
ar
X

iv
:2

10
8.

08
79

8v
2

 [
cs

.I
T

]
 9

 J
un

 2
02

2

Field Trace Polynomial Codes for Secure

Distributed Matrix Multiplication

Roberto Assis Machado∗, Rafael G. L. D’Oliveira†, Salim El Rouayheb‡ and Daniel Heinlein§

∗SMSS, Clemson University, USA
†RLE, Massachusetts Institute of Technology, USA

‡ECE, Rutgers University, USA
§Department of Communications and Networking, Aalto University, Finland

Emails: robertoassismachado@gmail.com, rafaeld@mit.edu,

salim.elrouayheb@rutgers.edu, daniel.heinlein@aalto.fi

Abstract—We consider the problem of communication efficient
secure distributed matrix multiplication. The previous literature
has focused on reducing the number of servers as a proxy
for minimizing communication costs. The intuition being, that
the more servers used, the higher the communication cost. We
show that this is not the case. Our central technique relies on
adapting results from the literature on repairing Reed-Solomon
codes where instead of downloading the whole of the computing
task, a user downloads field traces of these computations. We
present field trace polynomial codes, a family of codes, that
explore this technique and characterize regimes for which our
codes outperform the existing codes in the literature.

Index Terms—security, distributed computation, coding theory

I. INTRODUCTION

We consider the problem of secure distributed matrix

multiplication (SDMM) in which a user has two matrices,

A ∈ F
a×b
q and B ∈ F

b×c
q , and wishes to compute their product,

AB ∈ F
a×c
q , with the assistance of N servers, without leaking

any information about either A or B to any server. We assume

that all servers are honest but curious (passive), in that they

are not malicious and will faithfully follow the pre-agreed

upon protocol. However, any T of them may collude to try

to eavesdrop and deduce information about either A or B.

We follow the setting proposed in [1], with many follow-up

works [2]–[13]. The performance metric initially used was the

download cost, i.e., the total amount of data downloaded by

the users from the server. Subsequent work has also considered

the upload cost [11], the total communication cost [14], and

computational costs [9].

Different partitionings of the matrices lead to different

trade-offs between upload and download costs. In this pa-

per, we consider the inner product partitioning given by

A =
[

A1 · · · AL

]

and B⊺ =
[

B⊺

1 · · · B⊺

L

]

such that

AB = A1B1 + · · · + ALBL, where all products AℓBℓ are

well-defined and of the same size. Under this partitioning,

a polynomial code is a polynomial h(x) = f(x) · g(x),
whose coefficients encode the submatrices AkBℓ. The N
servers compute the evaluations h(α1), . . . , h(αN) for certain

α1, . . . , αN . The next step is where the scheme we propose

differs from previous works. In previous works, the servers

send these evaluations to the user. The polynomial h(x) is

constructed so that no T -subset of evaluations reveals any

information about A or B (T -security), but so that the user

can reconstruct AB given all N evaluations (decodability). In

order to contrast them with our approach, we refer to these

schemes as traditional polynomial schemes.

Examples of traditional polynomial schemes for the inner

product partitioning are the secure MatDot codes in [6] and

the codes in [11]. The main focus in the literature was on

minimizing the minimum amount of helping servers N , also

known as the recovery threshold, in order to reduce the

communication cost. The intuition being, that the more servers

used, the higher the communication cost. We show that this

is not generally the case, i.e., in some cases it is possible to

reduce the total communication by contacting more servers.

In this paper, we present field trace polynomial (FTP) codes,

a non-traditional polynomial scheme inspired by techniques

from the repair literature, specifically the trace-based methods

for repairing Reed-Solomon codes, first introduced in [15]. In

the Reed-Solomon codes repair setting, servers store different

evaluations of a polynomial h(αi), some of which may be lost

due to node failures. The repair problem consists of finding

schemes to recover any lost evaluation while minimizing the

download bandwidth (referred to as the repair bandwidth in

that setting) [16]. The key tool utilized is the field trace. If E

is a finite algebraic extension of a field F, then the field trace

trE/F : E → F is a linear functional over the extension field

E when seen as a vector space over F. Instead of sending full

evaluations of h(αi) ∈ E, the servers can repair an evaluation

by sending traces trE/F(h(αi)) ∈ F. Since F is a sub-field

of E, this results in a smaller download cost. Indeed, the

download cost decreases as more servers are used.

