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Abstract� Nowadays, the level of complexity attained by 
embedded systems is convoluting the barrier between 
simulation and implementation. Dealing with complexity 
requires of new abstraction layers amongst design phases to 
guide the process from requirements to implementation. Model-
based design methodologies offers an effective alternative to 
address these designs, but existing commercial tools are limited 
as new implementation technologies appear.   

This paper addresses this design problem by proposing an 
architecture and a methodology for fast prototyping of runtime 
adaptive Software Defined Radio applications on FPGAs. The 
methodology follows a model-based design approach including 
hardware-in-the-loop testing using automatic code generation. 
The processing architecture has been designed so Dynamic 
Partial Reconfiguration is possible to switch amongst different 
processing elements seamlessly at runtime. This approach 
speeds up the response for test iterations in SDR embedded 
designs going from hours to ten minutes, which is crucial to save 
costs.  
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I. INTRODUCTION 

The design of complex embedded systems includes 
several stages ranging from requirements specification to 
hardware implementation. Model-Based Design (MBD) 
proves to be an effective and efficient way to trace the whole 
process, helping to overcome difficulties that might appear 
through visual inspection, simulation of models, easier fault 
injection or formal verification. In traditional design 
processes, information is usually transferred in the form of 
handwritten text documents, such as source code or batch files 
which can be difficult to understand by engineers without the 
specific background, while they are very time consuming and 
difficult to maintain and update. MBD tools, such as Matlab, 
allow engineers to focus on higher levels of abstraction and to 
take advantage of high levels of automation and automatic 
artefact generation to support certification [1]. 

This design approach is very powerful when dealing with 
safety critical applications such as space applications [2], 
commercial vehicle electronics [3], or aircraft avionics 
systems [4][5] where a complete traceability is a must and fast 
iterations in the design process help to overcome design 
problems in a faster and more controlled way.  

One application that can take advantage of MBD 
techniques for hardware-software co-design is Software 
Defined Radio (SDR). For instance, The Wireless Avionics 
Intra-Communication (WAIC) association is enhancing 

wireless connectivity in avionics thanks to the use of Software 
Defined Radio (SDR) systems. In this context, following a 
MBD methodology accelerates the development process and 
reduces costs in the project without renouncing reliability [6]. 

Moreover, commercial Systems on Chip (SoCs) are 
becoming the preferred option to perform digital signal 
processing in SDR due their heterogeneous nature. They very 
often include general purpose processors, dedicated 
peripherals and programmable logic, typically in the form of 
FPGAs. Some of these FPGAs have the ability of accessing 
their own configuration memory and change their content at 
runtime without interrupting the execution of those parts left 
intact. This is called Dynamic Partial Reconfiguration (DPR) 
[7]. 

However, in spite of the fact that DPR meets SDR 
requirements with a better performance in terms of power 
consumption and resources [8], it is not included in fast 
prototyping MBD commercial flows. This enforces 
developers to combine these technologies manually, which is 
translated in an increased complexity, cost and iteration time 
for embedded tests.  

This paper presents a new hardware-software architecture 
developed in a reconfigurable SoC that allows fast prototyping 
for SDR applications, reducing dramatically the time between 
testing iterations. In addition, Matlab MBD workflow has 
been extended to support DPR, providing a GUI which 
enables the application of the proposed methodology in real 
industrial applications. By using the integrated DPR feature, 
different types of signal processing elements such as 
modulators, equalizers or filters can be loaded seamlessly to 
enable new functionalities while increasing safety and 
security by adding on demand redundancies if needed. In 
order to ease the integration of the dynamic function blocks, 
the whole process is automated and guided using a Graphical 
User Interface (GUI). With this approach, any reconfigurable 
processing element can be developed and simulated at a high 
level of abstraction, enabling a fast track to generate a partial 
bitstream corresponding to the functionality under test and to 
introduce it into the embedded system for hardware-in-the-
loop testing. Moreover, reconfiguration times can be 
measured in the hardware setup and introduced afterwards in 
subsequent simulations. 

 The rest of the paper is organized as follows. Section 2 
contains the state of the art related with SDR platforms and 
MBD tools. Section 3 describes the baseline SDR 
development platform while Section 4 defines the 
modifications introduced in the architecture to make it 



compatible with DPR technology. In Section 5, dynamic 
partial reconfiguration workflow and their design 
specifications to achieve it are presented at the same time it 
describes the process automation and the GUI development. 
A real SDR application development and results are presented 
in Section 6 and Section 7 contains the conclusion and future 
work. 

