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Abstract—The use of accelerator-centric processing architec-
tures in different application scenarios, ranging from the cloud
to the edge, is nowadays a reality. However, the always increasing
stringent operating conditions and requirements continues to
push the research around hardware-based processing architec-
tures, which are able to provide medium to high computing
performance capabilities while at the same time supporting
energy-efficient execution. In addition, reconfigurable devices
(i.e., FPGAs) provide another degree of freedom by enabling
software-like flexibility by time-multiplexing the computing re-
sources. Nevertheless, bus-based computing platforms still face
architectural bottlenecks when data transfers are not handled
efficiently. In this paper, the communication overhead in a re-
configurable multi-accelerator architecture for high-performance
embedded computing is analyzed and modeled. The obtained
models are then used to predict the acceleration perfomance
and to evaluate two different patterns for data transfers: on
the one hand, a basic approach in which data preparation and
DMA transfers are executed sequentially; on the other hand,
a pipelined approach in which data preparation and DMA
transfers are executed in parallel. The evaluation method is based
on well-known accelerator benchmarks from the MachSuite
suite. Experimental results show that using a pipelined data
management approach increases performance up to 2.6x when
compared to the sequential alternative, and up to 26.46x when
compared with a bare-metal execution of the accelerators (i.e.,
without using the reconfigurable multi-accelerator processing
architecture nor an Operating System).

Index Terms—FPGAs, Communication Modeling, Dynamic
and Partial Reconfiguration, Hardware Architectures.

I. INTRODUCTION

The use of hardware accelerators to speed up complex com-
putations with high energy efficiency has been around for sev-
eral years [1]. In this scenario, reconfigurable computing en-
ables the use of application-specific logic that can be switched
in and out of the Field Programmable Gate Array (FPGA) sub-
strate, enabling levels of flexibility for hardware designs which
are comparable to software alternatives, while maintaining the
high performance inherent to dedicated circuits.

However, including highly optimized accelerators in the
system is usually not enough to attain the expected level
of performance, especially in schemes where accelerators
are used to offload massively parallel routines or loops (the
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so called hot spots) while the rest of the application runs
sequentially in a host microprocessor. In fact, complex on-
chip communication infrastructures (e.g., Networks on Chip
[2]) have been developed to mitigate the sometimes excessive
overheads derived from data transfers between hardware and
software components. In the case of bus-based systems, data
serialization in the bus is usually the main bottleneck. At this
regard, specific strategies need to be implemented to fully
exploit the available bandwidth. An important fact to bear
in mind when optimizing data transference from the host
to the accelerators is the inherent randomness introduced by
the Operating Systems, such as the Linux kernel, which can
not guarantee execution times. Under these circumstances,
modeling the on-chip data transactions is the first necessary
step to optimize the acceleration infrastructure.

In this paper, a reconfigurable multi-accelerator processing
architecture has been analyzed to develop a lightweight model,
which quantifies the communication overheads already present
in the processing architecture. It is kept simple to enable
its usage on-chip, even at run-time. The model has been
obtained and validated experimentally to deal with the
non-determinism introduced by the Operating System. Based
on the results provided by the model, an optimized pattern for
DMA-based (i.e., Direct Memory Access) data transfers in
the multi-accelerator processing architecture is also presented.
The proposed strategy pipelines buffer management (i.e.,
data copies between user-defined memory and a DMA-
enabled memory) and actual burst transfers using a DMA
engine to move data in a hierarchical memory structure
(i.e., global/external memory and local/internal memory in
each hardware accelerator). Both the original data delivery
approach and the proposed one have been tested using
well-known accelerator benchmarks from the MachSuite
suite, which provides different computing workloads with
several data access patterns in a series of HLS-based (i.e.,
High Level Synthesis)) high-level accelerator descriptions.

In summary, the main contributions of this paper are the
following:

• A benchmark-based evaluation of a reconfigurable multi-
accelerator processing architecture.

• A model to predict the communication overhead in DMA-
based data transfers.



• A pipelined data management scheme that reduces the
communication overheads by parallelizing data buffering
and DMA burst transfers.