FTP codes follow the same idea. By increasing the number

of servers and transmitting traces of the evaluations, instead of

the whole evaluations, FTP codes can obtain better download

costs. However, since the SDMM setting is a computation-

offload setting and not just an information storage one, we

must also account for the upload cost. Thus, care must be

taken so that the decrease in the download cost, obtained from

the use of the field trace, is not outgrown by the increase

in the upload cost, from having to contact more servers.

http://arxiv.org/abs/2108.08798v2

User

Server 1

Server 2

Server 3

Server 4

User

f(0), g(0)

f(α15), g(α15)

f(α5), g(α5)

f(α10), g(α10)

tr(α−1h(0))

tr(α−2h(α5))

tr(α−4h(α15))

tr(α−8h(α10))

Upload Phase Download Phase

Fig. 1: An example of an FTP code detailed in Section III. The

user computes carefully chosen evaluations of the polynomials

f(x) and g(x) and uploads them to the servers. Each server

then computes the product of their received evaluations, which

is itself an evaluation of the polynomial h(x) = f(x) · g(x).
In a traditional polynomial scheme, the servers would then

transmit these evaluations to the user. Utilizing an FTP code,

the servers compute the trace of theses evaluations and sends

them instead. Thus, decreasing the download cost.

In Theorem 1, we characterize the total communication rate

achieved by FTP codes.

Theorem 1. Let L and T be positive integers, p1, . . . , pL be

prime numbers, listed in increasing order, q0 be a prime power,

and set q = qp1p2...pL

0 . Let A ∈ F
a×b
q , B ∈ F

b×c
q be two

matrices, and Ni = pi+2L+2T −2, for every i ∈ [L]. Then,

there exists an FTP code with partitioning parameter L and

security parameter T , which securely computes AB utilizing

NL servers with a total communication rate of

R =

(

NLb

L

(

1

a
+

1

c

)

+

L
∑

i=1

Ni

pi

)−1

. (1)

In Theorem 2, we show that FTP codes outperform any

traditional polynomial scheme when the number of columns

in A (or rows in B) is sufficiently smaller than both the number

of rows in A and columns in B.

Theorem 2. For every traditional polynomial scheme, there

exists a constant K > 0 and an FTP code such that the

communication rate of the FTP code is higher than that

of the traditional polynomial scheme, whenever the matrix

dimensions a, b, and c are such that b
(

1
a + 1

c

)

< K .

The expression for the constant K is given in (5). Theorem 2

is proved by constructing a particular FTP code and comparing

it to the trivial lower bound on the recovery threshold of

a traditional polynomial scheme, namely that N > L. To

provide some context, the current state of the art for inner

product partitioning is given by the traditional polynomial

scheme in [11] which has a recovery threshold of N = L+2T
(or N = L+ T with precomputations).

A. Related Work

For distributed computations, polynomial codes were orig-

inally introduced in [17] in order to mitigate stragglers in

distributed matrix multiplication. This was followed by a series

of works, [18]–[21].

The literature on SDMM has also studied different varia-

tions on the model we focus on here. For instance, in [11],

[22]–[24] the encoder and decoder are considered to be

separate, in [22] servers are allowed to cooperate, and in [25]

the authors consider a hybrid between SDMM and private

information retrieval where the user has a matrix A and wants

to privately multiply it with a matrix B belonging to some

public list. FTP codes can be readily used or adapted to many

of these settings as has been done with other polynomial

schemes (e.g., [12], [26]).

There is now a vast literature on the repair problem for

distributed storage systems (e.g., [16], [27]–[29]). The field

trace method relevant to us was developed in [15] and later

extended in [30]. Methods from repair were used in [31]–[33]

to construct communication-efficient secret sharing.

B. Main Contributions

Our main contributions are summarized below.

