
� �	�� ����������� ����
���
�� �����
����	
��
���������	�����

Alejandro. G. Gener
Networks and Embedded Systems

UTRC-Ireland
Cork, Ireland

garciaal@utrc.utc.com

J. Andrés Otero
Centro de Electronica Industrial

Universidad Politecnica de Madrid
Madrid, Spain

joseandres.otero@upm.es

Juan Valverde
Networks and Embedded Systems

UTRC-Ireland
Cork, Ireland

ValverJ@utrc.utc.com

Philip J. Harris
Networks and Embedded Systems

UTRC-Ireland
Cork, Ireland

HarrisPJ@utrc.utc.com

Abstract� Nowadays, the level of complexity attained by
embedded systems is convoluting the barrier between
simulation and implementation. Dealing with complexity
requires of new abstraction layers amongst design phases to
guide the process from requirements to implementation. Model-
based design methodologies offers an effective alternative to
address these designs, but existing commercial tools are limited
as new implementation technologies appear.

This paper addresses this design problem by proposing an
architecture and a methodology for fast prototyping of runtime
adaptive Software Defined Radio applications on FPGAs. The
methodology follows a model-based design approach including
hardware-in-the-loop testing using automatic code generation.
The processing architecture has been designed so Dynamic
Partial Reconfiguration is possible to switch amongst different
processing elements seamlessly at runtime. This approach
speeds up the response for test iterations in SDR embedded
designs going from hours to ten minutes, which is crucial to save
costs.

Keywords�Model-based design, SDR, FPGA, DPR

I. INTRODUCTION

The design of complex embedded systems includes
several stages ranging from requirements specification to
hardware implementation. Model-Based Design (MBD)
proves to be an effective and efficient way to trace the whole
process, helping to overcome difficulties that might appear
through visual inspection, simulation of models, easier fault
injection or formal verification. In traditional design
processes, information is usually transferred in the form of
handwritten text documents, such as source code or batch files
which can be difficult to understand by engineers without the
specific background, while they are very time consuming and
difficult to maintain and update. MBD tools, such as Matlab,
allow engineers to focus on higher levels of abstraction and to
take advantage of high levels of automation and automatic
artefact generation to support certification [1].

This design approach is very powerful when dealing with
safety critical applications such as space applications [2],
commercial vehicle electronics [3], or aircraft avionics
systems [4][5] where a complete traceability is a must and fast
iterations in the design process help to overcome design
problems in a faster and more controlled way.

One application that can take advantage of MBD
techniques for hardware-software co-design is Software
Defined Radio (SDR). For instance, The Wireless Avionics
Intra-Communication (WAIC) association is enhancing

wireless connectivity in avionics thanks to the use of Software
Defined Radio (SDR) systems. In this context, following a
MBD methodology accelerates the development process and
reduces costs in the project without renouncing reliability [6].

Moreover, commercial Systems on Chip (SoCs) are
becoming the preferred option to perform digital signal
processing in SDR due their heterogeneous nature. They very
often include general purpose processors, dedicated
peripherals and programmable logic, typically in the form of
FPGAs. Some of these FPGAs have the ability of accessing
their own configuration memory and change their content at
runtime without interrupting the execution of those parts left
intact. This is called Dynamic Partial Reconfiguration (DPR)
[7].

However, in spite of the fact that DPR meets SDR
requirements with a better performance in terms of power
consumption and resources [8], it is not included in fast
prototyping MBD commercial flows. This enforces
developers to combine these technologies manually, which is
translated in an increased complexity, cost and iteration time
for embedded tests.

This paper presents a new hardware-software architecture
developed in a reconfigurable SoC that allows fast prototyping
for SDR applications, reducing dramatically the time between
testing iterations. In addition, Matlab MBD workflow has
been extended to support DPR, providing a GUI which
enables the application of the proposed methodology in real
industrial applications. By using the integrated DPR feature,
different types of signal processing elements such as
modulators, equalizers or filters can be loaded seamlessly to
enable new functionalities while increasing safety and
security by adding on demand redundancies if needed. In
order to ease the integration of the dynamic function blocks,
the whole process is automated and guided using a Graphical
User Interface (GUI). With this approach, any reconfigurable
processing element can be developed and simulated at a high
level of abstraction, enabling a fast track to generate a partial
bitstream corresponding to the functionality under test and to
introduce it into the embedded system for hardware-in-the-
loop testing. Moreover, reconfiguration times can be
measured in the hardware setup and introduced afterwards in
subsequent simulations.

