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Abstract—The task object tracking is vital in numerous ap-
plications such as autonomous driving, intelligent surveillance,
robotics, etc. This task entails the assigning of a bounding box
to an object in a video stream, given only the bounding box
for that object on the first frame. In 2015, a new type of
video object tracking (VOT) dataset was created that introduced
rotated bounding boxes as an extension of axis-aligned ones. In
this work, we introduce a novel end-to-end deep learning method
based on the Transformer Multi-Head Attention architecture. We
also present a new type of loss function, which takes into account
the bounding box overlap and orientation.

Our Deep Object Tracking model with Circular Loss Func-
tion (DOTCL) shows an considerable improvement in terms of
robustness over current state-of-the-art end-to-end deep learning
models. It also outperforms state-of-the-art object tracking meth-
ods on VOT2018 dataset in terms of expected average overlap
(EAO) metric.

Index Terms—visual tracking, transformer, siamese networks

I. INTRODUCTION

Video object tracking is essential to many areas of research
and industry including but not limited to autonomous driving,
intelligent surveillance, and robotics.

The standard formulation for the object tracking is assigning
a so called bounding box to an object in a video stream (i.e.,
on every frame of the video), provided only the bounding box
for a chosen object on the first frame. VOT challenges and
corresponding datasets [1] are a generally accepted benchmark
for this task. These datasets consist of several video files with
manually assigned bounding boxes for one selected object.
Videos vary significantly in both the filming conditions (i.e.,
the scene lighting) and the object size relative to the frame.

In 2015, organizers of the VOT challenge compiled a new
type of video object tracking dataset that introduced rotated
bounding boxes as opposed to axis-aligned bounding boxes.
This was motivated by the fact that axis-aligned bounding
boxes approximated the target with percentage of pixels within
the bounding box at average of 45% but the rotated box can
increase this percentage to 60% [2]. But the introduction of
the rotated bounding boxes complicates the task even further.

Most state-of-the art trackers fall into two main categories.

The first group of methods applies correlation filters (CF)
to cyclic matrices to estimate the probability of the object
in sliding windows in the vicinity of the previous location
[3]. CF based trackers may calculate correlation between
various features such as pixel values, HOG features [4], and
even values from different layers of a deep convolutional
neural network (CNN [5]). The CNN for feature extraction
is typically pretrained on a object classification problem on a
large dataset, such as ImageNet [6].

The second group trains an end-to-end deep neural network
model to output the bounding box directly. Parts of these
networks can also be pretrained on a large dataset for the
classification task such as ImageNet [6].

Most of the top trackers of the VOT2018 competition [1]
use only the last and the current frame for tracking and do
not attempt to extract any additional information from the
sequence of frames. Some recent approaches, such as Recur-
rent YOLO (ROLO) [7] and Deep Reinforcement Learning
for Visual Object tracker (DRLT) [8], use historical visual
semantics but do not demonstrate competitive performance.

In this work, we propose a novel end-to-end deep learning
visual object tracking method. It applies the Transformer
Multi-Head Attention approach [9] as well as a new type
of loss function. Transformer architecture efficiently analyses
whole sequences of frames and bounding boxes. The new
loss function takes into account the bounding box overlap and
orientation and provides calculatable derivative for training the
network with backpropagation algorithm.

II. RELATED WORK

As mentioned above, we can divide the existing state-of-
the-art trackers into two main groups. The first group includes
variations of the discriminative correlation filter applied to
circular matrices. The second type is end-to-end deep learning
trackers that take a frame or a series of frames as an input and
directly output the bounding box.

In this section, we describe current state-of-the-art methods
in both groups that we use to compare with the performance
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of our algorithm. We present the top three performing models
from the VOT2018 competition as baselines. Two of these
models are discriminative correlation filters, and one is an end-
to-end deep learning model.

A. Discriminative Correlation Filters

Discriminative Correlation Filter trackers (DCF [4]) con-
sider cyclic shifts of the original sample and calculate the
correlation for maps of features in sliding windows around
the object’s previous location. Top two results in VOT2018
[1] competition are variants of DCF that use both manually
defined features (i.e., HOG and Color Names [4]) and features
generated by CNN. Here we only give a brief characterization
of both approaches, since our main contribution is in the
area of end-to-end deep learning trackers. For more detailed
descriptions, we refer the reader to corresponding papers [5],
[10].