II. RELATED WORK

A Software Defined Radio (SDR) is a programmable 
communication system with the capability of operating 
different wireless communication protocols without the need 
to change or update hardware components. It consists of a 
digital processing element, which executes signal processing 
operations such as modulations, Fast-Fourier Transfer (FFT 
functions), control gain, decoding or equalization and high-
level protocol algorithms, connected to a transceiver, which 
modifies the signal to adapt their electromagnetic 
transmission characteristics. Digital signal processing 
algorithms can be performed by a general purpose processor 
(GPP), a digital signal processor (DSP), an FPGA or a SoC 
with a hybrid design (hardware-software architecture) [9]. 

SDR is not a new concept. It is possible to find a lot of 
research works optimizing different SDR processing elements 
such as GPPs [10], GPUs[11] and SoCs [12], being the latter 
the best solution due to its configurability and 
programmability [13].  

Moreover, there are many different development boards, 
custom and commercial, in the state of the art for SDR 
applications: USRP devices [14] offers an expensive but solid 
FPGA-based SDR compatible with Matlab MDB tools 
meanwhile Xilinx development boards such as the Zedboard 
mixed with Analog Devices transceivers are a cheaper 
solution for Hybrid SDR systems [15].  Other companies such 
as Nvidia opts for GPU-based SDR systems offering a 
communication extension for the Jetson development board 
[16]. On the other hand, there are cheaper SDR solutions 
developed to stream data to host computers. The RTL-SDR 
transceiver [17] is the cheapest solution to stream data 
meanwhile the Beagleboard system [18] and the Adalm Pluto 
boards offer the possibility to process standalone complex 
algorithms without renouncing their low price. As a result of 
this analysis, the latter board has been selected for prototyping 
purposes in this work due to its cost and reconfigurability [19]. 

Despite mostly of the boards mentioned above are 
compatible with Matlab and GNU radio MBD solutions for 
embedded systems, these tools cannot generate embedded 
automatic code compatible with DPR. Current SDR solutions 
that implements DPR uses these tools to generate HDL code 
to modify it by hand, consuming hours in the implementation 
process [20]. 

On the other hand, some workflows based on the MBD 
approach have been developed introducing a DPR process 
[21] but none of them were specifically created for SDR
architectures.

III. BASELINE SDR ARCHITECTURE

The Adalm Pluto board is a low-cost hybrid SDR system 
for radio applications. It combines a Zynq-7010 SoC 
connected to an AD9363 Analog Devices (AD) transceiver. It 
offers two channels for data transmission and reception that 
can be operated in full duplex, capable of generating or 
measuring RF analogue signals from 325 to 3800 MHz, at up 

to 61.44 Mega Samples per Second (MSPS) with a 20 MHz 
bandwidth. The board is a completely self-contained device 
entirely USB powered with the default firmware that offers an 
interaction with RF signals from MATLAB, Simulink, GNU 
Radio or custom C, C++, C#, or Python. The firmware and 
hardware specifications are fully documented by AD offering 
a complete system customization. 

The SoC is featured with a default Embedded Linux 
Operating System distribution with a Buildroot file system 
which contains pre-compiled libraries to access the AD 
transceiver. Data are stored in buffers that are pushed into the 
kernel memory space to be collected by the Programmable 
logic (PL) part of the SoC through a Direct Memory Access 
(DMA) data mover. The DMA sends this data to the 
interpolator that can be configured from software using the 
provided AD libraries. This interpolator can be enabled 
providing an up-sampling factor of eight and dividing data in 
two different channels for RF transmission (I/Q) to be 
managed by the AXI_AD9361 HDL block [22]. This 
processing element manages the communication with the 
AD9364 transceiver through an LVDS protocol. It also 
generates a clock signal using an internal phase-locked loop 
(PLL) that supplies the interpolator and direct memory access 
(DMA) logic. This signal depends directly on the digital-to-
analogue converter (DAC) sampling frequency providing a 
complete synchronization amongst elements (DMA, 
interpolator and DAC).   

The first element that the AD9364 transceiver has is a 
programmable FIR filter whose parameters (such as 
coefficients, gain and interpolator factor) can be configured 
from software using a SPI communication. Then, data are 
filtered before and after entering in the DAC. Finally, the 
analogue signal is mixed with the carrier to be transmitted 
through the antenna. All the different communication 
parameters (carrier frequency, sampling frequency, filters and 

Figure 1. DPR logic block implemented inside the SDR 
architecture 



bandwidth) can be easily defined and modified from the 
software side.  