 The rest of the paper is organized as follows. Section 2
contains the state of the art related with SDR platforms and
MBD tools. Section 3 describes the baseline SDR
development platform while Section 4 defines the
modifications introduced in the architecture to make it

compatible with DPR technology. In Section 5, dynamic
partial reconfiguration workflow and their design
specifications to achieve it are presented at the same time it
describes the process automation and the GUI development.
A real SDR application development and results are presented
in Section 6 and Section 7 contains the conclusion and future
work.

II. RELATED WORK

A Software Defined Radio (SDR) is a programmable
communication system with the capability of operating
different wireless communication protocols without the need
to change or update hardware components. It consists of a
digital processing element, which executes signal processing
operations such as modulations, Fast-Fourier Transfer (FFT
functions), control gain, decoding or equalization and high-
level protocol algorithms, connected to a transceiver, which
modifies the signal to adapt their electromagnetic
transmission characteristics. Digital signal processing
algorithms can be performed by a general purpose processor
(GPP), a digital signal processor (DSP), an FPGA or a SoC
with a hybrid design (hardware-software architecture) [9].

SDR is not a new concept. It is possible to find a lot of
research works optimizing different SDR processing elements
such as GPPs [10], GPUs[11] and SoCs [12], being the latter
the best solution due to its configurability and
programmability [13].

Moreover, there are many different development boards,
custom and commercial, in the state of the art for SDR
applications: USRP devices [14] offers an expensive but solid
FPGA-based SDR compatible with Matlab MDB tools
meanwhile Xilinx development boards such as the Zedboard
mixed with Analog Devices transceivers are a cheaper
solution for Hybrid SDR systems [15]. Other companies such
as Nvidia opts for GPU-based SDR systems offering a
communication extension for the Jetson development board
[16]. On the other hand, there are cheaper SDR solutions
developed to stream data to host computers. The RTL-SDR
transceiver [17] is the cheapest solution to stream data
meanwhile the Beagleboard system [18] and the Adalm Pluto
boards offer the possibility to process standalone complex
algorithms without renouncing their low price. As a result of
this analysis, the latter board has been selected for prototyping
purposes in this work due to its cost and reconfigurability [19].

Despite mostly of the boards mentioned above are
compatible with Matlab and GNU radio MBD solutions for
embedded systems, these tools cannot generate embedded
automatic code compatible with DPR. Current SDR solutions
that implements DPR uses these tools to generate HDL code
to modify it by hand, consuming hours in the implementation
process [20].

On the other hand, some workflows based on the MBD
approach have been developed introducing a DPR process
[21] but none of them were specifically created for SDR
architectures.

III. BASELINE SDR ARCHITECTURE

The Adalm Pluto board is a low-cost hybrid SDR system
for radio applications. It combines a Zynq-7010 SoC
connected to an AD9363 Analog Devices (AD) transceiver. It
offers two channels for data transmission and reception that
can be operated in full duplex, capable of generating or
measuring RF analogue signals from 325 to 3800 MHz, at up

to 61.44 Mega Samples per Second (MSPS) with a 20 MHz
bandwidth. The board is a completely self-contained device
entirely USB powered with the default firmware that offers an
interaction with RF signals from MATLAB, Simulink, GNU
Radio or custom C, C++, C#, or Python. The firmware and
hardware specifications are fully documented by AD offering
a complete system customization.