The rest of this paper is organized as follows. Section II
provides an overview of the most commonly used benchmark
suites for HLS-oriented hardware acceleration, together with
a brief analysis of the current works in on-chip communi-
cation strategies. Section III presents the data-path models
for ARTICo3, the reconfigurable multi-accelerator processing
architecture which serves as the baseline in this work. An opti-
mized data transfer strategy that builds on top of the developed
models is presented in Section IV, and Section V evaluates
both the models and the data transfer optimizations using an
HLS-oriented benchmark suite. Section VI summarizes the
main conclusions of the work and highlights the future lines
of work.

II. RELATED WORK

First, a discussion on the different benchmark suites
available for the evaluation of HLS-based hardware
architectures is provided in this section. Then, it analyzes
the main works existing in the state-of-the-art dealing with
optimization strategies for data communication in HW/SW
co-processing architectures.

A. Benchmark suites

The increasing tendency of developing hardware acceler-
ators through HLS-based methods and tools makes for the
need of fair and re-usable performance comparisons between
solutions. Benchmark suites, which are well known in the
software and computer architecture domains, appear to cope
with these requirements. However, there are not many different
options available in the literature when talking about HLS.
Among the different possibilities, three main options with
a more extended or promising use, have been identified:
CHStone [3], MatchSuite [4] and Rosetta [5].

Every benchmark suite is composed of a set of HLS kernels
with different resource characteristics in order to evaluate
all possible performance bottlenecks in the execution. The
difference between the benchmark suites lies mostly in the
amount of kernels available per suite and their actual com-
plexity. This last difference is important when implementing
the benchmarks in an accelerator-centric architecture such
as ARTICo3, as the kernels need to be complex enough to
simulate real-life applications, while fitting in the limited
amount of resources available in the architecture.

In this paper, the MatchSuite suite has been selected for
testing purposes due to being the best when evaluating the
trade-offs between complexity and number of kernels, provid-
ing 19 different kernels (higher than the 12 provided by the
CHStone suite) with low memory usage per kernel (up to 64
kiB). Moreover, the complexity per kernel is high enough and
the resources occupied low enough to be able to instantiate
up to 16 hardware accelerators in the target FPGA. Last but
not least, MatchSuite has been used by a higher number of

authors when compared to the Rosetta suite, and so it enables
more comparisons with the state of the art to evaluate results.

B. Data communication strategies

Data transfers in HW/SW co-processing schemes become
the bottleneck in memory-bounded applications. As such,
many different analysis and strategies for optimizing memory
communication can be found in the literature [6], [7]. Even
so, some of these strategies tend to be application-specific
[8], making the models and strategies non-generalizable, and
others focus on optimizing distributed memory data-paths [9]
without optimizing inner-chip communications.

Related to on-chip communications, strategies often fo-
cus on improving DMA transfers [10]. In this last case,
data coherence and movement management is addressed and
modeled, while there is no further study in the modeling
of the actual DMA transfer and the impact of using data
bursts through DMA. For this purpose, in this paper mod-
els of data communications through 16-data burst transfers
are analyzed and modeled inside the ARTICo3 architecture.
Moreover, a new feature for ARTICo3 has been proposed
in which the processor is liberated from workload in DMA
transfers enabling a double-buffer approach where next-to-go
transfers can be previously prepared following a pipelined-like
strategy. Finally, this work also serves as an improvement of a
previously made architectural analysis where only models of
the energy consumption were provided [11].

III. DATA-PATH MODELING

In this section, an analysis of the performance of the
communications between virtual user-space memory and the
internal memory of the hardware accelerators is presented
and discussed. This is of application to hardware accelerators
attached to a Linux-based host processor, as is the case
of complex infrastructures such as ARTICo3, but it is also
valid for a single accelerator in a Linux-based System on
Programmable Chip (SoPC) such as Xilinx Zynq or Intel
Stratix 10. In spite of being generalisable to other schemes,
the models provided in this work have been obtained for the
ARTICo3 architecture, an accelerator-centric architecture that
provides performance scalability on a single SoPC, relying on
the application developer to decide how many accelerators to
load for a given kernel through the use of Dynamic and Partial
Reconfiguration (DPR) [12].