This default architecture is designed to stream radio-
frequency data to a host computer connected via USB.  Some 
tools such as Matlab or GNU radio are able to communicate 
with the board and run simulations using real RF signals. 

IV. MODIFIED SDR ARCHITECTURE

After the description of the baseline reference architecture 
for SDR, the modifications introduced to the architecture in 
order to make it compatible with dynamic and partial 
reconfiguration are described next. 

First of all, the interpolator logic has been replaced by a 
hardware block that wraps and manages the different 
functionalities that can be dynamically added or modified to 
the baseline model. Figure 1 shows how this idea fits with the 
original structure. The purpose of the dynamic architecture is 
to be able to change between two different paths at run time 
reconfiguring the specific hardware logic of the system 
seamlessly.  

However, from the software point of view, the user does 
not have knowledge about which precise bit is received by the 
DPR wrapper logic block. For this reason, the implementation 
of a protocol is necessary to guaranty a perfect hardware-
software synchronization. 

DMA frames are divided in two groups as Figure 2 shows: 
control frames and data frames. The first ones contain the 
information about how many bits are going to be sent through 
a specific path. In turn, data frames contain data bits to be sent. 
However, both frames have a 6-bit header for synchronization 
purpose. The first bit indicates the frame type (data or control), 
the next four bits select one of twelve different oversampling 
factors, and the last header bit indicates which path has to be 
enabled. This protocol can be easily adapted if more 
reconfigurable blocks or configuration parameters need to be 
used. 

The first frame read by the system has to be a control frame 
while next frames contain the data to be transmitted. Once the 
data length indicated in the control frame has been delivered, 
another control frame is sent indicating how many bits would 
be delivered with that specific configuration. This allows the 
architecture to change at run time the processing path without 
losing a single bit of information. Moreover, the fix 6-bit 
header creates a reliable capability in case of any 
desynchronization between software and hardware appears. 

The proposed DPR wrapper logic is composed of four 
main elements: A control state machine logic, a sample rate 

controller, two parallel dynamically reconfigurable blocks and 
a multiplexer. Figure 2 shows the connections amongst DPR 
wrapper elements and its interaction with the DMA. 

A. Control State Machine Logic
The state machine manages the interface between the

DMA and the data decoder. The DMA stores the data sent 
from software in 32-bit frames which are read from a FIFO. 
The wrapper logic reads the last data and sends a ready signal 
to the DMA indicating that the frame has been read. Once the 
frame is read, it has to be decoded. 

B. Sample Rate Controller
The frame rate controller block receives the up-sampling

factor information from the control state machine. It will 
generate a counter with a different number of steps from 0 to 
1280 depending on the up-sampling factor selected by the 
user. This counter supplies both reconfigurable paths that can 
use it for many DSP algorithms such as modulations, 
interpolations or filtering. This block also indicates to the state 
machine when a new information bit can be sent to the 
different paths. 

C. Dynamically Reconfigurable Blocks
These blocks represent the different reconfigurable

modules that can be updated to the model at run-time. From 
the static architecture point of view, they are black boxes that 
can be filled with any logic algorithm, whenever it follows the 
rules mentioned below: 

� The algorithm has to work with a throughput of one 
sample per clock cycle, to maintain synchronism in 
the data path.  

� It has to divide the signal in two sixteen bit integers 
for the different electromagnetic waves (real and 
imaginary).  

� It will receive data from the state machine 
sequentially, bit by bit. 

D. Reconfigurable Path Multiplexer
The multiplexer is controlled by the state machine which

reads the path selection bit from the control frame According 

Figure 2. Protocol for hardware-software synchronization 

Figure 3. DPR wrapper logic block scheme 



to this bit, the configured path is selected to send its output bits 
to the AXI_AD9361 HDL module. In the meanwhile, the 
unselected path can be reconfigured. 

One of the main advantages of this architecture is not only 
that changes can happen at runtime without losing any 
information bit but also a huge sampling frequency drop 
appears (eq 1.) between the DAC frequency and the software, 
allowing the microprocessor to have more time between each 
time the microprocessor fills the buffer with new data. 