1) Multi-hierarchical Independent Correlation Filter:
Multi-hierarchical Independent Correlation Filter (MFT) [5]
showed the best performance in terms of the robustness (R)
metric and second to best performance in terms of expected
average overlap (EAO) metric in VOT2018 challenge. MFT
tracker learns a hierarchy of multi-resolution deep features
from the convolutional neural network (CNN) for correlation
filters. These multi-hierarchical deep features of CNN rep-
resenting different semantic information assist with tracking
of the multi-scale objects. To overcome the deep feature
redundancy, each hierarchical feature is independently fed into
a single branch of correlation filters optimization to implement
the online learning of parameters of these filters. Finally, an
adaptive weighting scheme is integrated into the framework
to fuse these independent multi-branch correlation filters to
increase robustness.

2) Learning Adaptive Discriminative Correlation Filter:
The top performer in the VOT2018 challenge by the primary
metric, expected average overlap (EAO) [11], is the Learning
Adaptive Discriminative Correlation Filter (LADCF) [10].
LADCF addresses the problem of spatial boundary effect and
temporal filter degeneration. This model combines consistent
temporal constraints and adaptive spatial regularization, which
enables joint spatiotemporal filter learning. Also, the optimiza-
tion framework is proposed to learn discriminative filters with
the augmented Lagrangian method.

B. End-to-end Deep Learning Models

The second group of object trackers is the end-to-end deep
learning models. These models do not perform additional
operations over the learned features of the pretrained neural
network, but rather train the network to output the bounding
box parameters directly. Siamese Region Proposal Network
(SiamRPN) represents state-of-the-art methods of this group.

1) Siamese Region Proposal Network: The Siamese Region
Proposal Network (SiamRPN) [12] consists of a classification
branch and a regression branch. It makes use of a region
proposal network first introduced in [13] to propose several
potential regions for an object. Classification branch is in

charge of the object-background classification. Regression
branch refines the bounding box proposal.

Authors train this network in the end-to-end fashion with
the following loss function:

Ltotal = Lcls + λLreg (1)

where λ is a hyper-parameter to balance the two loss
functions parts. Lcls is the cross entropy classification loss and
Lreg is the regression loss.

They define the regression loss Lreg in the following manner:

Lreg =

3∑
i=0

SmoothL1
(δ[i], σ), (2)

where δ[i] is defined as:

δ[0] =
xgt − x
w

, δ[1] =
ygt − y
h

, (3)

δ[2] = ln
wgt

w
, δ[3] = ln

hgt

h
, (4)

where x, y, w, h are the center point coordinates and the
width and the height of the proposed bounding box and
xgt, ygt, wgt, hgt as those of the ground truth bounding box.

SmoothL1
is defined as:

SmoothL1(z, σ) =

{
0.5σ2z2 if|z| > 1

σ2

|z| − 1
2σ2 otherwise (5)

2) RNN-based Object Trackers: Most state-of-the-art mod-
els use object location history obtained from just one previous
frame to search for an object.

One of the intuitions behind this work is that historical vi-
sual semantics may contain valuable information for effective
frame handling and continuous tracking. Thus, it is necessary
to develop architectures that process sequences of frames
rather than a single frame. Solutions such as Recurrent YOLO
(ROLO) [7] and Deep Reinforcement Learning for Visual
Object tracker (DRLT) [8] use Long-Term Short Memory
modules (LSTM) [14] to analyze the sequence of frames to
extract spatiotemporal information that is important for better
tracking. However, as we previously mentioned, RNN trackers
do not yet demonstrate competitive results.

C. Transformer and Multi-head Attention

The relatively new Transformer architecture [9] has demon-
strated outstanding results in many natural language process-
ing tasks and it proved itself to be well suited for the extraction
of the complex dependencies between sequential elements. In
its core, it is based on the attention mechanism, that have
become one of the most prolific methods for many sequence-
based tasks. Next we describe in detail the Transformer Multi-
Head Attention architecture.

A single Transformer attention block has three tensor inputs
denoted as query Q, key K and value V with dimensionality
of dq, dk, and dv respectively. The output is a weighted V



tensor with weights calculated by the compatibility function
of the Q and K.

Att(Q,K, V ) = Softmax(
QKT

√
dk

)V (6)

where dimension dk = dq of keys and queries is used as a
scaling factor to prevent large values of the dot product.

But, instead of using a single attention block, Q, K, and
V are linearly projected h times with different separate neural
layers WQ

i , WK
i , and VWV

i . Each set of projections is passed
as input to the attention block with dv-dimensional output.

Hi = Att(QWQ
i ,KW

K
i , V W

V
i ), (7)

All outputs values of each projection then concatenated and
projected by WO neural network, giving us the output of the
multi-head attention block.

