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Abstract—We propose and analyze an interleaved variant of
Loidreau’s rank-metric cryptosystem based on rank multipliers.
We analyze and adapt several attacks on the system, propose
design rules, and study weak keys. Finding secure instances
requires near-MRD rank-metric codes which are not investigated
in the literature. Thus, we propose a random code construction
that makes use of the fact that short random codes over large
fields are MRD with high probability. We derive an upper bound
on the decryption failure rate and give example parameters for
potential key size reduction.

Index Terms—Code-Based Cryptography, Rank-Metric Codes,
Gabidulin Codes, Interleaved Codes

I. INTRODUCTION

Code-based cryptosystems have gained large attention in the

last years since they are potentially resistant to quantum com-

puter attacks, in contrast to currently-used number theoretic

systems like RSA or ElGamal. The most famous code-based

cryptosystem is the one by McEliece [1], which is based on

the hardness of decoding in a generic code.

Recently, [2] introduced a system which can potentially

reduce the key size of the original McEliece cryptosystem.

The proposed system uses the same public key as the original

system, but changes the cipher to a corrupted codeword of

an interleaved code. Hence, key attacks are as hard as on the

original McEliece system and one potentially obtains a better

resistance against generic decoding since the interleaved code

can correct significantly more errors than a single Goppa code.

However, Tillich [3] found an attack, which is more efficient

than generic decoding if the error is not chosen carefully. A

repair against Tillich’s attack was proposed in [4].

Rank-metric codes are a promising candidate for code-

based cryptography since generic decoding in the rank metric

appears to be much harder than generic decoding in the

Hamming metric. Hence, they provide significantly smaller

key sizes at the same level of security against generic de-

coding. The rank metric was first considered in a McEliece-

like scheme in [5] (Gabidulin–Paramonov–Tretjakov (GPT)

cryptosystem). There are several modifications of the GPT

system [6]–[14], which are all based on hiding the structure

of a Gabidulin code, the most famous family of rank-metric

codes, from an attacker. However, most of these systems are
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broken by Gibson’s [15] and Overbeck’s [16] attacks, as well

as modifications thereof.

The only Gabidulin-code-based GPT variant that has not

been broken so far is the one by Loidreau [14]. There are also

GPT variants based on other code classes, e.g., [17], [18], as

well as other types of rank-metric-code-based cryptosystems,

e.g., [19]–[21], which we will not consider here.

In this paper, we combine the ideas of the interleaved system

in [2] with Loidreau’s GPT variant [14]. We show that in

principle, Loidreau’s system can be interleaved using classical

decoders for interleaved Gabidulin codes. We also analyze

the security of the new system, including an adaption of

Tillich’s attack to the rank metric. Similar to [4], we describe

how Tillich’s attack can be prevented by choosing the error

matrix in a suitable way. It turns out that the construction

of (in this sense) secure errors requires rank-metric codes

whose minimum distances are close to the Singleton bound.

We show that Gabidulin codes yield potentially insecure error

patterns since the resulting error matrix can be distinguished

from a random one. We further show that depending on the

parameters, one can draw the error matrix in a random way and

fulfill the requirements with high probability. For this choice of

the error, we derive upper bounds on the decryption failure and

present secure parameter sets that demonstrate the potential

key size reduction.

II. PRELIMINARIES

A. Notations

Let q be a power of a prime and let Fq denote the finite

field of order q and Fqm its extension field of order qm. We

use F
m×n
q to denote the set of all m × n matrices over Fq

and F
n
qm = F

1×n
qm for the set of all row vectors of length n

over Fqm . Rows and columns of m× n-matrices are indexed

by 1, . . . ,m and 1, . . . , n, where Ai,j is the element in the

i-th row and j-th column of the matrix A . Denote the set of

integers [a, b] = {i : a ≤ i ≤ b}. By rkq(A) and rkqm(A),
we denote the rank of a matrix A over Fq, respectively Fqm .