The SoC is featured with a default Embedded Linux
Operating System distribution with a Buildroot file system
which contains pre-compiled libraries to access the AD
transceiver. Data are stored in buffers that are pushed into the
kernel memory space to be collected by the Programmable
logic (PL) part of the SoC through a Direct Memory Access
(DMA) data mover. The DMA sends this data to the
interpolator that can be configured from software using the
provided AD libraries. This interpolator can be enabled
providing an up-sampling factor of eight and dividing data in
two different channels for RF transmission (I/Q) to be
managed by the AXI_AD9361 HDL block [22]. This
processing element manages the communication with the
AD9364 transceiver through an LVDS protocol. It also
generates a clock signal using an internal phase-locked loop
(PLL) that supplies the interpolator and direct memory access
(DMA) logic. This signal depends directly on the digital-to-
analogue converter (DAC) sampling frequency providing a
complete synchronization amongst elements (DMA,
interpolator and DAC).

The first element that the AD9364 transceiver has is a
programmable FIR filter whose parameters (such as
coefficients, gain and interpolator factor) can be configured
from software using a SPI communication. Then, data are
filtered before and after entering in the DAC. Finally, the
analogue signal is mixed with the carrier to be transmitted
through the antenna. All the different communication
parameters (carrier frequency, sampling frequency, filters and

Figure 1. DPR logic block implemented inside the SDR
architecture

bandwidth) can be easily defined and modified from the
software side.

This default architecture is designed to stream radio-
frequency data to a host computer connected via USB. Some
tools such as Matlab or GNU radio are able to communicate
with the board and run simulations using real RF signals.

IV. MODIFIED SDR ARCHITECTURE

After the description of the baseline reference architecture
for SDR, the modifications introduced to the architecture in
order to make it compatible with dynamic and partial
reconfiguration are described next.

First of all, the interpolator logic has been replaced by a
hardware block that wraps and manages the different
functionalities that can be dynamically added or modified to
the baseline model. Figure 1 shows how this idea fits with the
original structure. The purpose of the dynamic architecture is
to be able to change between two different paths at run time
reconfiguring the specific hardware logic of the system
seamlessly.

However, from the software point of view, the user does
not have knowledge about which precise bit is received by the
DPR wrapper logic block. For this reason, the implementation
of a protocol is necessary to guaranty a perfect hardware-
software synchronization.

DMA frames are divided in two groups as Figure 2 shows:
control frames and data frames. The first ones contain the
information about how many bits are going to be sent through
a specific path. In turn, data frames contain data bits to be sent.
However, both frames have a 6-bit header for synchronization
purpose. The first bit indicates the frame type (data or control),
the next four bits select one of twelve different oversampling
factors, and the last header bit indicates which path has to be
enabled. This protocol can be easily adapted if more
reconfigurable blocks or configuration parameters need to be
used.

The first frame read by the system has to be a control frame
while next frames contain the data to be transmitted. Once the
data length indicated in the control frame has been delivered,
another control frame is sent indicating how many bits would
be delivered with that specific configuration. This allows the
architecture to change at run time the processing path without
losing a single bit of information. Moreover, the fix 6-bit
header creates a reliable capability in case of any
desynchronization between software and hardware appears.

The proposed DPR wrapper logic is composed of four
main elements: A control state machine logic, a sample rate

controller, two parallel dynamically reconfigurable blocks and
a multiplexer. Figure 2 shows the connections amongst DPR
wrapper elements and its interaction with the DMA.

A. Control State Machine Logic
The state machine manages the interface between the

DMA and the data decoder. The DMA stores the data sent
from software in 32-bit frames which are read from a FIFO.
The wrapper logic reads the last data and sends a ready signal
to the DMA indicating that the frame has been read. Once the
frame is read, it has to be decoded.

B. Sample Rate Controller
The frame rate controller block receives the up-sampling

factor information from the control state machine. It will
generate a counter with a different number of steps from 0 to
1280 depending on the up-sampling factor selected by the
user. This counter supplies both reconfigurable paths that can
use it for many DSP algorithms such as modulations,
interpolations or filtering. This block also indicates to the state
machine when a new information bit can be sent to the
different paths.

C. Dynamically Reconfigurable Blocks
These blocks represent the different reconfigurable

modules that can be updated to the model at run-time. From
the static architecture point of view, they are black boxes that
can be filled with any logic algorithm, whenever it follows the
rules mentioned below:

� The algorithm has to work with a throughput of one
sample per clock cycle, to maintain synchronism in
the data path.