A. Experimental plan

To evaluate the overheads in the the data-path, an analy-
sis of the performance when moving data to and from the
memory of the hardware accelerators is provided. The models
proposed in this section have been obtained for a Zynq SoPC
running a Linux OS for both simple DMA transfers and
ARTICo3 (Linux-based) transfers. The steps followed in the
data transfers can be seen in Figure 1, and will be explained
in the next subsection. In both send and receive cases, data
is moved to/from the processor (the PS, in accordance to the
terminology from Xilinx) from/to a memory bank (emulating



hardware accelerator inputs/outputs) instantiated in the PL (the
FPGA, also focusing on Xilinx SoPC devices), with data sizes
ranging from 4 kiB – 1 MiB and repeating the data transfers
10000 times in order to obtain more accurate average-time
values. In both cases data transfers are carried out relying on
a kernel module created for the GNU/Linux OS and through
Direct Memory Access (DMA), configuring the DMA engine
to make data bursts from the PS to the PL.

It is important to highlight the differences between both
programming schemes. With regard to simple DMA transfers,
1 to 4 memory banks have been instantiated into the PL and
data is transferred directly to those memory banks. When using
ARTICo3, on the other hand, data is not sent to the actual
memory of the accelerators (also 1 to 4), but to a shuffler
module instantiated in the PL, in charge of distributing the
data to the different accelerators.

B. Data-path

The ARTICo3 framework relies on a list of kernels that
have been previously loaded for carrying out data transfers. It
searches for the kernel to execute, loads the ports information
(inputs and outputs of the kernel) and then transfers the
required amount of data to a custom data shuffler implemented
in the PL that is in charge of distributing the data between the
accelerators, among other functionalities. The steps involved
in ARTICo3 transfers (send and receive between PS/PL), when
invoked in a program, are the following:

• Send:
– Data is copied from user-space memory to DMA

memory through the use of a file descriptor and
calling the function memcpy(), resulting in an
elapsed time tmcpy−s.

– An ioctl is invoked to start data transmission from
the reserved addresses of the data to the PL through
the use of a kernel module. The ioctl can be divided
in the following sections:
∗ A fixed time, tfx−s1, elapsed from the ioctl call

to the invocation of the DMA driver through the
function dmaproxy_ioctl().

∗ A fixed time, tfx−s2, elapsed from the call of
dmaproxy_ioctl() until the actual start of
the transfer (preparing the DMA configuration or
running the DMA microcode, among others).

∗ The data transfer, which can be also divided in:
· Hardware transfer to the data shuffler, thw−s.
· Overhead introduced by the OS, toh−s.

• Receive: Similar to the previous case, but performing an
ioctl call before the memcpy(). First data is received
from the memory of the accelerators to the DMA memory
and finally copied to user-space memory.

Grouping both tfx−s1 and tfx−s2, the equations will follow
the next expressions:

ts = tmcpy−s + tfx−s + thw−s + toh−s (1)

tr = tmcpy−r + tfx−r + thw−r + toh−r (2)

Please notice before describing the models that memcpy()
performance is different on receive and send transmissions,
due to the fact that more bandwidth is available during send
transactions, if cached data is used. If no cached data is used
in send and receive, tmcpy−s ' tmcpy−r.

All the aforementioned steps can be seen in Figure 1.

C. Models

In this subsection, a mathematical expression is provided to
compute each term involved in the previous equations. These
terms can be divided into 2 different parts: copying data to
the reserved DMA memory (memcpy()) and the transfer of
that data (ioctl()).

• Models related with copying data to the DMA mem-
ory: The performance of the memcpy() instruction is
greatly influenced by the use of cached data. Taking this
into consideration, 3 different expressions are provided
to calculate the time elapsed by calling this function:

– Cached send:

tmcpy−s(ms) = 2.16 ∗ 10−6x (3)

– Cached receive:

tmcpy−r(ms) = 4.56 ∗ 10−6x (4)

– Non-cached transfer:

tmcpy−s/r(ms) = 6.39 ∗ 10−6x (5)

where x is the total number of bytes to be copied from
user-space.
These 3 expressions correspond to simple memcpy()
instructions and they can be applied to any kind of Linux
application. However, if ARTICo3 is being used, there
is an overhead in the amount of memory used. The
consequence is a drop in the performance of cached send
transfers, although it is not very significant. ARTICo3

cached send memcpy() performance would follow this
other expression:

– ARTICo3 cached send:

tmcpy−s(ms) = 2.65 ∗ 10−6x (6)