MultiHead(Q,K, V ) = Concat(H1, . . . ,Hh)W
O (8)

We incorporate this Multi-Head Attention block architecture
to create a Transformer Tracker network in Section III-A.

III. DOTCL
This section introduces our end-to-end Deep Object Track-

ing with Circular Loss Function approach and describes the
network architecture, the new bounding box parametrization,
and the new loss function.

A. Transformer Tracker Architecture

Figure 1 shows the overall network architecture dubbed
Transformer Tracker (TT). The left part is the encoder network
and the right part is the decoder network.

The encoder receives n previous frames plus the current
one. Convolutional neural network (CNN) extracts high-level
features. The CNN is pretrained for image classification task
on a large dataset (i.e., ImageNet [6]). These input features are
then passed to multi-head attention block (described in Sec-
tion II-C) and, subsequently, to fully connected feedforward
network.

The output of the encoder is then passed to the second multi-
head attention block of the decoder network.

The decoder receives predicted bounding boxes from the
previous n steps and passes them to the its first multi-head
attention block. The output of the first multi-attention block is
passed to the second multi-head attention block along with
the output from the encoder network. The output of the
second multi-head attention block is passed to the feedforward
network and then to the bounding box generator network for
the generation of the bounding box parameters.

In the original Transformer, keys K and values V for the
second multi-head attention block of the decoder are the output
of the encoder, and the queries Q were the output of the first
multi-attention block of the decoder itself. In our architecture,
we use the output of the first multi-head attention block as
values V for the second multi-head attention block, since each
next box should depend on the locations of the previous ones.

Fig. 1. Our Transformer Tracker (TT) architecture consists of the encoder
(left) and the decoder (right). The encoder receives several previous frames
including the current one. The decoder receives bounding boxes from previous
steps and the output of the encoder and predicts the bounding box for the
current frame. See Section III-A for more details.

We also found that performing layer normalization for select
layers (Figure 1) improves performance of the network.

This architecture allows us to access both the previous n
frames as well as their predicted bounding boxes which seems
to benefit the overall performance.

When we initialize the network at the first frame of the
sequence, we copy this first frame and the ground truth
bounding box n times. These copies in a sense serve as
previous frames and bounding boxes.

This completes a general description of our Transformer
Tracker architecture. We give technical details of implemen-
tation in Section IV-C.

B. Parametrization for the Rotated Bounding Box

Previous state-of-the-art methods employ two main ap-
proaches for the parameterization of the bounding box:

• Eight-dimensional vector with x and y coordinates of the
four vertices of a polygon.

• Four-dimensional vector with x and y coordinates of the
center, height h and width w of a rectangular bounding



box. This parametrization only allows for axis-aligned
bounding boxes.

It is important to note that out of the top three approaches
of the VOT2018 competition, only one (LADCF) used the
eight-dimensional parametrization. Even though the ground
truth was a rotated bounding box, most current state-of-the-
art solutions (including the only end-to-end deep learning
solution) opt for the non-rotated predicted bounding box. This
is due to a more straightforward training and tuning process.

We introduc a new parametrization of the bounding box that
we argue is better suited for the rotated variant (Figure 2).

Fig. 2. New five-dimensional bounding box parametrization (5BB). We
parametrize the bounding box by the coordinates of two diagonal points (x1,
y1) and (x2, y2) and the normalized length (β) of the arc from (x1, y1) to
the next angle of the box in the clockwise direction.

Let us denote the coordinates of two diagonal points of
the bounding box as (x1, y1) and (x2, y2). Then all rectan-
gular bounding boxes with those two diagonal points will be
inscribed in the circle with the ((x1, y1), (x2, y2)) diameter.
That means we can define the exact bounding box by only
one more parameter — the normalized length of the arc
from the (x1, y1) point to the next point in the clockwise
direction (see Figure 2). This parameter (β) also characterizes
the proportions of the bounding box.

We then can use this five-dimensional parametrization of the
bounding box (5BB) with SmoothL1

loss function (Equation
5). As an additional improvement, we propose a better-suited
loss function.

C. Circular Loss Function

Our bounding box parametrization naturally induces a loss
function that consists of three parts.

L = Larea + λ1Langle + λ2Larc (9)

The first part is the inverted relative overlap of the cir-
cumscribed circles of the predicted (C) and the ground truth
(Cgt) bounding boxes. This circle overlap serves as a crude
differentiable approximation of the bounding box overlap.