For any i, we denote the q-power by [i] := qi.
Let γ =

[

γ1, γ2, . . . , γm
]

be an ordered basis of Fqm over

Fq . By utilizing the vector space isomorphism Fqm
∼= F

m
q ,

we can relate each vector a ∈ F
n
qm to a matrix A ∈ F

m×n
q

according to extγ : Fn
qm → F

m×n
q , a =

[

a1, . . . , an
]

7→ A,

where aj =
∑m

i=1 Ai,jγi, ∀j ∈ [1, n]. Further, we extend

the definition of extγ to matrices by extending each row and

then vertically concatenating the resulting matrices.
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For a field F, the vector space that is spanned by

v1, . . . ,vl ∈ F
n is denoted by 〈v1, . . . ,vl〉F = {

∑l

i=1 aivi :
ai ∈ F}.

The vector space that is spanned by the rows of the

matrix A ∈ F
m×n is denoted by R

(

A
)

, i.e., R
(

A
)

=
〈
[

A1,1, . . . , A1,n

]

, . . . ,
[

Am,1, . . . , A1m,n

]

〉F .

The set of all n×n matrices which have only entries from V
is denoted by Mn(V), i.e., Mn(V) = {A ∈ F

n×n
qm : Ai,j ∈ V}.

The product space of the subspaces A and B is denoted by

A× B.

B. Rank-Metric, Gabidulin and Interleaved Gabidulin Codes

The rank norm rkq(a) is the rank of the matrix representa-

tion A ∈ F
m×n
q over Fq . The rank distance between a and b

is dR(a, b) := rkq(a − b) = rkq(A−B). An [n, k, d] linear

code C over Fqm is a k-dimensional subspace of F
n
qm and

minimum rank distance d, i.e, d := mina∈C\{0}{rkq(a)}.
Gabidulin codes [22]–[24] are a class of rank-metric codes.

Definition 1 (Gabidulin Code). A Gabidulin code G(n, k) over

Fqm of length n ≤ m and dimension k is defined by its k×n
generator matrix

G =











g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n











,

where g = [g1, g2, . . . , gn] ∈ F
n
qm , rkq(g) = n.

In [23], it is shown that Gabidulin codes are MRD codes,

i.e., d = n − k + 1, and can be decoded uniquely up to t ≤
⌊d−1

2 ⌋.
Interleaved Gabidulin codes are a code class for which

efficient decoders are known that are able to correct t ≤
⌊ ℓ
ℓ+1 (n− k)⌋ errors1 with high probability, cf. [25]–[27].

Definition 2 (Interleaved Gabidulin Codes [25]). An inter-

leaved Gabidulin code IG(ℓ;n, k) over Fqm of length n ≤ m,

dimension k ≤ n, and interleaving order ℓ is defined by

IG(ℓ;n, k) :=
{

[

c⊤G,1 . . . c
⊤
G,ℓ

]⊤
:cG,i∈G(n, k),∀i∈ [1, ℓ]

}

.

C. Difficult Problems in Rank Metric

In this section, we state difficult variants of the rank

syndrome decoding (RSD) problem which can used for cryp-

tography.

Definition 3 (RSD Distribution). Input: q, n, k, w,m
Choose uniformly at random

• H
$
←− {A ∈ F

(n−k)×n
qm : rkqm(A) = n− k}

• x
$
←− {a ∈ F

n
qm : rkq(a) = w}

Output: (H,Hx⊤)

1In this setting, an error of weight t is a ℓ×n matrix over Fqm of Fq-rank
t. Note that this means that the tall (ℓm)× n-matrix obtained by expanding
the matrix component-wise over Fq has rank t.

Definition 4 (Search RSD Problem). Input: (H,y⊤) from the

RSD Distribution

Goal: Find x ∈ {a ∈ F
n
qm : rkq(a) = w} such that Hx⊤ =

y⊤

Note that the Syndrome Decoding Problem in Hamming

Metric can be probabilistically reduced to Search RSD prob-

lem [28].

