
MAGNet: Multi-agent Graph Network for Deep
Multi-agent Reinforcement Learning

Aleksandra Malysheva
JetBrains Research

National Research University
Higher School of Economics

St Petersburg, Russia
malyshevasasha777@gmail.com

Daniel Kudenko
JetBrains Research

L3S Research Center
Leibniz University Hannover

Hannover, Germany
daniel.kudenko@york.ac.uk

Aleksei Shpilman
JetBrains Research

National Research University
Higher School of Economics

St Petersburg, Russia
aleksei@shpilman.com

Abstract—Over recent years, deep reinforcement learning has
shown strong successes in complex single-agent tasks, and more
recently this approach has also been applied to multi-agent
domains. In this paper, we propose a novel approach, called
MAGNet, to multi-agent reinforcement learning that utilizes a
relevance graph representation of the environment obtained by
a self-attention mechanism, and a message-generation technique.
We applied our MAGnet approach to the synthetic predator-
prey multi-agent environment and the Pommerman game and
the results show that it significantly outperforms state-of-the-
art MARL solutions, including Multi-agent Deep Q-Networks
(MADQN), Multi-agent Deep Deterministic Policy Gradient
(MADDPG), and QMIX.

Index Terms—multi-agent system, relevance graphs, deep-
learning

I. INTRODUCTION

A common difficulty of reinforcement learning in a multi-
agent environment (MARL) is that in order to achieve suc-
cessful coordination, agents require information about the rel-
evance of environment objects to themselves and other agents.
For example, in the game of Pommerman [1] it is important to
know how relevant bombs placed in the environment are for
teammates, e.g. whether or not the bombs can threaten them.
While such information can be hand-crafted into the state
representation for well-understood environments, in lesser-
known environments it is preferable to derive it as part of
the learning process.

In this paper, we propose a novel method, named MAGNet
(Multi-Agent Graph Network), to learn such relevance infor-
mation in form of a relevance graph and incorporate this into
the reinforcement learning process. The method works in two
stages. In the first stage, a relevance graph is learned. In
the second stage, this graph together with state information
is fed to an actor-critic reinforcement learning network that
is responsible for the decision making of the agent and
incorporates message passing techniques along the relevance
graph.

The contribution of this work is a novel technique to
learn object and agent relevance information in a multi-agent
environment, and incorporate this information in deep multi-
agent reinforcement learning.

We applied MAGNet to the synthetic predator-prey game,
commonly used to evaluate multi-agent systems [2], and
the popular Pommerman [1] multi-agent environment. We
achieved significantly better performance than state-of-the-
art MARL techniques including MADQN [3], MADDPG [4]
and QMIX [5]. Additionally, we empirically demonstrate the
effectiveness of utilized self-attention [6], graph sharing and
message passing system.

II. DEEP MULTI-AGENT REINFORCEMENT LEARNING

In this section we describe the state-of-the-art deep re-
inforcement learning techniques that were applied to multi-
agent domains. The algorithms introduced below (MADQN,
MADDPG, and QMIX) were also used as evaluation baselines
in our experiments.

A. Multi-agent Deep Q-Networks

Deep Q-learning utilizes a neural network to predict Q-
values of state-action pairs [7]. This so-called deep Q-network
is trained to minimize the following loss function:

L(θ) = Es,a∼ρ(s)[y −Q(s, a|θ)]2 (1)

y = r + γmax
a′

Qpast(s′, a′) (2)

where s′ is the state we transition into by taking action a
in state s and r is the reward of that action, θ is the parameter
vector of the current Q-function approximation. a ∼ ρ(s)
denotes all actions that are permitted in state s.

The Multi-agent Deep Q-Networks (MADQN, [3]) ap-
proach modifies this process for multi-agent systems by per-
forming training in two repeated steps. First, they train agents
one at a time, while keeping the policies of other agents fixed.
When the agent is finished training, it distributes its policy to
all of its allies as an additional environmental variable.

B. Multi-agent Deep Deterministic Policy Gradient

When dealing with continuous action spaces, the MADQN
method described above can not be applied. To overcome this
limitation, the actor-critic approach to reinforcement learning
was proposed [8]. In this approach an actor algorithm tries to

ar
X

iv
:2

01
2.