• Models related with data transfers: these models in-
volve calculating tfx−s, tfx−r, toh−s, toh−r, thw−s and
thw−r. Beginning with fixed elapsed times, the models
have resulted to be:

tfx−s(ms) = 0.0347 (7)

tfx−r(ms) = 0.01185 (8)

Next is the actual time elapsed in the hardware transfer.
This is the most predictable time, as it is not influenced
by the OS. The expressions for 16-data bursts transfers
in directly connected accelerators (without involving the
shuffler) are the following:

thw−s(ms) = (
data

16
∗ 19 + 3n+ 1) ∗ 1

f(kHz)
(9)
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Fig. 1: Data-path on simple and ARTICo3 DMA transfers

thw−r(ms) = (
data

16
∗ 22 + 6n− 1) ∗ 1

f(kHz)
(10)

where data is the number of 32-bit data to be transmitted
and n = bdata1024c, consequence of crossing a 4 kiB data
addressing boundary. At this point, the DMA engine
separates a burst of 16 data into two bursts to adjust
the address and to begin addressing again from position
0xYYYYY000.
As mentioned before, ARTICo3 transfers are not done
directly to the memory of the accelerators, but to a data
shuffler in charge of managing the data. As a conse-
quence, some latency is introduced and the expressions
change, adding some clock cycles per burst. ARTICo3

hardware data transfer time can be calculated with the
following expressions:

thw−s(ms) = (
data

16
∗ 29 + 13n+ 1) ∗ 1

f(kHz)
(11)

thw−r(ms) = (
data

16
∗ 40 + 24n− 1) ∗ 1

f(kHz)
(12)

Finally, the overhead time has resulted to be dependent on
the total data to transfer. It can be modeled as a fixed time
(nearly the whole time) plus a dependent component:

toh−s(ms) = 0.04751 + (1.072 ∗ 10−5)x (13)

toh−r(ms) = 0.04956 (14)

where, in this case, x corresponds to the total amount of
kiB to transfer.

IV. DOUBLE-BUFFER APPROACH

In this section, a new double-buffer based approach to
data transfers in ARTICo3 is proposed in order to optimize
communications between the PS (host application) and the PL
(reconfigurable accelerators).

In the current baseline design of ARTICo3, when data
transfers are being performed, there is a step in which the PS
is blocked waiting for the DMA engine to finish the transfer to
the hardware accelerators. However, the PS could be liberated
during this step to continue with other parts of the application,
until the transfer is finished.

The double-buffer approach consists in taking advantage of
the liberated CPU time to prepare the next iteration round in
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Fig. 2: Double-buffer implementation of ARTICo3 DMA
transfers, send and receive.

a second extra buffer, having both buffers used alternatively.
It is important to highlight that the model of computation
followed in ARTICo3 has a policy which resembles to GPUs,
in the sense that the input data is split in small units, which
are processed by the accelerators in subsequent rounds. The
different rounds of execution in send and receive transfers will
follow the steps shown in Figure 2.

The pipelined-like approach shown makes transfer time to
change in each round from

ttransfer = tmem−cpy + tDMA−transfer (15)

to

ttransfer = max(tmem−cpy, tDMA−transfer) + tdb−oh (16)

where tdb−oh is the overhead time introduced in the code by
the double-buffer approach.

This difference can make execution time in memory-
bounded applications to improve in the range of 1.4 − 2×,
depending on data volume (higher volume, higher improve-
ment). The double buffer minimizes the time the accelerators
remain idle waiting for a new data transfer to be produced.
Therefore, in computing-bounded applications, performance
could receive little to no improvement.

The proposed approach involves changes in the ARTICo3

runtime library (including the kernel module), but it does not
affect user-level programming (i.e., all changes are transparent
to the user).

V. EXPERIMENTAL RESULTS

To experimentally evaluate performance improvements, the
MatchSuite suite has been implemented on the xc7z100ffg900-
2 chip (Avnet Zynq MMP board). This benchmark suite comes
with a total of 19 kernels to analyze different performance
indicators but, due to ARTICo3 memory limitations in the
accelerators, results have been obtained for only 12 of them.
It is important to clarify that the selected 12 kernels have been
implemented with no modifications, while the other 7 would
require modifications or parallelism analysis to adapt them to
the ARTICo3 memory requirements, reason why they were not
considered in the experiments.