Definition 5 (Interleaved RSD Distribution). Input:

q, n, k, w,m, ℓ
Choose uniformly at random

• H
$
←− {A ∈ F

(n−k)×n
qm : rkqm(A) = n− k}

• X
$
←− {B ∈ F

ℓ×n
qm : rkq(B) = w}

Output: (H ,HX⊤)

Definition 6 (Interleaved Search RSD Problem). Input:

(H ,Y ⊤) from the Interleaved RSD Distribution

Goal: Find X ∈ {B ∈ F
n
qm : rkq(B) = w} such that

HX⊤ = Y ⊤

Note that the Interleaved Search RSD problem is similar

to the problem proposed in [29, Definition 7]. The only

difference is that the rows of the matrix X in Interleaved RSD

Distribution have the same row space whereas the rows of U⊤

in [29, Definition 7] have the same column space. For a small

interleaving order ℓ, the currently most efficient algorithm

to solve both, the Interleaved Search RSD Problem and the

problem given in [29, Definition 7], was presented in [3]

and will be analyzed in Section IV. For a high interleaving

order ℓ ≥ w, the algorithm proposed in [30] is able to solve

the Interleaved Search RSD Problem with high probability in

polynomial time. For an interleaving order greater than wk,

the algorithm proposed in [31] is able to efficiently solve [29,

Definition 7], see [31, Section 6.5].

III. INTERLEAVING LOIDREAU’S CRYPTOSYSTEM

The system that we propose is a McEliece-type system

based on interleaving the rank-metric codes introduced in [14].

To prove that decryption of the proposed system is success-

ful with high probability, we need the following lemma.

Lemma 1. Let P ∈ Mn(V) be an invertible matrix with

entries in a λ-dimensional Fq-linear subspace V of Fqm . Then

∀E ∈ F
ℓ×n
qm : rkq(EP ) ≤ λ rkq(E).

Proof: The proof is similar to [14]. Let γ′ =
[

γ′
1, . . . , γ

′
ℓ

]

be an ordered basis of Fqmℓ over Fqm , e =
[

e1, . . . , en
]

:=
ext−1

γ′ (E) ∈ F
n
qmℓ be of rank weight t, and 〈e1, . . . , en〉Fq

=
〈ǫ1, . . . , ǫt〉Fq

. Further, let ν1, . . . , νλ be a basis of V .

The entries of the vector eP belong to the vector space

〈ǫ1ν1, ǫ2ν1, . . . , ǫtν1, ǫ1ν2, . . . , ǫtνλ〉Fq
of dimension ≤ λt.

The system parameters are shown in Table I. The key gen-

eration, encryption and decryption algorithms are as follows.



Table I
SUMMARY OF THE PARAMETERS

Name Use Restriction

q small field size prime power
m extension degree 1 ≤ m

n code length n ≤ m
k code dimension k < n

λ dimension of the V n
n−k

< λ ≤ ⌊n−k
2

⌋

ℓ interleaving order 1 ≤ ℓ < tpub
tpub error weight in ciphertext tpub = ⌊ ℓ

ℓ+1
n−k
λ

⌋

A. Key Generation

The keys are the same as in [14], i.e.,

• G ∈ F
k×n
qm a generator matrix of a random G(n, k),

• S ∈ F
k×k
qm , which is random and nonsingular

• P ∈ Mn(V) ⊂ F
n×n
qm , random and non-singular, where

V is a random λ-dimensional Fq-linear subspace of Fqm .

The public key is given by Gpub := SGP−1.

B. Encryption

1) Choose the error matrix E =
[

e⊤1 , . . . , e
⊤
ℓ

]⊤
randomly s.t.

rkq(E) =
⌊ ℓ

λ(ℓ+ 1)
(n− k)

⌋

=: tpub . (1)

2) Compute the cipher Y = MGpub + E ∈ F
l×n
qm , where

M ∈ F
ℓ×k
qm is the message matrix.

C. Decryption

1) Compute Y P = MSG + E′, where E′ := EP and

rkq(E
′) ≤ ⌊ ℓ

ℓ+1(n− k)⌋, cf. Lemma 1.

2) Decode Y P in IG(ℓ;n, k) to obtain MS.

3) Compute MSS−1 = M to retrieve the message.

Assuming Gpub cannot be distinguished from a random

matrix2, an attacker needs to generically decode the cipher to

obtain the plain text. This is equal to solving the Interleaved

Search RSD Problem.

IV. ATTACKS ON THE CRYPTOSYSTEM

We recall, analyze, and adapt known attacks on the systems

in [2], [14]. Since the keys are the same as in [14], key attacks

are as hard as on the system in [14].