� It has to divide the signal in two sixteen bit integers
for the different electromagnetic waves (real and
imaginary).

� It will receive data from the state machine
sequentially, bit by bit.

D. Reconfigurable Path Multiplexer
The multiplexer is controlled by the state machine which

reads the path selection bit from the control frame According

Figure 2. Protocol for hardware-software synchronization

Figure 3. DPR wrapper logic block scheme

to this bit, the configured path is selected to send its output bits
to the AXI_AD9361 HDL module. In the meanwhile, the
unselected path can be reconfigured.

One of the main advantages of this architecture is not only
that changes can happen at runtime without losing any
information bit but also a huge sampling frequency drop
appears (eq 1.) between the DAC frequency and the software,
allowing the microprocessor to have more time between each
time the microprocessor fills the buffer with new data.

 Being
!� the DAC sampling frequency, �,0)- the over-
sampling factor that indicates the number of signal samples
per bit, ���1+(/* the number of data bit per DMA frame and
��

	
1+(/* the number of 32-bit frames that the software
buffer has, the sampling frequency from the software point of
view can be described as:

���.1 ? #534
&:=7;�!$�>96<8��'##"%>96<8

 (1)

For instance, if the DAC is configured with 61.4 MSPS
(which is the maximum physical sample rate available for this
model), with an oversampling factor of 1280 (maximum
configurable for the architecture) and a buffer of 4096 frames.
The period of time that the processor has between buffer
pushes is:

������ ? ������������
�������2

@ ���� � (2)

Note that ���1+(/* is 26 because header bits do not
count as data bits.

This sampling frequency drop gives the microprocessor
the possibility to perform more complex algorithms between
buffer fill operations such as Fast Fourier transforms (FFTs)
or, like in the application presented in this paper, dynamic
partial reconfiguration.

V. DPR WORKFLOW AND GUI
Dynamic Partial Reconfiguration can be defined as the

modification of an operating FPGA design by loading a partial
configuration file at runtime, while the area of the device is
not affected by the reconfiguration remains working [23]. This
allows FPGAs to carry out different functionalities without
penalizing its size reusing a specific area each time a change
in the functionality is needed. Vivado partial reconfiguration
workflow eases the generation of partial bitstreams
compatible with previously synthesized systems. A static part
(i.e. the portion of the design not affected by reconfiguration)
is previously synthesized with dummy boxes instead of the
partial reconfiguration modules (PRMs). Before the
placement and routing operations, it is necessary to define
which regions of the FPGA will allocate the different PRMs.
This has to be done manually since it depends on the developer
criteria. Once the placement and routing are done, all the logic
that belongs to the static part is locked and saved in a
checkpoint that contains the information of the static
architecture. It can then be used for the implementation of
reconfigurable blocks [24].

The implementation of the static architecture explained in
section II featured with dynamic partial reconfiguration
cannot be completed using Matlab embedded hardware-
software co-design workflow since this feature is not fully
supported by this workflow. Nevertheless, the architecture has
been designed in Simulink to test its functionality before the
implementation. Then, the VHDL code of the static model is

Figure 4. Dynamic Partial Reconfiguration workflow.

TABLE I. RECONFIGURABLE SECTION RESOURCES

Region
Resources

LUTs Registers Muxes BRAMs DSPs

Pblock0 2000 4000 1000 10 10

Pblock1 4000 8800 2200 20 20

ZYNQ 7010 17000 35200 16000 60 80

generated automatically using Matlab HDL coder [25] to
introduce it as a custom IP inside the baseline board design.
Following Vivado DPR workflow, the reconfigurable paths
are implemented in the model introducing black boxes that
bypass data directly to the AXI_AD9361 HDL module. In
table I it is shown the amount of resources dedicated to each
reconfigurable region of the FPGA. It is important to notice
that the difference between reconfigurable region sizes allows
developers to allocate algorithms inside one region or another
depending on the resources they need. Finally, a Linux image
has to be reconstructed with the bitstream generated to link
software resources with the new hardware implementation.