09
76

2v
1 

 [
cs

.L
G

] 
 1

7 
D

ec
 2

02
0



output the best action vector and a critic tries to predict the
value function for this action.

Specifically, in the Deep Deterministic Policy Gradient
(DDPG [9]) algorithm two neural networks are used: µ(s) is
the actor network that returns the action vector. Q(s, a) is the
critic network, that returns the Q value, i.e. the value estimate
of the action of a in state s.

The gradient for the critic network can be calculated in
the same way as the gradient for Deep Q-Networks described
above (Equation 1). Knowing the critic gradient ∇aQ we can
then compute the gradient for the actor as follows:

∇θµJ = Es[∇aQ(s, a|θq)|s = st, a = µ(s|θµ)] (3)

where θq and θµ are parameters of critic and actor neural
networks respectively, and ρπ(s) is the probability of reaching
state s with policy π.

The authors of [10] proposed an extension of this method by
creating multiple actors, each with its own critic, where each
critic takes in the respective agent’s observations and actions
of all agents. This then constitutes the following value function
for actor i:

∇θiJ = Es,a∼πθ [∇θi logπi(ai|oi)Qπi (oi, a1, . . . , aN )] (4)

This Multi-agent Deep Deterministic Policy Gradient
method showed the best results among widely used deep
reinforcement learning techniques in continuous state and
action space.

C. QMIX

Another recent promising approach to deep multi-agent
reinforcement learning is the QMIX [5] method. It utilizes
individual Q-functions for every agent and joint Q-function
for a team of agents. The QMIX architecture consists of three
types of neural networks. Agent networks evaluate individual
Q-functions for agents taking in the current observation and
the previous action. Mixing network takes as input individual
Q-functions from agent networks and a current state and then
calculates a joint Q-function for all agents. Hyper networks
add an additional layer of complexity to the mixing network.
Instead of passing the current state to the mixing network
directly, hyper networks use it as input and calculate weight
multipliers at each level of the mixing network. We refer the
reader to the original paper for a more complete explanation
[5].

The authors empirically demonstrated on a number of RL
domains that this approach outperforms both MADQN and
MADDPG methods.

III. MAGNET APPROACH AND ARCHITECTURE

Figure 1 shows the overall network architecture of our
MAGNet approach. The whole process can be divided into
a relevance graph generation stage (shown in the left part)
and a decision making stages (shown in the right part). In
this architecture, the concatenation of the current state and the

previous action forms the input of the model, and the output is
the next action. The details of the two processes are described
below.

A. Relevance graph generation stage

In the first part of our MAGNet approach, a neural network
is trained to produce a relevance graph, which is represented
as a numerical matrix |A| × (|A| + |O|), where |A| is the
number of agents and |O| is a given maximum number of
environment objects, e.g., bombs and walls in Pommerman.
Weights for objects that are not present at the current time
are set to 0. The relevance graph represents the relationship
between agents and between agents and environment objects.
The higher the absolute weight of an edge between an agent
a and another agent b or object o is, the more important b or
o are for the achievement of agent a’s task. Every vertex v
of the graph has a type b(v), defined by the user. Example
types are ”wall”, ”bomb”, and ”agent”. Types are user-defined
and are used in the message generation step (see below). The
graph is generated by MAGNet from the current and previous
state together with the respective actions.

IV. RELEVANCE GRAPH VISUALIZATION

To generate this relevance graph, we train a neural network
via back-propagation to output a graph representation matrix.
The input to the network are the current and the two previous
states (denoted by X(t), X(t−1), and X(t−2) in Figure 1),
the two previous actions (denoted by a(t− 1) and a(t− 2)),
and the relevance graph produced at the previous time step
(denoted by graph(t−1)). For the first learning step (i.e. t =
0), the input consists out of three copies of the initial state, no
actions, and a random relevance graph. The inputs are passed
into a convolution and pooling layer, followed by a padding
layer, and then concatenated and passed into fully connected
layer and finally into the graph generation network (GGN). In
this work we implement GGN as either a multilayer perceptron
(MLP) or a self-attention network, which uses an attention
mechanism to catch long and short term time-dependencies.
We present the results of both implementations in Table I. The
self-attention network is an analogue to a recurrent network,
such as an LSTM, but takes much less time to compute [6].
The result of the GGN is fed into a two-layer fully connected
network with dropout, which produces the relevance graph
matrix.