1) (key attack): In [14], a structural attack is described,

which is based on brute-forcing a number of (λ − 1)-
dimensional subspaces of Fm

q . The work factor is given by3

WFLoi = q
1

2
((λ−1)m−(λ−1)2). (2)

2) (decoding attack): The work factors3 of the algorithms

that correct errors of rank t in an arbitrary [n, k] linear

rank distance code over Fqm are denoted by WFCha(t) [33],

WFOur [34], WFGab(t) [35] and WFAra(t) [36].

Tillich [3] proposed an attack on the interleaved Goppa

codes system in [2], which can be similarly applied here.

The augmented matrix of the public key and the cipher

2The only known distinguisher [32] cannot be applied for a parameter
choice according to Table I.

3 We divide the exponent by 2 to obtain an estimate of the post-quantum
work factor (presuming that Grover’s algorithm can be applied).

GY
aug :=

[

G⊤
pubY

⊤
]⊤

has the same row space as the ma-

trix GE
aug :=

[

G⊤
pubE

⊤
]⊤

. Thus, the row space Caug :=

R
(

GY
aug

)

contains codewords of weight ≥ dE, where dE
is the minimum rank distance of an error code spanned by

the rows of E, i.e., CE[n, ℓ, dE] := R
(

E
)

. Due to the

restriction on the error matrix E in (1), finding some non-

zero element of the error code can, at least partially, recover

the row space of the extended error matrix extγ(E) since

R
(

extγ(E)
)

= R
(

extγ(e1)
)

+ · · · + R
(

extγ(eℓ)
)

. The

problem of finding low-rank-weight words was studied in [37],

and is in principle equivalent to rank syndrome decoding. In

particular, it has a similar complexity if the weight of the

low-weight words is as large as the error in rank syndrome

decoding, i.e., the smallest-known work factor is

WFE=min{WFCha(dE),WFOur(dE),WFGab(dE),WFAra(dE)}.

Note that since each row of Y is a codeword corrupted by an

error of rank at least dE, the row-wise rank syndrome decoding

has a complexity of at least WFE . Further, this attack has a

higher complexity than generic decoding in Loidreau’s original

system with the same public key if and only if dE > d−1
2λ .

3) (decoding attack): In [30], a polynomial-time decoding

algorithm is proposed that works for arbitrary interleaved

codes of interleaving degree ℓ ≥ tpub and error matrices of

full rank. However in case of ℓ < tpub, one must brute-force

through the solution space of a linear system of equations,

whose size is exponential in m(tpub − ℓ). By choosing the

parameters according to Table I, this attack is not efficient.

V. CONSTRUCTION OF THE ERROR MATRIX

We have seen in the previous section that in order to resist

Tillich’s attack, the rows of the error matrix E must span

a code of large minimum rank distance, i.e., E must be a

generator matrix of an [n, ℓ, dE > d−1
2 ] code. The following

statement shows how to construct such a code that still fulfills

the decoding condition (1), which is necessary for successful

decryption.

Theorem 2. Let the error matrix be given by

E = A ·B ∈ F
ℓ×n
qm ,

where A ∈ F
ℓ×tpub
qm is a generator matrix of a [tpub, ℓ, dE] code

and has full Fq-rank and B ∈ F
tpub×n
q has full rank. Then, E

fulfills (1) and is a generator matrix of an [n, ℓ, dE] code. Also,

E and any row of E has Fq-rank at least dE.

Proof: Since A has tpub columns, its Fq-rank is at most

tpub. Multiplication by the full-rank Fq-matrix B from the

right does not change the Fq-rank, so rkq(E) ≤ tpub and (1)

is satisfied.

To prove that the error matrix spans an [n, ℓ, dE] code, we

first observe that the length of vectors in the row space of E

is n and its Fqm-rank is ℓ (since A has full Fqm -rank and

multiplication by the full-rank matrix B does not change this

rank). Thus it is a code of length n and dimension ℓ over Fqm .



Table II
COMPARISON OF LOIDREAU’S SYSTEM WITH THE PRESENTED INTERLEAVED CODES SYSTEM.