Once the bitstream of the static architecture is generated
(and even running), new reconfiguration modules can be
added to the system following the DPR workflow. One of the
main advantages of Vivado tools and Partial Reconfiguration
workflow is that it can be automated thank to the use of TCL
scripts. Taking advantage of TCL commands, a Graphical
User Interface (GUI) has been developed in Phyton to enhance
the implementation speed of dynamic partial reconfiguration
blocks from Simulink models. The process of building a
standalone application using custom hardware accelerators
designed from Simulink can be divided in 4 main tasks: HDL
code generation, partial bitstream generation, FPGA
programming and cross-compilation. As it is shown in Figure
4, the GUI manages 3 of the tasks automatically since the
HDL code generation is operated from Simulink.

A. HDL code generation
The first step refers to the VHDL code generation from

Simulink. As it was mentioned before, DPR feature is not
directly compatible with HDL coder. However, the GUI can
merge VHDL codes generated from Simulink with the static
design. To do so, the simulation model in Simulink must
comply with the following rules:

� The name of the PRM block has to be the same as the
black box allocated in the static Vivado model.

� The interfaces between PRMs and the static model
must match in terms of names and data types.

� The algorithm block must be wrapped by a Simulink
subsystem with registers in each Input and Output
signals to ensure timing FPGA specifications.

B. DPR Workflow
Once the HDL code is generated, the reconfigurable block

is synthesized separately to be merged with the previously
generated static design. This block is mapped into the regions
of the FPGA selected as reconfigurable areas during the
implementation of the static system and, after the verification
process, the partial bitstream is created. This process, as it is
shown in Figure 4, is managed automatically by the GUI,
which calls a TCL script in Vivado that starts the DPR
workflow in a second plane with the configuration specified
in the GUI such as the name of the partial bitstream and the
FPGA region that will allocate the PRM block. Moreover, all
the progress can be followed at run-time through the GUI
command window.

C. Send bitstreams and program FPGA
The partial bitstream is sent to the board file system using

a Session Control Protocol (SCP) between the board and the
host computer, also integrated in the GUI. The GUI is
prepared to open a SSH session (password and username are
added automatically) to communicate itself directly with the
embedded Linux. It can access directly to the Linux PCAP
driver that allows the processor to access to the FPGA
program memory in order to load the specific partial bitstream
into the FPGA memory. Moreover, the GUI is prepared to
bind and unbid the necessary drivers to upload not only a
partial bitstream but also a total bitstream with a different
model, enhancing the modularity of this tool for applications
different than SDR [26].

D. Cross-compile applications
Once the hardware is uploaded to the board, it is necessary

to create a software application that sends input data to be
transmitted through the architecture mentioned before. This
application has to be cross-compiled in the host computer
since the board embedded Linux distribution does not support
an embedded compiler. The GUI has stored not only AD
library cross-compiled, but also an extra abstraction layer
library to ease the transceiver and hardware configuration. The

(a) GUI Bitstream generator window (b) GUI Cross-compiler window

Figure 5. GUI. Sub-figure (a) shows the bitstream generator window and sub-figure (b) shows the cross-compiler window.

GUI is capable of generating an application that runs
standalone inside the board for a fast hardware-in-the-loop
testing. Run-time measures to Matlab are sent through an SSH
connection.

 Figure 5 shows 2 of the 4 GUI windows: The partial
bitstream generator in a) and the cross-compiler window in b).
They are composed by a command window that shows
information of second plane processes at run-time, a browse
to select the specific files needed for each task, a text input
box to select the name and a set of buttons to launch the
different workflow tasks. Moreover, the partial bitstream
generator includes the selection of the FPGA region where the
PRM will be allocated. The bitstream loader window has a
similar structure to the partial bitstream generator and the
information window offers instructions about how to use the
application and information about the resources of each
reconfigurable FPGA region.

 In order to speed up the testing of reconfigurable blocks,
two software applications had been introduced by default in
the board file system. These applications send constantly
random input data through one of the two paths.