• We show a connection between SDMM and the repair

problem of Reed-Solomon codes for distributed storage.

This is done by treating the user as a repair node

wishing to restore a polynomial evaluation. The essential

difference between these settings is that in SDMM the

upload cost is important. This occurs because the SDMM

setting is a computation-offload setting and not just an

information storage one, in which the storage upload can

be amortized. Other differences include more flexibility

in choosing the amount of servers, in designing the code,

and in choosing the evaluation points.

• By adapting the techniques used in the repair of Reed-

Solomon codes, we present FTP codes for SDMM.

Contrary to traditional polynomial codes, FTP codes

achieve higher download rates by communicating with

more servers. We show that they are secure, decodable,

and present their total communication rate in Theorem 1.

• In Theorem 2, we show that FTP codes outperform

any traditional polynomial scheme when the number of

columns in A (or rows in B) is sufficiently smaller than

both the number of rows in A and columns in B.

II. PRELIMINARIES

In this section, we introduce some notation and concepts

needed for the rest of the paper. For example, we define

[M,N] = {M,M + 1, . . . , N} and [M] = [1,M].

Definition 1. Let C be a linear code of length n over a finite

field Fq . The dual code of C is the linear subspace

C⊥ =

{

d ∈ F
n
q :

n
∑

i=1

dici = 0 ∀c ∈ C

}

.

Definition 2. Let V = (v1, v2, . . . , vn) ∈ F
n
q be a vec-

tor with non-zero entries and Ω = {α1, α2 . . . , αn} ⊂
Fq a set of distinct elements. The Generalized Reed-

Solomon Code with parameters n, k,Ω, and V is given by

GRSFq
(n, k,Ω, V) = {(v1f(α1), v2f(α2), . . . , vnf(αn)) :

f(x) ∈ Fq[x] and deg(f) < k}.

If V = (1, 1, . . . , 1), then GRSFq
(n, k,Ω, V) is the Reed-

Solomon Code RSFq
(n, k,Ω). In addition, the dual code of

an RSFq
(n, k,Ω) is GRSFq

(n, n − k,Ω, V ′), where V ′ =
(v′1, . . . , v

′
n) and (v′i)

−1 =
∏

1≤j≤n
j 6=i

(αi − αj).

Let E be a finite algebraic extension of a field F. The degree

s = [E : F] of a field extension E/F is the dimension of E

as a vector space over F. Thus, any element v ∈ E can be

expressed as a vector (v0, v1, . . . , vs−1) ∈ F
s.

Definition 3. Let E be a finite algebraic extension of a field

F. The field trace trE/F : E → F is the F-linear functional

trE/F(x) = x+ x|F| + x|F|2 + · · ·+ x|F|s−1

.

Note that the codomain of the field trace is the subfield

F. It is this fact that allows savings in the download cost. We

also note that, given an F-basis {λ0, λ1, . . . , λs−1} of E, there

exists a trace-dual F-basis {µ0, µ1, . . . , µs−1} of E, i.e., such

that trE/F(λiµj) equals 1 if i = j, and equals 0 otherwise.

The next proposition plays a crucial role in proving the

decodability of FTP codes in Lemma 1.

Proposition 1 (Page 759 in [34]). Let {λ0, λ1, . . . , λs−1} and

{µ0, µ1, . . . , µs−1} be trace-dual F-bases of E. Then, given an

element β ∈ E, the coefficients of its expansion in the basis

{µ0, µ1, . . . , µs−1} are given by trE/F(λiβ), so that

β =

s−1
∑

i=0

trE/F(λiβ)µi. (2)

III. A MOTIVATING EXAMPLE: L = T = 1

We begin our description of FTP codes with the following

example, which we present in as much detail as possible in

order to showcase the essential ingredients of the scheme.

We compare the traditional polynomial scheme using N ′ = 3
servers with an FTP code using N = 4 server.