Method q k n m λ ℓ tpub WFLoi WFE WFA Rate Pf Key size

Classic 16 11 27 42 2 1 4 82.00 80.38 ∞ 0.41 −∞ 3.70 KB
Interleaved 16 9 27 42 2 2 6 82.00 86.48 119.00 0.33 −166.00 3.40 KB
Classic 16 14 34 66 2 1 5 130.00 128.39 ∞ 0.41 −∞ 9.24 KB
Interleaved 16 13 31 66 2 2 6 130.00 128.07 215.00 0.42 −266.00 7.72 KB
Classic 16 23 53 62 3 1 5 240.00 198.58 ∞ 0.43 −∞ 21.39 KB
Interleaved 16 22 49 62 3 2 6 240.00 200.34 199.00 0.45 −246.00 18.41 KB
Classic 16 30 60 68 3 1 5 264.00 256.98 ∞ 0.50 −∞ 30.60 KB
Interleaved 16 28 55 77 3 2 6 300.00 257.77 259.00 0.51 −306.00 29.11 KB

As for the minimum distance, we have the following. Let

c1, c2 be two distinct vectors in the row space of E. Then,

we can write them as ci = ai · B, where a1,a2 are in

the row space of A. Since the ci are distinct, so are the

ai. Furthermore, we have dR(a1,a2) ≥ dE. Since B is a

full-rank matrix over Fq, multiplication by it does not change

the rank of a word. Hence, dR(c1, c2) = dR(a1B,a2B) =
dR(a1,a2) ≥ dE, which shows that the rows of E indeed

generate an [n, ℓ, dE] code. As a result, any row of E, as well

as E itself, has Fq-rank dE.

Due to the rank-metric Singleton bound, the minimum dis-

tance of the error code is upper bounded by dE ≤ tpub− ℓ+1.

The work factor of [3] is greater than RSD of Loidreau’s

system if dE > d−1
2λ . To gain in security level (or to reduce

the key size), we must choose a suitable [tpub, ℓ, dE] code with

d−1
2λ < dE ≤ tpub − ℓ+ 1 . (3)

An obvious choice would be a Gabidulin code attaining the

upper bound. However, we will show in Appendix A that in

this case, the error code R
(

E
)

can be distinguished from a

random code, which might be a weakness.

In the next section, we will show that it suffices to choose

a random code as the error code since its minimum distance

attains the upper bound in (3) with high probability, cf. [38].

As an alternative, one can use structured codes that arise

from codes whose minimum distance is close to the upper

bound. However, such codes have not been studied in the

literature and, hence, this paper provides a motivation to study

these codes. We will formally state the research problem in

the conclusion.

VI. USING RANDOM ERROR CODES

In this section, we show that by choosing A uniformly at

random among all full-rank matrices in F
ℓ×tpub
qm , one obtains

an [n, ℓ, tpub − ℓ + 1] error code with high probability. For

this choice of A, we then analyze the decryption failure

probability.

A. Probability of E Generating an [n, ℓ, tpub − ℓ+ 1] Code

Theorem 3 (Probabilities for MRD codes [38]). Let X ∈
F
k×(n−k)
qm be randomly chosen. Then

Pr
[

R
([

Ik|X
])

is an MRD code
]

≥ 1− kqkn−m,

where Ik denotes the k × k identity matrix.

Note that for practical parameters, it might not be feasible

to determine the minimum rank distance of the chosen code

since the fastest-known algorithms to compute the minimum

rank distance are exponential in the code parameters.

Proposition 4. Let E = AB, where A is drawn uniformly

at random among all full-rank matrices in F
ℓ×tpub
qm and B

uniformly at random among all full-rank matrices in F
tpub×n
q .

Then the probability that E is a generator matrix of a

[n, ℓ, tpub − ℓ+ 1] code is ≥ 1− ℓqℓtpub−m.

Proof: It follows directly from Theorems 2 and 3.

Note that if the inverse of the probability that A is not MRD,

i.e., ℓ−1qm−ℓtpub , is above the security level, this choice of the

error does not decrease the security of the system. We take

this into account for the choice of the proposed parameters

and show the values in Table II.

