently.

x(k+1) = D−1
(
b−Rx(k)

)
(1)

x
(k+1)
i =

1

aii

bi −∑
j 6=i

aijx
(k)
j

 (2)

The error in the approximation, after performing K itera-
tions of (1), is established using ε = ‖Ax− b‖, which repre-

sents a single solution of the application. Tuning K operates
a trade-off between accuracy and computational speed. The
application exposes three knobs and two monitors, presented in
the first section of Table III. In the context of this experiment,
‖Ax − b‖ is captured as an error monitor, with maximum
bound ε. A throughput monitor reports the time taken to
complete K iterations of the algorithm. The application is
implemented as an OpenCL kernel that can be executed on
CPUs, GPUs and FPGA-based accelerators. Selection of the
resource to use is controlled through the device type knob
to the application.

The Odroid-XU3 development board is used as the device
layer in this experiment. The SoC is an HMP based on
the ARM big.LITTLE architecture, with two quad-core CPU
clusters and a GPU. The lower half of Table III summarises
the three device knobs are exposed through the framework
to provide DVFS control of each CPU cluster and the GPU.
The platform also contains sensors to directly monitor the
power consumption of each CPU cluster, the GPU and memory
subsystem. These are exposed through the framework as
device monitors with the bounds shown in Table III.

An RTM controller has been implemented to demonstrate
how monitor weights can be used to guide the trade-off
of application metrics. The controller uses the application
monitor weights to set a target value for each monitor within
its bounds and attempts to meet these targets with the available
application and device knobs. The optimisation of device

TABLE III
APPLICATION- AND DEVICE-LEVEL KNOBS AND MONITORS FOR THE

JACOBI APPLICATION AND ODROID-XU3 PLATFORM.

Layer Name Construct Allowed/target values

Jacobi

Iterations knob N ∈ [1,∞)
Data type knob {float,double}

Device type knob {CPU,GPU/FPGA}
Throughput monitor R ∈ [10,∞)

Error monitor R ∈
(
−∞, 1e−12

]

Odroid
XU3

A7 cluster freq. knob N {0, 1, . . . , 12}
A15 cluster freq. knob N {0, 1, . . . , 18}

GPU freq. knob N {0, 1, . . . , 6}
A15 cluster power monitor R ∈ [0,MAX_POW)
A7 cluster power monitor R ∈ [0,MAX_POW)
Memory power monitor R ∈ [0,MAX_POW)

GPU power monitor R ∈ [0,MAX_POW)

power is the secondary objective of the controller. This is
achieved by decrementing the frequency knob whenever pos-
sible, trading-off excess application performance or accuracy.

Fig. 6 shows how the RTM uses the weights of the through-
put and error monitors to synthesise a target value within
the monitor’s bound. Given the bounds specified by each
monitor, the RTM chooses to use the A15 cluster frequency
knob and the iterations knob to meet these target values.
Initially, the RTM decreases frequency (label (A) in Fig. 6)
and increases iterations to meet the monitor bounds and
approach the weighted target values (B), while minimising
power. During the first period, the throughput monitor has
a higher relative weight, leading to a target value closer to
the monitor’s maximum bound. At 20s, the weightings are
changed (C) and the RTM increases the iterations to meet
the lower error target, calculated from its higher weight. This
reduces the throughput and the frequency is increased to
compensate (D). When the monitor weights are updated again
at 40s, the RTM reduces the number of iterations and CPU
frequency as required (E).

VI. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated that HMP systems can benefit
from a mechanism to expose and manage the sources of con-
trol and monitoring from within applications at runtime. Their
increasing complexity means that management at runtime has
become a non-trivial task and energy-saving opportunities
exist in how software applications currently execute on HMP
systems. To address this challenge, this paper has presented
a framework that allows the direct control and monitoring of
software applications and supports the management of con-
current applications and heterogeneous platforms. The runtime
management of a stereo matching algorithm on a multi-core
platform has shown that the exposure of application con-
trols and requirements through the framework enables greater
optimisation of energy-efficiency. In addition, the trading of
application parameters using weights has been demonstrated
on a HMP using a runtime controller that manages applica-
tion and device knobs and monitors through the framework.
An open-source implementation of the framework has been

released.1 Research is ongoing to provide further validation
of the framework, including experimentation with concurrent
application execution and the integration of additional real-
world applications.

REFERENCES

[1] S. Pagani et al., Design Space Exploration and Run-Time Adaptation
for Multicore Resource Management Under Performance and Power
Constraints. Springer Netherlands, 2017, ch. 10, pp. 301–332.