 Being 
!�  the DAC sampling frequency, �,0)-  the over-
sampling factor that indicates the number of signal samples 
per bit,  ���1+(/*  the number of data bit per DMA frame and 
��

	
1+(/* the number of 32-bit frames that the software 
buffer has, the sampling frequency from the software point of 
view can be described as:  


���.1 ? #534
&:=7;�!$�>96<8��'##"%>96<8

 (1) 

For instance, if the DAC is configured with 61.4 MSPS 
(which is the maximum physical sample rate available for this 
model), with an oversampling factor of 1280 (maximum 
configurable for the architecture) and a buffer of 4096 frames. 
The period of time that the processor has between buffer 
pushes is: 

������ ? ������������
�������2

@ ���� �  (2) 

Note that  ���1+(/*  is 26 because header bits do not 
count as data bits.  

This sampling frequency drop gives the microprocessor 
the possibility to perform more complex algorithms between 
buffer fill operations such as Fast Fourier transforms (FFTs) 
or, like in the application presented in this paper, dynamic 
partial reconfiguration.   

V. DPR WORKFLOW AND GUI
Dynamic Partial Reconfiguration can be defined as the 

modification of an operating FPGA design by loading a partial 
configuration file at runtime, while the area of the device is 
not affected by the reconfiguration remains working [23]. This 
allows FPGAs to carry out different functionalities without 
penalizing its size reusing a specific area each time a change 
in the functionality is needed. Vivado partial reconfiguration 
workflow eases the generation of partial bitstreams 
compatible with previously synthesized systems. A static part 
(i.e. the portion of the design not affected by reconfiguration) 
is previously synthesized with dummy boxes instead of the 
partial reconfiguration modules (PRMs). Before the 
placement and routing operations, it is necessary to define 
which regions of the FPGA will allocate the different PRMs. 
This has to be done manually since it depends on the developer 
criteria. Once the placement and routing are done, all the logic 
that belongs to the static part is locked and saved in a 
checkpoint that contains the information of the static 
architecture. It can then be used for the implementation of 
reconfigurable blocks [24]. 

The implementation of the static architecture explained in 
section II featured with dynamic partial reconfiguration 
cannot be completed using Matlab embedded hardware-
software co-design workflow since this feature is not fully 
supported by this workflow. Nevertheless, the architecture has 
been designed in Simulink to test its functionality before the 
implementation. Then, the VHDL code of the static model is 

Figure 4. Dynamic Partial Reconfiguration workflow. 

TABLE I. RECONFIGURABLE SECTION RESOURCES 

Region 
Resources 

LUTs Registers Muxes BRAMs DSPs 

Pblock0 2000 4000 1000 10 10 

Pblock1 4000 8800 2200 20 20 

ZYNQ 7010 17000 35200 16000 60 80 



generated automatically using Matlab HDL coder [25] to 
introduce it as a custom IP inside the baseline board design. 
Following Vivado DPR workflow, the reconfigurable paths 
are implemented in the model introducing black boxes that 
bypass data directly to the AXI_AD9361 HDL module. In 
table I it is shown the amount of resources dedicated to each 
reconfigurable region of the FPGA. It is important to notice 
that the difference between reconfigurable region sizes allows 
developers to allocate algorithms inside one region or another 
depending on the resources they need. Finally, a Linux image 
has to be reconstructed with the bitstream generated to link 
software resources with the new hardware implementation.  

Once the bitstream of the static architecture is generated 
(and even running), new reconfiguration modules can be 
added to the system following the DPR workflow. One of the 
main advantages of Vivado tools and Partial Reconfiguration 
workflow is that it can be automated thank to the use of TCL 
scripts. Taking advantage of TCL commands, a Graphical 
User Interface (GUI) has been developed in Phyton to enhance 
the implementation speed of dynamic partial reconfiguration 
blocks from Simulink models. The process of building a 
standalone application using custom hardware accelerators 
designed from Simulink can be divided in 4 main tasks: HDL 
code generation, partial bitstream generation, FPGA 
programming and cross-compilation. As it is shown in Figure 
4, the GUI manages 3 of the tasks automatically since the 
HDL code generation is operated from Simulink.  

A. HDL code generation
The first step refers to the VHDL code generation from

Simulink. As it was mentioned before, DPR feature is not 
directly compatible with HDL coder. However, the GUI can 
merge VHDL codes generated from Simulink with the static 
design. To do so, the simulation model in Simulink must 
comply with the following rules:   

� The name of the PRM block has to be the same as the 
black box allocated in the static Vivado model. 