The loss function for the back-propagation training is de-
fines as follows:

L = ||W t −W t−1||22 (5)

The loss function is based on the squared difference between
weights of edges in the current graph W t and the one
generated in the previous state W t−1. We could train the
graph without this loss function, and instead with just the loss
function of the decision making stage backpropagated to the
graph generation stage. However, we found that this lowers the
performance (see Figure 3). Both Pommerman and predator-
prey environments have these default agents. However, we



Fig. 1. The overall network architecture of MAGNet. Left section shows the graph generation stage. Right part shows the decision making stage. X(t)
denotes the state of the environment at step t. a(t) denotes the action taken by the agent at step t. GGN refers to Graph Generation Network.

found out that the better way to train MAGNet is to first pre-
train the graph generation and then add the agent networks
(see also Section V-E). There are two alternatives for training
relevance graphs: (1) train individual relevance graphs for
every agent, or (2) train one shared graph (GS) that is the
same for all agents on the team. We performed experiments
to determine which way is better (see Table I).

A. Decision making stage

The agent AI responsible for decision making is represented
as a neural network whose inputs are accumulated messages
and the current state of the environment. The output of the
network is an action to be executed. This action is computed
in 4 steps through a message passing system.

In the first step, individual (i.e. location-specific) obser-
vations of agents and objects are pre-processed by a neural
network into an information vector (represented as a numerical
vector). This neural network is initialized randomly and trained
during the overall learning process using the same global loss
function.

In the second step, a neural network (also trained) is taking
the information vector of an agent, and maps it into a message
(also a numerical vector), one for each connected vertex type
in the relevance graph. This message is multiplied by the
weight of the corresponding edge and passed to the respective
vertices.

In the third step, each agent or object in the relevance graph
updates its information vector, also using a trained network,
based on the incoming messages and the previous information
vector. Steps 2 and 3 are repeated a given number of times, in
our experiments five times. Finally, in the last step, the final

message received by the agent, together with the current state
information is mapped by a trained decision making network
into an action.

Since the message passing system outputs an action, we
view it as an actor in the DDPG actor-critic approach [9], and
train it accordingly. A more formal description of this decision
making stage is as follows.

1) Initialization of information vector. Each vertex v
has an initialization network MLPb(v)

init associated with it
according to its type b(v) that takes as input the current
individual observation Ov and outputs initial information
vector µ0

v for each vertex.

µ0
v = MLPb(v)

init(Ov) (6)

2) Message generation. Message generation performs in
iterative steps. At message generation step τ + 1 (not
to be confused with environmental time t) the message
networks MLPc(v,u)

msg compute output messages for every
edge (v, u) ∈ E based on the type of the edge c(v, u),
which are then multiplied by the weight of the corre-
sponding edge in the relevant graph.

msgτ(v,u) = w(v,u)MLPc(v,u)
msg (µτv) (7)

3) Message processing. The information vector µτ+1
v at the

message propagation step τ is updated by an associated
update network LSTMb(v)

up , according to its type b(v).
The network takes as input a sum of all incoming
message vectors and the information vector µτv at the
previous step.

µτ+1
v = LSTMb(v)

up (µτv ,
∑

msgτ(∗,v)) (8)



4) Choice of action. All vertices that are associated with
agents have a decision network MLPb(v)

choice which takes
as an input its final information vector µTv and computes
the mean of the action of the Gaussian policy.

av = MLPchoice(µ
T
v ) (9)

V. EXPERIMENTS

A. Environments

In this paper, we use two popular multi-agent benchmark
environments for testing, the synthetic multi-agent predator-
prey game [2], and the Pommerman game [1].