In this example, a user wishes to multiply two matrices

A ∈ F
a×b
16 and B ∈ F

b×c
16 with the assistance of non-colluding

helper servers. The solution to this via traditional polynomial

schemes utilizes N ′ = 3 servers and involves picking two

random matrices R ∈ F
a×b
16 and S ∈ F

b×c
16 and constructing

the polynomials f ′(x) = A+Rx and g′(x) = B+Sx. The user

then selects three distinct non-zero elements β1, β2, β3 ∈ F16

and uploads both f ′(βi) and g′(βi) to Server i. Each server

then computes the product f ′(βi) · g
′(βi). This is equivalent

to computing an evaluation h′(βi) of the polynomial h′(x) =
AB + (AS + RB)x+ RSx2. The user then downloads each

h′(βi), obtaining three evaluations of a polynomial of degree

two. Therefore, the user can retrieve the polynomial h(x) and

compute h(0) = AB as desired.

Security of the traditional scheme follows from the fact

that I(f ′(βi), g
′(βi);A,B) = 0. As for the communication

costs, first the user uploads f ′(βi) and g′(βi), which cost ab
and bc, symbols respectively, three times. Thus, the upload

cost is 3(ab+ bc) symbols of F16. Then, the user downloads

h(βi), which costs ac symbols of F16, three times, obtaining a

download cost of 3ac symbols of F16. Since the user retrieves

AB ∈ F
a×c
16 , which consists of ac symbols of F16, the total

communication rate is given by R′ = ac
3ab+3bc+3ac .

Based on techniques from the literature on repairing Reed-

Solomon codes for distributed storage, we present an FTP code

which obtains a lower download cost by utilizing N = 4
servers. Let α ∈ F16 be an algebraic element of degree 2 such

that α4 + α+ 1 = 0. Then, the finite field F2(α), constructed

by extending the binary field with the algebraic element α, is

identified by F16. Let f(x) = A+R(x−α) and g(x) = B+
S(x−α), where R and S are the same random matrices used

in the traditional polynomial scheme above. Then, h(x) =
f(x) · g(x) is such that h(α) = AB.1

Our scheme, illustrated in Figure 1, works as follows.

First, the user uploads the evaluations f(yi) and g(yi) to

each Server i. Then, each Server i computes tr(α−jih(yi)),
where (j1, j2, j3, j4) = (1, 2, 8, 4) and (y1, y2, y3, y4) =
(0, α5, α10, α15), and sends it back to the user.2 To show that

the user is able to decode AB, we denote the answer of each

Server i by Si. Then,

α4(S1 + S2 + S3 + S4) + α5S2 + α10S3 + α15S4

= α4 tr(α−1h(0) + α−2h(α5) + α−8h(α10) + α−4h(α15))

+ tr(α3h(α5) + α2h(α10) + α11h(α15))

= α4 tr(h(α)) + tr(αh(α))

= h(α) = AB

The first equality follows from the F4-linearity of the field

trace together with the fact that α5, α10, α15 ∈ F4. The second

equality follows from utilizing the equation h(x) = h0+h1x+
h2x

2 and the facts that α15 = 1 and α4+α+1 = 0. The third

equality follows from utilizing the equation tr(x) = x + x4

and the fact that α4 + α+ 1 = 0.

Security follows by showing that I(f(yi), g(yi);A,B) = 0,

as is done in Lemma 2. As for the communication costs,

first the user uploads f(yi) and g(yi), which cost 2ab and

2bc, symbols respectively, four times. Thus, the upload cost

is 4(2ab + 2bc) symbols of F4. Then, the user downloads

tr(α−jih(y)), which costs ac symbols of F16, four times,

obtaining a download cost of 4ac symbols of F4. Since the

user retrieves AB ∈ F
a×c
16 , which consists of 2ac symbols of

F4, the total communication rate is given by R = ac
4ab+4bc+2ac .

We note that the download cost of the FTP code is lower

than that of the traditional polynomial code, and that the

opposite is true for the upload cost. In terms of total communi-

cation, the FTP code outperforms the traditional one whenever

1Unlike in the repairing Reed-Solomon codes setting, in the SDMM setting,
we have more freedom to design the code and choose the evaluation points.