Larea = 1−
|C ∩ Cgt|
|C ∪ Cgt|

(10)

We can calculate the overlap of the circles as a function of
the total area S and the intersection area I .

|C ∩ Cgt|
|C ∪ Cgt|

=
I

S − I
(11)

We can then, in turn, calculate the intersection area I
according to the following equation:

I = r2 arccos

(
d2 + r2 − r2gt

2dr

)

+ r2gt arccos

(
d2 + r2gt − r2

2drgt

)
− 1

2

√
(d+ rgt + r)(d+ rgt − r)(d+ r − rgt)(r + rgt − d)

(12)

where r and rgt are the radii of the predicted and the
ground truth circles respectively, d is the distance between
circle centers. These values are easily expressed through
x1, y1, x2, y2.

Calculation of the total area of the circles is a trivial task.

Fig. 3. We devise the loss function that takes into account the overlap of
circumscribed circles and relative orientation of the ground truth and the
predicted bounding boxes. See Section III-C.

The second part reflects the angle between the vector v
(Figure 3) of the predicted bounding box and the correspond-
ing vector vgt of the ground truth bounding box. This part of
the loss function aims to ascertain the mutual rotation of the
predicted and ground truth bounding box.

Langle = 1− cos∠(v,vgt) (13)

The last part reflects how well we predicted the proportions
of the bounding box. It is formulated as the squared difference
between the normalized lengths of the arcs from the (x1, y1)
point to the next point in the clockwise direction (β on
Figure 2).

Larc = (β − βgt)
2 (14)

This circular loss function (CL) is differentiable in terms of
x1, y1, x2, y2, and β. Therefore, we can calculate the gradient
and use the backpropagation method to train our network. For
more details of our implementation, we refer the reader to
source code available at [link is removed for review purposes].

The coefficients in the sum of loss functions in the Equa-
tion 9 can be used to increase the emphasis on one of the



geometric aspects of the positioning of the predicted bounding
box.

IV. EXPERIMENTAL SETUP

In this section, we provide the technical details of our
implementation. First, we describe the datasets that were used
to train the network and evaluate the performance. Next, we
specify the parameters of our architecture. And lastly, we
describe the additional techniques that we used to improve
the performance.

A. Datasets

We evaluate the performance of our tracking method on the
benchmark dataset VOT2018. The main difference between
this dataset and other object tracking datasets is that it allows
the bounding box for the object to be rotated.

VOT2018 dataset consists of 60 videos of 40 to 1500
frames in length. We randomly split them into 30 videos for
training and 30 for testing. Along with 30 training videos from
VOT2018 dataset we also trained our network on Davis [15],
OTB50 and OTB100 datasets [16]. Even though these datasets
only include axis-aligned bounding boxes, we found it to be
of use for the additional refinement.

B. Evaluation

We evaluate the performance in terms of accuracy (A),
robustness (R) and expected average overlap (EAO). Accuracy
(A) is defined as the average overlap between the predicted and
ground truth bounding boxes.

Robustness (R) is defined as:

R = 100
Nfails

Nframes
(15)

where Nfails is the number of frames with zero overlap. In
other words — a complete failure of the tracker. Nframes is the
total number of frames.

The VOT challenge evaluation algorithm uses reset based
methodology. Whenever a tracker predicts a bounding box
with zero overlap, a failure is detected, and the tracker is
reinitialized in five frames after the failure. Plus, ten frames
that follow the failure do not count towards accuracy.

The overall performance is evaluated using the expected
average overlap (EAO) which takes account both accuracy
and robustness. The detailed description of this metric is quite
complex in our opinion does not fit in the scope of this paper.
For the complete explanation of the EAO metric, we refer the
reader to the original paper [11].

C. Training

This section lists parameters and training regimes that
demonstrated the best performance.

CNN: We choose ResNet-50 [17] pre-trained on ImageNet
dataset [6] as a feature extractor as it proved to be efficient in
many computer vision tasks. This CNN takes a video frame
(resized to 224x224 resolution) as an input. We add a layer of
dmodel = 1024 output neurons that serve as input tensors (Q,
K, V) of the encoder network.

Transformer Tracker: At each step, the encoder network
takes the last n = 7 frames and the current frame repre-
sented as 1024-dimensional encodings (output of the CNN).
The decoder receives the eight- or five-dimensional (5BB)
parametrization of the previous n = 7 predicted bounding
boxes. Both encoder and decoder multi-head attention blocks
consist of h = 4 individual attention heads. As for the dimen-
sions of Q, K, and V, they are induced by the dimensionality
of inputs and outputs. We used 1024x8-dimensional tensors
for the first multi-head attention block of the encoder, 5x7-
dimensional tensors for the first multi-head attention block of
the decoder, and 1024x8-dimensional tensors for the second
multi-head attention block of the decoder.