In the predator-prey environment, the aim of the predators
is to kill faster moving prey in 500 iterations. The predator
agents must learn to cooperate in order to surround and kill
the prey. Every prey has a health of 10. A predator moving
within a given range of the prey lowers the prey’s health by
1 point per time step. Lowering the prey health to 0 kills the
prey. If even one prey survives after 500 iterations, the prey
team wins. Random obstacles are placed in the environment
at the start of the game.

The Pommerman game is a popular environment which
can be played by up to 4 players. The multi-agent variant
has 2 teams of 2 players each. This game has been used in
recent competitions for multi-agent algorithms, and therefore
is especially suitable for a comparison to state-of-the-art
techniques.

In Pommerman, the environment is a grid-world where each
agent can move in one of four directions, place a bomb, or do
nothing. A grid square is either empty (which means that an
agent can enter it), wooden, or rigid. Wooden grid squares can
not be entered, but can be destroyed by a bomb (i.e. turned into
clear squares). Rigid squares are indestructible and impassable.
When a wooden square is destroyed, there is a probability of
items appearing, e.g., an extra bomb, a bomb range increase, or
a kick ability. Once a bomb has been placed in a grid square
it explodes after 10 time steps. The explosion destroys any
wooden square within range 1 and kills any agent within range
4. If both agents of one team die, the team loses the game
and the opposing team wins. The map of the environment is
randomly generated for every episode.

The game has two different modes: free for all and team
match. Our experiments were carried out in the team match
mode in order to evaluate the ability of MAGnet to exploit
the discovered relationships between agents (e.g. being on the
same team).

We represent states in both environments as a D×D×M
tensor S, where D×D are the dimensions of the field and M
is the maximum possible number of objects. S[i, j, k] = 1 if
object k is present in the [i, j] space and is 0 otherwise. The
predator-prey state is a 64×64×20 tensor, and the Pommerman
state is 11× 11× 30.

Figure 2 shows both test environments.

Fig. 2. The synthetic predator-prey (left) and the Pommerman game environ-
ment (right).

B. Evaluation Baselines

In our experiments, we compare the proposed method with
state-of-the-art reinforcement learning algorithms in the two
environments described above. Figure 3 shows a comparison
with the MADQN [3], MADDPG [4] and QMIX [5] algo-
rithms. Each of these algorithms were trained by playing
a number of games (i.e. episodes) against the default AI
provided with the games, and the respective win rates are
shown. All graphs display a 95% confidence interval over 20
runs to show statistical significance.

The parameters for the MADQN the baselines were set
as follows through parameter exploration. The network for
the predator-prey environment consists of seven convolutional
layers with 64 5x5 filters in each layer followed by five
fully connected layers with 512 neurons each with residual
connections [11] and batch normalization [12] that takes an
input an 128x128x6 environment state tensor and one-hot
encoded action vector (a padded 1x5 vector) and outputs a
Q-function for that state-action pair. Since the output of a
DQN is discrete, but the predator-prey environment requires
a continuous action, the agents employ only two speeds
and 10 directions. The network for Pommerman consists of
five convolutional layers with 64 3x3 filters in each layer
followed by three fully connected layers with 128 neurons
each with residual connections and batch normalization that
takes an input an 11x11x4 environment state tensor and one-
hot encoded action vector (a padded 1x6 vector) that are
provided by the Pommerman environment and outputs a Q-
function for that state-action pair.

For our implementation of MADDPG we used a multilayer
perceptron (MLP) with 3 fully connected layers with 512-128-
64 neurons for both the actor and critic for the predator-prey
game, and 5 fully connected layer with 128 neurons in each
layer for the critic and a 3 layer network with 128 neurons in
each layer for the actor in Pommerman.

Parameter exploration for QMIX led to the following set-
tings for both environments. All agent networks are DQNs
with a recurrent layer of a Gated Recurrent Unit (GRU [13])
with a 64-dimensional hidden state. The mixing network con-
sists of a single hidden layer of 32 neurons. Since the output of
MADDPG and QMIX is continuous, but Pommerman expects