� The interfaces between PRMs and the static model 
must match in terms of names and data types. 

� The algorithm block must be wrapped by a Simulink 
subsystem with registers in each Input and Output 
signals to ensure timing FPGA specifications. 

B. DPR Workflow
Once the HDL code is generated, the reconfigurable block

is synthesized separately to be merged with the previously 
generated static design. This block is mapped into the regions 
of the FPGA selected as reconfigurable areas during the 
implementation of the static system and, after the verification 
process, the partial bitstream is created. This process, as it is 
shown in Figure 4, is managed automatically by the GUI, 
which calls a TCL script in Vivado that starts the DPR 
workflow in a second plane with the configuration specified 
in the GUI such as the name of the partial bitstream and the 
FPGA region that will allocate the PRM block. Moreover, all 
the progress can be followed at run-time through the GUI 
command window. 

C. Send bitstreams and program FPGA
The partial bitstream is sent to the board file system using

a Session Control Protocol (SCP) between the board and the 
host computer, also integrated in the GUI. The GUI is 
prepared to open a SSH session (password and username are 
added automatically) to communicate itself directly with the 
embedded Linux. It can access directly to the Linux PCAP 
driver that allows the processor to access to the FPGA 
program memory in order to load the specific partial bitstream 
into the FPGA memory. Moreover, the GUI is prepared to 
bind and unbid the necessary drivers to upload not only a 
partial bitstream but also a total bitstream with a different 
model, enhancing the modularity of this tool for applications 
different than SDR [26]. 

D. Cross-compile applications
Once the hardware is uploaded to the board, it is necessary

to create a software application that sends input data to be 
transmitted through the architecture mentioned before. This 
application has to be cross-compiled in the host computer 
since the board embedded Linux distribution does not support 
an embedded compiler. The GUI has stored not only AD 
library cross-compiled, but also an extra abstraction layer 
library to ease the transceiver and hardware configuration. The 

(a) GUI Bitstream generator window (b) GUI Cross-compiler window

Figure 5. GUI. Sub-figure (a) shows the bitstream generator window and sub-figure (b) shows the cross-compiler window. 



GUI is capable of generating an application that runs 
standalone inside the board for a fast hardware-in-the-loop 
testing. Run-time measures to Matlab are sent through an SSH 
connection. 

      Figure 5 shows 2 of the 4 GUI windows: The partial 
bitstream generator in a) and the cross-compiler window in b). 
They are composed by a command window that shows 
information of second plane processes at run-time, a browse 
to select the specific files needed for each task, a text input 
box to select the name and a set of buttons to launch the 
different workflow tasks. Moreover, the partial bitstream 
generator includes the selection of the FPGA region where the 
PRM will be allocated. The bitstream loader window has a 
similar structure to the partial bitstream generator and the 
information window offers instructions about how to use the 
application and information about the resources of each 
reconfigurable FPGA region. 

 In order to speed up the testing of reconfigurable blocks, 
two software applications had been introduced by default in 
the board file system. These applications send constantly 
random input data through one of the two paths. 

VI. SDR TEST APPLICATION

Thanks to Matlab automatic code generation and the GUI 
mentioned before, it is possible to develop a SDR application 
which runs standalone in the board compatible with DPR 
going from simulation to real implementation in a few 
minutes. To demonstrate this approach, an adaptive 
modulation application has been created using the workflow 
described above. 

Adaptive modulation is an approach in cognitive radios 
[27] that has being used in multiple communication
applications such as GSM (Global System for Mobile

Communication). It uses an adaptive architecture to modify 
the modulation of the physical layer according to the different 
weather conditions since there are certain modulations that are 
more robust under raining conditions. 

To develop the use case application, the Simulink model 
created for testing the static architecture has been merged with 
three different modulation blocks, also designed in Simulink. 
These blocks contain three different modulation algorithms 
which will replace the dummy boxes implemented in the static 
architecture. Moreover, its functionality can be first simulated 
in Simulink to ensure the correct functionality of the 
algorithms. The modulations selected for these applications 
are GMSK, QPSK and 4QAM.  

GMSK modulation signal 
�	�  is transmitted following 
eq. 3 being ��	� the phase of the demodulated signal and �� 
the carrier signal frequency.  