B. Decryption Failure Probability

The decryption algorithm fails if and only if the decoding

of the interleaved Gabidulin code fails.

Lemma 5. Let B be a fixed subspace and A a subspace

generated by α random and linearly independent elements of

Fqm . Then,

Pr[dim(A× B) = αβ] ≥ 1− αq−(m−αβ).

Proof: See [39, Proposition 3.3].

Theorem 6. Let Ẽ = AB̃, where A is chosen as random full-

rank matrix of F
ℓ×tpub
qm and B as a random matrix of F

tpub×n
q .

Further let dim(〈Ai,1, . . . ,Ai,tpub〉Fq
× V) = λtpub for i =

1, . . . , ℓ. Then correcting ẼP in IG(ℓ;n, k) succeeds with

probability

≥

tpubλ
∑

t′=ℓ

(1− 4
qm

)
(

1− qmℓ

qmt′

)ℓ

qλtpubn

t′−1
∏

i=0

(qtpubλ − qi)(qn − qi)

qt′ − qi
.

Proof: The error that has to be decoded during decryption

can be written as ẼP = A′B′, where the i-th row of A′ ∈
F
ℓ×λtpub
qm is a basis of the product space 〈Ai,1, . . . ,Ai,tpub〉Fq

×

V and B′ ∈ F
λtpub×n
q . Since dim(〈Ai,1, . . . ,Ai,tpub〉Fq

×V) =

λtpub and B̃ is random, the matrix B′ can be seen as

random element of F
λtpub×n
q and (EP )i,j as random element

of 〈Ai,1, . . . ,Ai,tpub〉Fq
× V , see [39, Proposition 4.3]. Thus,

when applying the interleaved decoder proposed in [25], [40],

the probability of correcting ẼP successfully is

≥

tpubλ
∑

t′=ℓ

(1− 4q−m)
(

1− q−m(t′−ℓ)
)ℓ

Pr[rkFq
(ẼP ) = t′].



Further since rkq(A
′) = λtpub, the probability

Pr[rkFq
(ẼP ) = t′] is equal to the probability that the

random matrix B′ has rank t′ [39, Proposition 4.3], i.e.,

Pr[rkFq
(ẼP ) = t′] =

1

qλtpubn

t′−1
∏

i=0

(qtpubλ − qi)(qn − qi)

qt′ − qi
.

Note that the error in Theorem 6 is not necessary full-rank.

However, it seems possible to adapt the proof of the bound

in [25], [40] to random full-rank errors, where we conjecture

that the lower bound on the success probability will be higher

in case of full-rank errors. Based on this conjecture

the decryption algorithm in Section III fails with probability

≤ 1−

tpubλ
∑

t′=ℓ

(1− 4
qm

)
(

1− qmℓ

qmt′

)

(1− tpub
q
λtpub

qm
)

qλtpubn

t′−1
∏

i=0

(qtpubλ − qi)(qn − qi)

qt′ − qi
.

We believe that the latter bound on the decryption failure is

not tight since 1) dim(〈Ai,1, . . . ,Ai,tpub〉Fq
×V) = λtpub is not

a necessary condition to successfully decode but only required

for the correctness of Theorem 6 and 2) the bound was derived

for EP that might not have full rank. Nevertheless, for the

parameters proposed in Table II, even the inverse of this loose

upper bound on the decryption failure rate is below the claimed

security levels.

VII. POTENTIAL KEY SIZE REDUCTION

For the error construction proposed in Proposition 4, we

propose parameters for (post-quantum) levels of security of

80, 128, 196 and 256 bit with respect to the known attacks in

Table II. The explicit work factors, the inverse of the probabil-

ity that A is not MRD denoted by WFA := log2 ℓ
−1qm−ℓtpub ,

the rate k/n, the key size qk(n−k) and the upper bound on the

decryption failure Pf in bits are presented for dE = tpub−ℓ+1.