Fig. 3. MAGNet variants compared to state-of-the-art MARL techniques in the predator-prey (left) and Pommerman (right) environments. MAGNet-DSH refers
to MAGNet with domain specific heuristics (Section V-F). MAGNet-NoGL refers to MAGNet trained without the graph generation loss function (Equation 5),
but only with the final loss function of the decision making stage. MAGNet-NO-PT refers to MAGNet with no pre-training for the graph generating network
(Section V-E ). Every algorithm trained by playing against a default environment agent for a number of games (episodes) and a respective win percentage is
shown. Default agents are provided by the environments. Shaded areas show the 95% confidence interval from 20 runs.

a discrete action, we discretized it.
As in the original QMIX paper [5], we decrease learning

rate linearly from 1.0 to 0.05 over the first 50k time steps
and than keep it constant. As can be seen from Figure 3, our
MAGnet approach significantly outperforms current state-of-
the-art algorithms.

C. MagNet network training

In both environments we first trained the graph generating
network on 50,000 episodes with the same parameters and
with the default AI as the decision making agents. Both
predator-prey and Pommerman environments provide these
default agents. After this initial training, the default AI was
replaced with the learning decision making AI described in
section III. All learning graphs show the training episodes
starting after this replacement.

Table I shows results for different MAGNet variants in
terms of achieved win percentage against a default agent after
600,000 episodes in the predator-prey game and a 1,000,000
episodes in the game of Pommerman. The MAGNet variants
are differing in the complexity of the approach, starting from
the simplest version which takes the learned relevance graph
as a direct addition to the input, to the version incorporating
message generation, graph sharing, and self-attention. The
table clearly shows the benefit of each extension.

Each of the three extensions with their hyper-parameters are
described below:

• Self-attention (SA). We can train the Graph Generating
Network (GGN) as a simple multi-layer perceptron (num-
ber of layers and neurons was varied, and a network with
3 fully connected layers 512-128-128 neurons achieved
the best result). Alternatively, we can train it as a self-
attention encoder part of the Transformer network (SA)
layer [6] with default parameters.

TABLE I
INFLUENCE OF DIFFERENT MODULES ON THE PERFORMANCE OF THE

MAGNET MODEL.

MAGnet modules Win % PP Win % PM
SA GS MG
+ + + 74.2± 1.2 76.3± 0.7
+ + - 61.3± 0.9 56.7± 1.8
+ - + 63.2± 1.3 62.4± 1.7
+ - - 43.3± 1.5 54.5± 2.6
- + + 69.3± 1.5 67.1± 1.9
- + - 39.3± 2.0 52.0± 1.7
- - + 41.5± 1.4 45.2± 3.6
- - - 25.1± 2.3 32.7± 5.9

• Graph Sharing (GS): relevance graphs were trained indi-
vidually for agents, or in form of a shared graph for all
agents on one team.

• Message Generation (MG): the message generation mod-
ule was implemented as either an MLP or a message
generation (MG) architecture, as described in Section
IV-A.

D. MAGNet parameters

We define vertex types b(v) and edge types c(e) in relevance
graph as follows:
b(v) ∈ {0, 1, 2, 3} in case of predator-prey game that

corresponds to: ”predator on team 1 (1, 2, 3)”, ”predator on
team 2 (4, 5, 6)”, ”prey”, ”wall”. Every edge has a type as
well: c(e) ∈ {0, 1, 2}, that corresponds to “edge between
predators within one team”, “edge between predators from
different teams” and “edge between the predator and the object
in the environment or prey”.
b(v) ∈ {0, 1, 2, 3, 4, 5, 6} in case of Pommerman game

that corresponds to: ”ally”, ”enemy”, ”placed bomb” (about
to explode), ”increase kick ability”, ”increase blast power”,
”extra bomb” (can be picked up). Every edge has a type as



well: c(e) ∈ {0, 1}, that corresponds to “edge between the
agents” and “edge between the agent and the object in the
environment”.

We tested the MLP and message generation network with
a range of hyper-parameters, choosing the best one. In the
predator-prey game, the MLP has 3 fully connected layers
with 512-512-128 neurons, while the message generation
network has 5 layers with 512-512-128-128-32 neurons. For
the Pommerman environment, the MLP has 3 fully connected
layers 1024-256-64 neurons, while the message generation
network has 2 layers with 128-32 neurons. In both domains 5
message passing iterations showed the best result.