VI. SDR TEST APPLICATION

Thanks to Matlab automatic code generation and the GUI
mentioned before, it is possible to develop a SDR application
which runs standalone in the board compatible with DPR
going from simulation to real implementation in a few
minutes. To demonstrate this approach, an adaptive
modulation application has been created using the workflow
described above.

Adaptive modulation is an approach in cognitive radios
[27] that has being used in multiple communication
applications such as GSM (Global System for Mobile

Communication). It uses an adaptive architecture to modify
the modulation of the physical layer according to the different
weather conditions since there are certain modulations that are
more robust under raining conditions.

To develop the use case application, the Simulink model
created for testing the static architecture has been merged with
three different modulation blocks, also designed in Simulink.
These blocks contain three different modulation algorithms
which will replace the dummy boxes implemented in the static
architecture. Moreover, its functionality can be first simulated
in Simulink to ensure the correct functionality of the
algorithms. The modulations selected for these applications
are GMSK, QPSK and 4QAM.

GMSK modulation signal
�	� is transmitted following
eq. 3 being ��	� the phase of the demodulated signal and ��
the carrier signal frequency.

�	� � ������	�� ��������	�
 ������	�� ��������	� (3)

The modulator will transform data bits into positive and
negative symbols and depending on the sign, it reads the
elementary phase symbol data from look-up-tables [28]. The
symbol is added with previous samples and divided into I/Q
signals thanks to the proper operation (sin or cos) to obtain eq.
3. This last operation has been developed with a pipelined
CORDIC architecture following the specification of having a
throughput of one sample per clock cycle. [29]

On the other hand, 4QAM and QPSK modulations have an
input buffer that packages the number of bits needed for each
modulation (2 bits for QPSK and 4 bits for 4QAM). The
proper constellation value is obtained from a Look-Up-Table
according to the bits received. Then, the symbols pass through
a raise cosine filter in order to reduce Inter-Symbol
Interference (ISI) and are sent to the output.

Figure 6. DPR application running standalone. The figure shows a SSH session and data represented by Matlab in the
frequency and complex domain.

Once the modulations have been tested in Simulink, the
partial bitstreams are generated directly from the HDL files
automatically generated by Matlab and sent them to the board.
The testing of each modulation can be done using the two
applications loaded in the file system that sends random data
through both reconfigurable paths on-board. This allows a
faster approach to test different signal processing algorithms
designed independently in Simulink in a real environment.

A specific application has been developed in order to test
dynamic partial reconfiguration at runtime. This program
takes the partial bitstreams from the board file system and
upload them into RAM memory to speed up the
reconfiguration time. QPSK modulation will run into path0
dynamic block meanwhile GMSK and 4QAM are constantly
reprogramed into path1 block. Having partial bitstreams
loaded in the system, the application first sends random data
through GMSK modulation, which is allocated in path1. Then,
it changes to QPSK block (path0) meanwhile it is
reconfiguring path1 with 4QAM modulation. Thanks to the
benefits provided by dynamic and partial reconfiguration, the
system can continue sending data through the other path
without interrupting the communication. Once the system
finishes to send data through path0, it will change to path1,
modulating the signal with the new configured PRM.

For a hardware-in-the-loop testing, another board is
connected to the host computer. While one board is
transmitting data standalone with the application mentioned
above, the other is streaming received data directly to Matlab.
Thanks to this implementation it is possible to visualize the
signal sent at runtime. Nevertheless, it is possible to test real
measurements with only one board since it allows full-duplex
communication. The architecture can run a standalone
application to send data while it is streaming the received data
to Matlab at the same time. Figure 6 presents the spectrum and
the spectrogram of the received signal while modulations are
changing. It also shows the reconfiguration time of 2.8 ms for
each PRM. This time represents the reconfiguration of a
quarter size of the FPGA through the PCAP driver and can be
decreased using different reconfiguration processes such as
the ICAP.

Thanks to this application it is proved that new
reconfigurable signal processing algorithms such as different
modulations for a SDR system can be implemented and tested
in less than ten minutes while a complete implementation of
the modulation would take hours or even days. Moreover, it is
proved that the reconfiguration of dynamic blocks can be done
at run-time without affecting the communication reliability
giving at the same time information about partial
reconfiguration times.