VIII. CONCLUSION

In this paper, we proposed a rank-metric McEliece-type

cryptosystem based on applying the interleaving approach

of Elleuch et al. on Loidreau’s cryptosystem. We analyzed

possible attacks and showed that structural attacks are as hard

as for Loidreau’s system but an additional decoding attack is

facilitated by interleaving. The efficiency of the latter attack

can be reduced by choosing the error matrix as a generator

matrix of a code with large minimum distance. We suggested

design rules of the system and proved that depending on the

parameters, a random construction of the error matrix fulfills

the requirements with high probability. For this choice of the

error, we derived upper bounds on the decryption failure and

presented valid parameter sets that permit to decrease the key

sizes.

Related Open Research Problem

Note that (3) does not restrict the code generated by A to

be MRD but also allows codes whose minimum distances are

close to tpub−ℓ+1. Since only little is known about non-MRD

codes, the cryptosystem proposed here gives motivation to an

interesting new research direction:

Open Research Problem 1. Given an extension field Fqm ,

n ≤ m, k < n, and d = n− k + 1− ε, for some ε ∈ N, ε≪
n− k, find a rank-metric code with parameters [n, k, d] over

Fqm with efficient decoder, which—vaguely stated—cannot be

distinguished from a random rank-metric code as easily as a

Gabidulin code (cf. Appendix) below).

APPENDIX

In this section, we show that choosing A (cf. Theorem 2)

to be a generator matrix of a Gabidulin code, results in an

error code (i.e., the code spanned by the rows of E) that is

distinguishable from a random error matrix. Although this does

not directly lead to an explicit attack, which e.g., recovers the

error matrix, this might be a weakness of ciphers obtained

from these A.

We use the fact that the augmented matrix obtained by

vertically concatenating Gpub and the cipher Y , has the

same row space as the same construction with Gpub and the

unknown error E, i.e., R
(

GY
aug

)

= R
(

GE
aug

)

. Thus, the

augmented matrix might reveal the structure of the error matrix

E by applying the following operator to it, as we will see in

the following.

Definition 7 (q-Sum). Let C[n, k] be a linear code over Fqm

and i ∈ N0. Then, the (ith) q-sum of C is defined by

Λi(C) = C + C
[1] + · · ·+ C[i].

A. Distinguishing the Augmented Code

We first state the following lemma.

Lemma 7. Let E be constructed as in Theorem 2, where A

is a generator matrix of a Gabidulin code. Then,

dim(Λi(Caug)) ≤ min{(i+ 1)k +min{ℓ+ i, tpub}, n}.

Proof: By definition Λi(Caug) = Λi(R
(

Gpub

)

) +
Λi(CE). Since A is a generator matrix of a [tpub, k] Gabidulin
code, dim(Λi(CE)) = min{ℓ+ i, tpub}. Thus,

dim(Λi(Caug)) = min{dim(Λi(R
(

Gpub

)

)) + min{ℓ+ i, tpub}, n}

≤ min{(i+ 1)k +min{ℓ + i, tpub}, n}.

If A in Theorem 2 is chosen to be a random full-rank ma-

trix, we have dimΛi(R
(

E
)

) = min{(i+1)ℓ, tpub} with high

probability. Hence, by the same arguments as in Lemma 7, the

overall augmented code has dimension

dim(Λi(Caug)) =min{dim(Λi(R
(

Gpub

)

))

+ min{(i+ 1)ℓ, tpub}, n}

≤min{(i+ 1)k +min{(i+ 1)ℓ, tpub}, n}.



By Lemma 7, for 2k + min{ℓ + 1, tpub} < n (which simply

means that for i > 0, min{(i+1)k+min{ℓ+i, tpub}, n} < n),

the dimension of Λi(Caug) with a Gabidulin code matrix A is

smaller than the respective dimension when using a random

A, with high probability. Hence, it can be distinguished.

B. Distinguishing the Dual Augmented Code

We study the dual of the augmented matrix.

Lemma 8. Let

C⊥aug := R

([

Gpub

Y

])⊥

= R

([

Gpub

E

])⊥

,

then C⊥aug = R
(

Gpub

)⊥
∩R

(

E
)⊥

= R
(

Hpub

)

∩R
(

HE

)

.

Proof: For the code C⊥aug it holds that

C⊥aug =
{

c′ : c′
[

G⊤
pubE

⊤
]

= 0k+ℓ

}

= {c′ : c′G⊤
pub = 0k} ∩ {c

′ : c′E⊤ = 0ℓ}

= R
(

Gpub

)⊥
∩R

(

E
)⊥

,

where 0i denotes the all-zero vector of length i.