�	� � ������	�� ��������	� 
 ������	�� ��������	�    (3) 

The modulator will transform data bits into positive and 
negative symbols and depending on the sign, it reads the 
elementary phase symbol data from look-up-tables [28]. The 
symbol is added with previous samples and divided into I/Q 
signals thanks to the proper operation (sin or cos) to obtain eq. 
3. This last operation has been developed with a pipelined
CORDIC architecture following the specification of having a
throughput of one sample per clock cycle. [29]

On the other hand, 4QAM and QPSK modulations have an 
input buffer that packages the number of bits needed for each 
modulation (2 bits for QPSK and 4 bits for 4QAM). The 
proper constellation value is obtained from a Look-Up-Table 
according to the bits received. Then, the symbols pass through 
a raise cosine filter in order to reduce Inter-Symbol 
Interference (ISI) and are sent to the output. 

Figure 6. DPR application running standalone. The figure shows a SSH session and data represented by Matlab in the 
frequency and complex domain.  

 



Once the modulations have been tested in Simulink, the 
partial bitstreams are generated directly from the HDL files 
automatically generated by Matlab and sent them to the board. 
The testing of each modulation can be done using the two 
applications loaded in the file system that sends random data 
through both reconfigurable paths on-board. This allows a 
faster approach to test different signal processing algorithms 
designed independently in Simulink in a real environment.  

A specific application has been developed in order to test 
dynamic partial reconfiguration at runtime. This program 
takes the partial bitstreams from the board file system and 
upload them into RAM memory to speed up the 
reconfiguration time. QPSK modulation will run into path0 
dynamic block meanwhile GMSK and 4QAM are constantly 
reprogramed into path1 block. Having partial bitstreams 
loaded in the system, the application first sends random data 
through GMSK modulation, which is allocated in path1. Then, 
it changes to QPSK block (path0) meanwhile it is 
reconfiguring path1 with 4QAM modulation. Thanks to the 
benefits provided by dynamic and partial reconfiguration, the 
system can continue sending data through the other path 
without interrupting the communication. Once the system 
finishes to send data through path0, it will change to path1, 
modulating the signal with the new configured PRM.  

For a hardware-in-the-loop testing, another board is 
connected to the host computer. While one board is 
transmitting data standalone with the application mentioned 
above, the other is streaming received data directly to Matlab. 
Thanks to this implementation it is possible to visualize the 
signal sent at runtime. Nevertheless, it is possible to test real 
measurements with only one board since it allows full-duplex 
communication. The architecture can run a standalone 
application to send data while it is streaming the received data 
to Matlab at the same time. Figure 6 presents the spectrum and 
the spectrogram of the received signal while modulations are 
changing. It also shows the reconfiguration time of 2.8 ms for 
each PRM. This time represents the reconfiguration of a 
quarter size of the FPGA through the PCAP driver and can be 
decreased using different reconfiguration processes such as 
the ICAP.   

Thanks to this application it is proved that new 
reconfigurable signal processing algorithms such as different 
modulations for a SDR system can be implemented and tested 
in less than ten minutes while a complete implementation of 
the modulation would take hours or even days. Moreover, it is 
proved that the reconfiguration of dynamic blocks can be done 
at run-time without affecting the communication reliability 
giving at the same time information about partial 
reconfiguration times.  

VII. CONCLUSIONS

This paper has presented not only a new hardware-
software architecture developed in a SoC that allows a fast 
prototyping solution for SDR applications, but also a new 
MBD workflow compatible with DPR for software-hardware 
designs. The architecture, implemented in the ADALM 
PLUTO board, has been designed to allow engineers to add 
dynamic function blocks exchangeable in run-time thanks to 
DPR.  Moreover, all the process is automated and presented in 
a visual way using a GUI. The process follows a MBD 
approach adding partial bitstream generation from VHDL 
code generated with Simulink. With this approach, designers 
can develop and simulate in Simulink any processing element, 

generate a partial bitstream and introduce it into the embedded 
system for a hardware-in-the-loop testing in less than ten 
minutes, saving developing time and costs in complex SDR 
projects. The partial reconfiguration times can be measured 
and introduced in future simulations to increase the similarity 
between them and real reconfigurable SDR systems. 

Moreover, the GUI can also generate partial bitstreams for 
any static model and for any Zynq development board, such 
as Zedboard or Pynq. It has been proven to be an appropriate 
solution for a fast prototyping not only in SDR applications 
but also in any application that requires a SoC 
implementation. This approach also opens up a bigger 
customization than the supported by Matlab hardware-
software co-design workflow, implementing DPR in 
embedded systems. 
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