First, the execution times per round of the 12 kernels have
been measured in a bare-metal implementation with an AXI
interface between the PL and PS. The results can be seen in



Table: I. Here, it is important to highlight that these executions
do not make use of the DMA burst transfers.

The advantage of using the double-buffer comes between
successive rounds, as they can be prepared beforehand (data
prefetching produced by the double buffer makes no sense if
a single round is to be computed). As such, the experimental
results correspond to the execution of not just one single
round of each kernel, but to 1024 rounds of execution. By
using this number of rounds the authors expected the pipelined
stage to have reached a saturation of improvement, which was
analyzed and corroborated by executing from 1 to 1024 rounds
in powers of 2.

In Figure 3, the results are introduced. Note that the compar-
isons of the single- and double-buffer approach with the bare-
metal implementation have been normalized with respect to the
bare-metal one due to scale time differences between kernels.
The immediate comparison with the bare-metal implementa-
tion corresponds with the execution of the kernel in just one
hardware accelerator (a). As it can be observed, all ARTICo3

implementations outperform the bare-metal one with the ex-
ception of the md knn kernel. Even though, this exception
is compensated in the double-buffer implementation, which
already outperforms the bare-metal one in that kernel. The
rest of the figures ((b)-(e)) correspond to one of the scalability
possibilities provided by ARTICo3 (performance scalability),
being able to change the amount of hardware accelerators in
the target FPGA from 1 to 16 by the use of DPR. As it
can be seen, scalability is also improved in the double-buffer
implementation, with improvements ranging from 2 to 32%
when compared with the single-buffer scalability.

If only execution time is addressed, it is interesting to
analyze more deeply Figure 3 (a) and (e), where the bare-metal
implementation can be compared with the execution using the
same number of accelerators (1) and the maximum (16). The
results show that the double-buffer implementation reaches
negligible execution times compared with the bare-metal in
some kernels, with improvements from 13.7× up to 26.5×
with 1 accelerator (114× up to 318× in the 16 accelerator
execution). Furthermore, in more computing-bounded kernels
(improvement lower than 5× with 1 accelerator), improve-
ments do not go lower than 1.05× and have an average
improvement of 2.51× (15.7× with 16 accelerators).

The same figures can be used to compare the two versions of
ARTICo3 DMA transfers. Even though there are kernels with
little improvement (0.06% minimum) the average amount of
improvement goes up to 28% when comparing execution with
only one accelerator. Since scalability also goes better in the
double-buffer implementation, the mean improvement moves
up to 49% with 16 accelerators, a result that really motivates
and justifies the use of 2 buffers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, models for ARTICo3 DMA transfers have been
presented together with a proposal of optimization of these
transfers. This proposal is based on liberating the CPU while
DMA transfers are being carried out, enabling a pipelined-like

Kernel Execution Time (ms)
aes 0.888

fft strided 27.855
gemm bb 451.794
gemm ncu 51.753

kmp 49.199
md grid 58.403
md knn 5.874

sort merge 30.622
sort radix 224.098
spmv crs 3.887

spmv ellpack 6.341
viterbi 668.523

TABLE I: Benchmark evaluation results: bare-metal single-
word access implementation on Zynq-7000.

approach of data transfers between PS and PL by the use of
a secondary buffer.

Regarding the models, they have proven to serve as a
good reference to calculate the time elapsed in data transfers.
Moreover, even though they have been extracted for single-
kernel execution with no other application in parallel, they
serve as a first step to predict multi-accelerator performance
in more complicated models in which the whole system could
be taken into consideration, while working on different kernels
in parallel.

With these models in mind, a pipelined double-buffer op-
timization was proposed and developed. The experimental
results obtained through the use of the MatchSuite benchmark
suite have shown the feasibility of this solution. Liberating the
CPU of workload has made the new approach outperform the
previous polling version in every situation, with improvements
in average of 49%. Moreover, these results also suggest that
energy consumption should receive a positive impact, which
will be studied and analyzed in future work.

Finally, future models are envisioned to increase in com-
plexity when more information is taken into consideration. As
such, a future line of work is proposed in which machine learn-
ing algorithms are used to autonomously extract these models.
This would help on taking more complex decisions at run
time regarding the number of accelerators to be used and their
configuration, enabling a fine-grain control of the architecture.
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