Model Training: At the training phase, we fix the CNN
weights, while learn the Transformer weights through back-
propagation. Parameter exploration led us to λ1 = 0.5 and
λ2 = 0.3 coefficients for the total loss function (see Equa-
tion 1). Each batch consisted of 20 consecutive frames. We
use PyTorch library to code all our networks and the included
Adam optimizer for 150 epochs with exponentially annealed
by 0.94 learning rate starting from 10−3 [18]. We performed
the training on one NVIDIA Tesla P100 GPU. 150 epochs of
training take ≈ 36 hours.

D. Additional techniques

1) Augmentation: We used the following commonly used
data augmentation techniques.

• Flip: the video is horizontally and vertically flipped.
• Blur: blur with a Gaussian filter.
• Rotation: rotation from a fixed set of 12 angles ranging

from -60 to +60 degrees.
• Brightness shift: random shift in brightness.
• Contrast shift: random shift in contrast.
• Color shift: random shift in color scheme.
We used the PIL python library [19] to apply these aug-

mentations. Most of the state-of-the-art solutions perform the
same data augmentation.

These augmentation techniques extended the training dataset
to 13500 total videos.

2) Crop: Cropping the frames is often beneficial for model
performance [12] since the size of the object is commonly
small relative to the size of the frame.

We crop the frame to the area around the bounding box
extended by 1.5 times the diagonal length. Again, most of
the other state-of-the-art approaches employ cropping in some
form.

3) Pretraining: According to the algorithm of the VOT2018
challenge, if the model loses an object, no predictions are
accepted for five frames. After five frames, the model receives
new ground truth bounding box and starts over. To use the
newly provided ground truth bounding box with maximum
benefit, we have tuned the re-initialization of the tracker.

To achieve that, we use the first 15 epochs for re-
initialization training with just the SmoothL1 metric. We
assume that tracker loses the object and re-initialization occurs



TABLE I
RESULTS OF OUR MODEL

Model A R EAO
MFT 0.493 0.136 0.383
LADCF 0.498 0.145 0.390
SiamRPN 0.569 0.272 0.379
TT 0.474 0.207 0.322
TT+5BB 0.489 0.197 0.335
TT+5BB+CL 0.515 0.168 0.373
DOTCL (TT+5BB+CL+PT) 0.533 0.151 0.396

every frame. Fixing a specific Transformer Tracker architec-
ture, you can do this pre-training once and then use the weights
to initialize the neural network in the main learning phase.

Thus the model’s re-initialization can be organically em-
bedded in its description, so that regardless of the inputs
during re-initialization, the network immediately gives a close
to correct answer. This allows us to get rid of the stage of
coarse adjustment of the model and train the model for the
target metric.

V. RESULTS

Table I shows the comparison of different combinations of
our methods to state-of-the-art approaches in terms of accuracy
(A) and robustness (R), as well as expected average overlap
(EAO). MFT and LADCF user discriminative filters with both
hand-crafted and deep features from CNN, and SiamRPN is
the only other end-to-end deep learning approach. TT denotes
the architecture with only the Transformer Tracker network
with the standard bounding parametrization and loss. 5BB
refers to the addition of the new parameterization for the
rotated bounding box and CL is our new circular loss function.
PT denotes the pretraining process.

As we can see from the table, Transformer Tracker (TT)
approach alone allows us to improve the robustness (R)
of the end-to-end approaches by 25%. With new bounding
box parametrization, circular loss function, and pretraining,
our model (DOTCL) outperforms both discriminative filter
and end-to-end state-of-the-art approaches in terms of the
expected average overlap (EAO) metric. It also demonstrates
the improvement of 44% in robustness when compared to the
end-to-end deep learning method (SiamRPN).

VI. CONCLUSION

In this paper, we present a novel end-to-end deep learning
approach to visual object tracking task. It utilizes Transformer
Tracker architecture to interpret spatiotemporal relations. We
also introduced a new type of bounding box parametrization
and loss function that is aimed to work well in the case of the
rotated bounding box.

This method (DOTCL) outperforms other state-of-the-art
approaches on VOT2018 challenge dataset in terms of ex-
pected average overlap metric and improves the robustness
metric by 44% relative to the previous best end-to-end deep
learning state-of-the-art approach (SiamRPN).
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