Dropout layers were individually optimized by grid search
in the [0, 0.2, 0.4] space. We tested two convolution sizes:
[3x3] and [5x5]. [5x5] convolutions showed the best result. A
Rectified Linear Unit (ReLU) transformation was used for all
connections.

E. No pre-training

With regards to pre-training of the graph generating network
we need to answer the following questions. First, we need to
determine whether or not it is feasible to train the network
without an external agent for pre-training. In other words, can
we simultaneously train both the graph generating network
and the decision making networks from the start. Second, we
need to demonstrate whether pre-training of a graph network
improves the result.

To answer this question, we performed experiments without
the pre-training of the graph network. Figure 3 shows the
results of those experiments (MAGNet-NO-PT). As can be
seen, the network indeed can learn without pre-training, but
pre-training significantly improves the results. This may be
due to decision making error influencing the graph generator
network in a negative way.

F. Domain specific heuristics

We also performed experiments to see whether or not
additional knowledge about the environment can improve the
results of our method. To incorporate this knowledge, we
change the loss function for graph generation in the following
manner.

L = ||W t −W t−1||22 +
∑

ξ(v,u)∈Ξt

(wt(v,u) − s(ξ(v,u)))
2 (10)

The first component is the same: it is based on the squared
difference between weights of edges in the current graph W t

and the one generated in the previous state W t−1. The second
iterates through events Ξt at time t and calculates the square
difference between the weight of edge (v, u) that is involved
in event ξ(v,u) and the event weight s(ξ(v,u)).

For example, in the Pommerman environment we set s(ξ)
corresponding to our team agent killing an agent from the
opposite team to 100, and the s(ξ) corresponding to an agent
picking up a bomb to 25. In the predator-prey environment,
if a predator kills a prey, we set the event’s weight to 100. If

a predator only wounds the prey, the weight for that event is
set to 50.

As can be seen in Figure 3 (line MAGNet-DSH), the model
that uses this domain knowledge about the environment trains
faster and performs better. It is however important to note that
the MAGNet network without any heuristics still outperforms
current state-of-the-art methods. For future research we con-
sider creating a method for automatic assignment of the event
weights.

VI. CONCLUSION

In this paper we presented a novel method, MAGNet, for
deep multi-agent reinforcement learning incorporating infor-
mation on the relevance of other agents and environment
objects to the RL agent. We also extended this basic approach
with various optimizations, namely self-attention, shared rele-
vance graphs, and message generation. The MAGNet variants
were evaluated on the popular predator-prey and Pommerman
game environments, and compared to state-of-the-art MARL
techniques. Our results show that MAGNet significantly out-
performs all competitors.

REFERENCES

[1] Tambet Matiisen. Pommerman baselines, 2018.
[2] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional

language in multi-agent populations. In AAAI Conference on Artificial
Intelligence, 2018.

[3] Maxim Egorov. Multi-agent deep reinforcement learning, 2016.
[4] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,

and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in Neural Information Process-
ing Systems, pages 6379–6390, 2017.

[5] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gre-
gory Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: monotonic
value function factorisation for deep multi-agent reinforcement learning.
arXiv preprint arXiv:1803.11485, 2018.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
pages 5998–6008, 2017.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[8] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay
Mansour. Policy gradient methods for reinforcement learning with
function approximation. In Advances in neural information processing
systems, pages 1057–1063, 2000.

[9] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[10] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,
and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in Neural Information Process-
ing Systems, pages 6379–6390, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[13] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Ben-
gio. Gated feedback recurrent neural networks. In International
Conference on Machine Learning, pages 2067–2075, 2015.


	I Introduction
	II Deep Multi-Agent Reinforcement Learning
	II-A Multi-agent Deep Q-Networks
	II-B Multi-agent Deep Deterministic Policy Gradient
	II-C QMIX

	III MAGnet approach and architecture
	III-A Relevance graph generation stage

	IV Relevance graph visualization
	IV-A Decision making stage

	V Experiments
	V-A Environments
	V-B Evaluation Baselines
	V-C MagNet network training
	V-D MAGNet parameters
	V-E No pre-training
	V-F Domain specific heuristics

	VI Conclusion
	References