VII. CONCLUSIONS

This paper has presented not only a new hardware-
software architecture developed in a SoC that allows a fast
prototyping solution for SDR applications, but also a new
MBD workflow compatible with DPR for software-hardware
designs. The architecture, implemented in the ADALM
PLUTO board, has been designed to allow engineers to add
dynamic function blocks exchangeable in run-time thanks to
DPR. Moreover, all the process is automated and presented in
a visual way using a GUI. The process follows a MBD
approach adding partial bitstream generation from VHDL
code generated with Simulink. With this approach, designers
can develop and simulate in Simulink any processing element,

generate a partial bitstream and introduce it into the embedded
system for a hardware-in-the-loop testing in less than ten
minutes, saving developing time and costs in complex SDR
projects. The partial reconfiguration times can be measured
and introduced in future simulations to increase the similarity
between them and real reconfigurable SDR systems.

Moreover, the GUI can also generate partial bitstreams for
any static model and for any Zynq development board, such
as Zedboard or Pynq. It has been proven to be an appropriate
solution for a fast prototyping not only in SDR applications
but also in any application that requires a SoC
implementation. This approach also opens up a bigger
customization than the supported by Matlab hardware-
software co-design workflow, implementing DPR in
embedded systems.

REFERENCES
[1] F. Paternò, Model-Based Design and Evaluation of Interactive

Applications, Springer, 1999
[2] �� �81/6/>>3� �� �3=3� +8. �� "91896+>>3� E!90>A+</ �/038/. +.39� �

key technology for flexibility and reconfigurability in space
+::63-+>398=�F 38 ���	 ���� �/><9691C 09< �/<9=:+-/
(MetroAeroSpace), may 2014, pp. 399D403

[3] K. D. Singh, P. Rawat, and J.-�� �98838� E�9183>3@/ <+.39 09<
vehicular ad hoc networks (CR-VANETs): approaches and
-2+66/81/=�F �# �!�� �9?<8+6 98 %3</6/== �977?83-+>398= +8.
Networking, vol. 2014, no. 1, p. 49, dec 2014.

[4] T. Kazaz, C. Van Praet, M. Kulin, P. Willemen, and I. Moerman,
E�+<.A+</ �--/6/<+>/. !� �6+>09<7 09< �.+:>3@/ �3< �8>/<0+-/=�F +:<
2017.

[5] &� �+3� �� (29?� +8. &� �?+81� E�9./6-Based Design for Software
�/038/. +.39 98 +8 �����F ���� �--/==� @96�
� ::�
���D8283,
2017.

[6] E%��� �<94/->F)�8638/*� �@+36+,6/� https://waic.avsi.aero/about/
[7] T. Kalb and D. Gö2<381/<� E�8+,6381 .C8+73- +8. :+<>3+6

</-98031?<+>398 38 &3638B !�!9��F ���� �8>/<8+>398+6 �980/</8-/ 98
ReConFigurable Computing and FPGAs (ReConFig), Cancun, 2016,
pp. 1-7.

[8] S. Hosny, E. Elnader, M. Gamal, A. Hussien, A. H. Khalil and H.
Mostafa, "A Software Defined Radio Transceiver Based on Dynamic
Partial Reconfiguration," 2018 New Generation of CAS (NGCAS),
Valletta, 2018, pp. 158-161.

[9] Akeela, R.; Dezfouli, B. Software-defined Radios: Architecture, state-
of-the-art, and challenges. Comput. Commun. 2018, 128, 106D125.

[10] �� "+8� �� �3?� �� (2+81� '� (2+81� �� �+81� +8. �� �� $9/65/<� E!9<+�
high-performance software radio using general-purpose multicore
:<9-/==9<=�F �977?83-ations of the ACM, vol. 54, no. 1, p. 99, jan
2011.