[2] A. Das et al., “Reinforcement Learning-based Inter- and Intra-
application Thermal Optimization for Lifetime Improvement of Mul-
ticore Systems,” in ACM/EDAC/IEEE Design Automation Conf., 2014.

[3] B. K. Reddy et al., “Inter-cluster Thread-to-core Mapping and DVFS on
Heterogeneous Multi-cores,” IEEE Trans. on Multi-Scale Comput. Syst.,
vol. PP, no. 99, pp. 1–1, 2017.

[4] C. Leech et al., “Runtime performance and power optimization of
parallel disparity estimation on many-core platforms,” ACM Trans. on
Embedded Comput. Syst. (TECS), vol. 17, no. 2, p. 41, 2018.

[5] S. Yang et al., “Adaptive Energy Minimization of Embedded Heteroge-
neous Systems using Regression-based Learning,” in Int’l Workshop on
Power and Timing Modeling, Optim. and Sim., 2015.

[6] F. Gong et al., “Cooperative DVFS for Energy-efficient HEVC Decoding
on Embedded CPU-GPU Architecture,” in ACM/EDAC/IEEE Design
Automation Conference, 2017.

[7] X. Sui et al., “Proactive Control of Approximate Programs,” in Int’l
Conf. on Arch. Support for Prog. Lang. and Operating Syst., 2016.

[8] G. Singla et al., “Predictive dynamic thermal and power management
for heterogeneous mobile platforms,” in 2015 Design, Automation Test
in Europe Conf. Exhibition (DATE), 2015.

[9] S. T. Fleming and D. B. Thomas, “Heterogeneous Heartbeats: A
Framework for Dynamic Management of Autonomous SoCs,” in Int’l
Conf. on Field Prog. Logic and Appl., 2014.

[10] D. Gadioli et al., “Application Autotuning to Support Runtime Adap-
tivity in Multicore Architectures,” in Int’l Conf. on Embedded Comput.
Syst.: Architectures, Modeling, and Simulation, 2015.

[11] H. Hoffmann et al., “A Generalized Software Framework for Accurate
and Efficient Management of Performance Goals,” in Int’l Conf. on
Embedded Software, 2013.

[12] H. Hoffmann et al., “Application Heartbeats: A Generic Interface for
Specifying Program Performance and Goals in Autonomous Computing
Environments,” in Int’l Conf. on Autonomic Comput., 2010.

[13] A. Baldassari et al., “A Dynamic Reliability Management Framework
for Heterogeneous Multicore Systems,” in IEEE Int’l Symp. on Defect
and Fault Tolerance in VLSI and Nanotechnology Syst., 2017.

[14] A. M. Rahmani et al., “Reliability-Aware Runtime Power Management
for Many-Core Systems in the Dark Silicon Era,” IEEE Trans. on VLSI
Syst., vol. 25, no. 2, 2017.

[15] H. Hoffmann et al., “Dynamic Knobs for Responsive Power-aware
Computing,” in Int’ Conf. on Arch. Supp. for Prog. Lang. and OS, 2011.

[16] V. Vassiliadis et al., “Exploiting Significance of Computations for
Energy-constrained Approximate Computing,” Int’l J. of Parallel Prog..,
vol. 44, no. 5, 2016.

[17] Y. G. Kim et al., “Enhancing Energy Efficiency of Multimedia Appli-
cations in Heterogeneous Mobile Multi-core Processors,” IEEE Trans.
Comput., vol. 66, no. 11, 2017.

[18] E. Paone et al., “Evaluating Orthogonality between Application Auto-
tuning and Run-time Resource Management for Adaptive OpenCL
Applications,” in IEEE Int’l Conf. on Appl.-specific Syst., Arch. and
Proc., 2014.

[19] F. Gaspar et al., “A Framework for Application-guided Task Manage-
ment on Heterogeneous Embedded Systems,” ACM Trans. on Arch. and
Code Optim., vol. 12, no. 4, 2015.

[20] A. Burbano et al., “3D-sensing Distributed Embedded System for People
Tracking and Counting,” in International Conference on Computational
Science and Computational Intelligence (CSCI), Dec 2015, pp. 470–475.

[21] H. Oleynikova et al., “Reactive Avoidance Using Embedded Stereo
Vision for MAV Flight,” in IEEE International Conference on Robotics
and Automation (ICRA), May 2015, pp. 50–56.

[22] S. Solak and E. D. Bolat, “Distance Estimation using Stereo Vision for
Indoor Mobile Robot Applications,” in 9th International Conference on
Electrical and Electronics Engineering (ELECO), Nov 2015, pp. 685–
688.