Lemma 9. There is an HE of the form

HE =

[

A⊥Binv

Bker

]

∈ F
n−ℓ×n
qm ,

where Binv ∈ F
tpub×n
q has Fqm -rank tpub, Bker ∈ F

(n−tpub)×n
q

has Fqm -rank n−tpub, A⊥ ∈ F
(tpub−ℓ)×tpub
qm and (A⊥B⊤

invB
⊤)

is a parity-check matrix to A.

Proof: Since B ∈ F
tpub×n
q is of full rank and defined

over Fq , we can find a basis Bker ∈ F
(n−tpub)×n
q of its right

kernel. Note that Bker has full Fq- and Fqm -rank. By the basis

extension theorem, we can extend the linearly independent

rows of Bker into a full basis of Fn
q . These further tpub basis

element form the rows of Binv. Note that also Binv has full

Fq- and Fqm-rank and any non-zero vector in the row space

of Binv is linearly independent to the rows of Bker. Hence,

also the rows of A⊥Binv are linearly independent of the rows

of Bker, which, together with the fact that A⊥ has full rank,

shows that HE has full Fqm-rank n− ℓ.
It remains to show that the rows of HE are in the right

kernel of E. The rows of Bker fulfill this because E = AB

and Bker is a basis of the right kernel of B. For the first

tpub − ℓ rows of HE, we check:

E(A⊥Binv)
⊤ = ABB⊤

inv(A
⊥)⊤ = 0 ,

which is true since A⊥B⊤
invB

⊤ is a parity-check matrix with

respect to A.

Remark 10. Note that A⊥ as in Lemma 9 is a generator

matrix of a [tpub, tpub − ℓ] Gabidulin code since A⊥B⊤
invB

⊤

is one (the dual code of a [tpub, ℓ] Gabidulin code is a

[tpub, tpub − ℓ] Gabidulin code, cf. [23]) and B⊤
invB

⊤ is an

invertible matrix over Fq (which means that we just need to

use different evaluation points in the Gabidulin code).

Lemma 11. Let E be defined as in Theorem 2, then

dimΛi

(

R
(

HE

) )

≤ min{n− ℓ+ i, n}.

Proof: We use Lemma 9. Since Binv and Bker are over

Fq , B
q
inv = Binv and B

q
ker = Bker. Further, dimΛi(A

⊥) =
min{tpub−ℓ+i, tpub}, cf. [40], since A⊥ is a generator matrix

of a [tpub, tpub−ℓ] Gabidulin code. Thus, dimΛi

(

R
(

HE

) )

≤
min{n− ℓ+ i, n}.

Lemma 12. Let Hpub be a parity-check matrix of an

[n, k] code generated by Gpub. Then, dimΛi

(

R
(

Hpub

) )

=
min{(i+ 1)(n− k), n}, with high probability.

Lemma 13. Let C⊥aug = R
(

Hpub

)

∩R
(

HE

)

. Then,

C⊥aug + . . .+
(

C⊥aug
)[i]
⊆ R













Hpub

...

H
[i]
pub












∩R













HE

...

H
[i]
E












.

Proof: We have C⊥aug ⊆ R
(

Hpub

)

, thus C⊥aug + . . . +
(

C⊥aug
)[i]

⊆ R
(

[H⊤
pub,H

[1]
pub

⊤
, . . . ,H

[i]
E

⊤
]⊤
)

. The same

holds for R
(

HE

)

, which proves the claim.

Theorem 14. Let C⊥aug = R
(

[

G⊤
pubY

⊤
]⊤

)⊥

. Then,

dim(Λi(C
⊥
aug)) ≤ min{n− l + i, (i+ 1)(n− k), n}.

Proof: The proof follows directly by Lemmas 11, 12 and

13.

In summary, by choosing A to be a generator matrix of

a Gabidulin code, the error code E can be distinguished

from an error matrix with random A. This does not imply

an explicit attack on the system, but indicates that there

might be a weakness in this case. The distinguisher must also

be considered when constructing codes from Open Research

Problem 1.
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