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Аннотация

The number of n-ary balanced correlation immune (resilient) Boolean functions of order
n

2 is not less than n2(n/2)−2(1+o(1)) as n → ∞.
Keywords— resilient function, correlation immune function, orthogonal array.

1 Introduction

A set Qn
q = {0, 1, . . . , q − 1}n with Hamming metric is called an n-dimensional hypercube. A

hypercube is called Boolean if q = 2. A subset of Qn
q consisting of n-tuples with fixed values in

fixed (n−m) coordinates is called m-dimensional face (m-face).
A function f : Qn

q → {0, 1} is called correlation immune of order r if it takes the value 1 the
same number of times for each (n − r)-face of the hypercube. A correlation immune function is
called balanced (a resilient function) if it takes values 0 and 1 the same number of times.

Applications of correlation immune functions in cryptography and connections between these
functions and orthogonal arrays are discussed in [9]. Further we will investigate resilient functions.
An asymptotic number (as n → ∞) of resilient Boolean functions of order r = const was found
in [3] and [4]. Methods from [3] and [4] are developed in [1] and [5] for the calculation of the
asymptotic number of resilient Boolean functions of order r = O(n/ lnn). The resilient Boolean
functions of order n − c, where c = const, are listed in [8]. The number of resilient Boolean
functions of order αn for 0 < α < 1 remained completely unknown as n → ∞. The asymptotic
of double logarithm of the number of such functions is unknown. In [2] it is obtained some upper

bound 22
n−ε(α)

of the number of resilient Boolean functions of order αn. This bound is a bit
better then a trivial upper bound based on an estimation of algebraic degree of a correlation
immune function with some order. Now we consider the case α = 1/2 and obtain a lower bound

n2(n/2)−1(1+o(1)) for the number of resilient functions of order n
2 − 1. This bound is a bit better

then a well-known lower bound 22
n/2

.

2 Main results

The lower bound 22
n/2

follows from a simple construction. Suppose that n = 2m. Consider an
arbitrary Boolean function f : Qm

2 → Q2. Define a function F : Q2m
2 → Q2 by the equation

F (x, y) = f(x)⊕ |y|, where |y| is the parity of the Hamming weight of y. It is clear that F takes
values 0 and 1 the same number of times in each face with unfixed coordinate yi, i = 1, . . . ,m.
Consequently, F is a resilient function of order m− 1. The number of such functions is equal to
22

m
.
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In this paper we improve this bound. At first we consider correlation immune functions in Qn
4 .

In [7] it was found a sharp asymptotic bound 3n+122
n+1(1 + o(1)) of the number of correlation

immune functions f : Qn
4 → Q2 of order n − 1 with the frequency of ones 1

4 . But we need the
number of correlation immune functions f : Qn

4 → Q2 of order n− 1 with the frequency of ones
1
2 .

Lemma 1 The number of splittings of Qn
2 into pairwise nonintersecting faces is equal to n2n−1(1+o(1))

as n → ∞.

Proof. A lower bound follows from the estimation of the numbers of perfect matchings in Boolean
hypercube (see [6]). Let us prove an upper bound. Consider a splitting of Qn

2 and arbitrary face
L from this splitting. If for each vertex in L with even weight we have a direction to an arbitrary
neighbor vertex in L with minimum possible weight then we can recover this face. Consequently,
2n−1 numbers from the set {1, . . . , n} are sufficient in order to uniquely indicate the splitting.N

Suppose that a splitting of Qn
2 contains 0-dimensional faces. It is possible to use number 0

for an indication that L is a 0-dimensional face. In this case the asymptotical bound is the same
because (n+ 1)2

n−1
= n2n−1(1+o(1)) as n → ∞.

Let us consider Qn
4 as the Cartesian product Qn

2 × Qn
2 . A splitting of Qn

2 into pairwise
nonintersecting faces induces a splitting of Qn

4 into blocks. One part of coordinates takes two
values in a block and another part of coordinates takes four values in a block. For example,
consider the block B = {0, 1}k × {0, 1, 2, 3}n−k . Define a function f : Qn

4 → Q2 on B by the
following equation

f |B(x) = χ1(x1)⊕ · · · ⊕ χ1(xk)⊕ χ2,3(xk+1)⊕ · · · ⊕ χ2,3(xn),

where χ2,3 and χ1 are indicators of the sets {2, 3} and {1}. It is clear that f is a resilient function
of order n− 1. It is not different to verify the following statements.

Lemma 2 Different splittings of Qn
2 correspond to different resilient functions f : Qn

4 → Q2 of

order n− 1.

Theorem 1 There exist at least n2(n/2)−1(1+o(1)) different resilient Boolean functions of order
n
2 − 1.

Proof. Define an arbitrary bijection ϕ : Q2
2 → Q4. Suppose f : Qn

4 → Q2 is a resilient function
of order n− 1. Define function F : Q2n

2 → Q2 by equation F (x, y) = f(ϕ(x1, y1), . . . , ϕ(xn, yn)).
Let us prove that F is a resilient Boolean function of order n− 1. Consider an arbitrary (n+1)-
dimensional face Γ. There exists i ∈ {1, . . . , n} such that the pair of coordinates (xi, yi) is not
fixed in Γ. Since f takes each of the values 0 and 1 two times in any 1-dimensional face of Qn

4 , F
takes each of the values 0 and 1 the same number of times in Γ. It is clear that different resilient
functions f1 and f2 correspond to different resilient functions F1 and F2. So the Theorem 1
follows from Lemmas 1 and 2.N

By the simple construction described in the beginning of this section we can increase together
number of variables and correlation immunity of function.
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