[11] �� �� �366+1/� E��# �8>/1<+>398 38>9 + !90>A+</ �/038/. +.39
�<+7/A9<5�F �2��� .3==/<>+>398� �9A+ !>+>/ #83@/<=3>C� �����

[12] �� @+8 ./ �/6>� �� �� !?>>98� +8. �� �� �9C6/� E�--/6/<+>381 =90>A+</
radio: Iris 98 >2/ (C8; !9��F 38 ���� ��������� ��=> �8>/<8+>398+6
Conference on Very Large Scale Integration (VLSI-SoC), oct 2013, pp.
294D295.

[13] �� �9:/� �� '� �2/?81� %� �?5� +8. �� �9A/=� E�/<09<7+8-/
Comparison of Graphics Processors to Reconfigurable Logic: A Case
!>?.C�F ���� "<+8=+->398= 98 �97:?>/<=� @96�
�� 89� 	� ::� 	��D448,
apr 2010.

[14] E#! � ./@3-/= 09< !� F)�8638/*� �@+36+,6/� https://www.ettus.com
/product-categories/usrp-networked-series/

[15] E(C8; ,9+<.= 09< !� F)�8638/*� �@+36+,6/� http://zedboard.org/pro
duct/zedboard-sdr-ii-evaluation-kit

[16] E�@3.3+ ��# 09< !� F)�8638/*� �@+36+,6/� https://www.nvidia.
com/object/jetson-tk1-embedded-dev-kit.html

[17] E "�-!� =:/-303-+>398=F)�8638/*� �@+36+,6/� https://www.rtl-
sdr.com/about-rtl-sdr/

[18] E,/+16/,9+<.F)�8638/*� �@+3lable: http://beagleboard.org/project/
Beagle+SDR/

[19] E�.+67 �6?>9 !� ./@/69:7/8> ,9+<.F)�8638/*� �@+36+,6/�
https://wiki.analog.com/university/tools/pluto

[20] �� �255)+2� �� �%/� �� �8;-.%� >OQPSK Cognitive Modulator Fully
Fpga-Implemented Via Dynamic Partial Reconfiguration And Rapid
Prototyping Tools? in ����	��
�� �
 ������-WlnnComm-Europe, 22-
24 Jun 2011.

[21] G. Ochoa-�8-=� �� �%77)&/)(� �� �28-=%� �� �) �%0277)� >
�2()//-1+
Front-End for Seamless Design and Generation of Context-Aware
Dynamically Reconfigurable Systems-on-�,-3? Journal of Parallel
and Distributed Computing, February 2018, Pages 1-19.

[22] >
��$
���	� ��� &/2'.? "�1/-1)#�
9%-/%&/)�
https://wiki.analog.com/resources/fpga/docs/axi_ad9361

[23] �� �%1+� �� �8� >�<1%0-' �%57-%/ �)'21*-+85%7-21 -1 ���
6? -1 2009
Third International Symposium on Intelligent Information Technology
Application 21-22 Nov. 2009

[24] >�-/-1; �<1%0-' 3%57-%/ 5)'21*-+85%7-21 :25.*/2:? [Online]
Available:https://www.xilinx.com/support/documentation/sw_manual
s/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf

[25] >��� �2()5�? "�1/-1)#�
9%-/%&/)� ,7736���:::�0%7,:25.6�'20�
products/hdl-coder.html

[26] ��
/ .%(-� �� �8(2/3,� �� �2,5-1+)5� �� �8&1)5� >�<1%0-' %1(
3%57-%/ 5)'21*-+85%7-21 2* !<14
��� 81()5 �-18;? in International
Conference on ReConFigurable Computing and FPGAs (ReConFig)
December 2013.

[27]
()/ �,%=)/ !,-� 286)** @@�7-0-=)(��� -03/)0)17%7-21 2f GMK
software Modem for GSM trans')-9)5?� ��� ���� �),-'8/%5
Technology Conference Proceedings, Volume 3, pp 2513-2577, 2002.

[28] >���� 02(8/%725 *25 ��� %33/-'%7-216? "�1/-1)#
9%-/%&/)�
http://www.ti.com/lit/an/spra139/spra139.pdf

[29] M. A. El-Motaz et al., "A CORDIC-Friendly FFT Architecture", IEEE
IWCMC, pp. 1087-1092, 2014