2Here, we denote the field trace by tr := trF16/F4 : F16 → F4 given by

tr(x) = x+x4. We apply the trace function element-wise on matrices which
is equivalent to an element-wise exponentiation.

R > R′. This occurs whenever the matrix dimensions satisfy

the inequality b
(

1
a + 1

c

)

< 1.

We note that this FTP code could also outperform any

traditional polynomial scheme with N ′ = 2 servers, if such

a scheme existed. Indeed, the only way for a traditional

polynomial scheme to outperform the FTP code for all matrix

dimensions would be for it to use N ′ = 1 server, which is not

possible because of the 1-security constraint.

IV. FIELD TRACE POLYNOMIAL CODES

In this section, we present the general construction for FTP

codes. The main idea is to perform the same technique as in

Section III, L times, each one retrieving AiBi, but doing so

utilizing a single polynomial h(x) = f(x) · g(x).
Choosing the Field: We begin by choosing the field over

which we operate. Let L ∈ Z
+, {p1, . . . , pL} be a set of

distinct prime numbers in increasing order, q0 a prime power,

and set q = qp1p2...pL

0 . We then operate over Fq. For i ∈ [L],
we let αi ∈ Fq0 be such that Fq0(αi) is a field extension of

Fq0 of order pi. And thus, Fq = Fq0(α1, α2, . . . , αL). We also

define Fi = Fq0(αj : 1 ≤ j ≤ L and j 6= i).
Choosing the Polynomials: As described in the introduction,

we consider the setting where the user partitions the matrices

A ∈ F
a×b
q and B ∈ F

b×c
q as A =

[

A1 · · · AL

]

and as

B⊺ =
[

B⊺

1 · · · B⊺

L

]

such that AB = A1B1+ · · ·+ALBL,

where each Ai ∈ F
a× b

L
q and Bi ∈ F

b
L
×c

q . In order to obtain

T -security R1, . . . , RT ∈ F
a× b

L
q and S1, . . . , ST ∈ F

b
L
×c

q

are chosen independently and uniformly at random. We then

define f, g ∈ Fq[x] as the polynomials of degree L + T − 1
such that, f(αi) = Ai, g(αi) = Bi, for every i ∈ [L], and

f(αL+i) = Rj , g(αL+i) = Sj , for every j ∈ [T].
Choosing the Evaluation Points: For each i ∈ [L], denote

Ni = pi + 2L+ 2T − 2 and n = NL +L = pL + 3L+ 2T −
2. Consider the set {α1, α2, . . . , αL} of primitive elements

defined above. Let αL+1, . . . , αn ∈ Fq0 be distinct elements

which are also distinct from {α1, α2, . . . , αL}. We then define

Ω = {α1, . . . , αn}. The evaluation points the user sends are

those in the set {αL+1, . . . , αn} of size NL.3

Upload Phase: The FTP code uses NL servers. The user

uploads f(αL+i) and g(αL+i) to each Server i.
Download Phase: Let vj =

∏

1≤i≤n
i6=j

(αj − αi)
−1 and ki(x)

be the annihilator polynomial for {αj : j ∈ [n] \ ([L + 1 :
Ni + L] ∪ {i})}. Then, for each i ∈ [L], Server j computes

trFq/Fi
(vL+jki(αL+j)h(αL+j)) and sends these Fi-values to

the user.

User Decoding: In Lemma 1, we show that the user is able

to retrieve h(αi) = AiBi from {trFq/Fi
(vjki(αj)h(αj)) : j ∈

[L + 1 : Ni + L]}. Combining these, the user can decode

AB = A1B1 + . . .+ALBL.

V. PROOF OF THEOREM 1

We break the proof into different Lemmas. We show that

FTP codes are decodable, in Lemma 1, T -secure, in Lemma 2,

3Thus, q0 ≥ NL is required.

and characterize their performance, in Lemma 3. These state-

ments combined prove Theorem 1.

Lemma 1. Given positive integers L and T , let p1, p2, . . . , pL
be distinct prime numbers in the ascending order and q0 be a

prime power with q0 ≥ NL. Let A =
[

A1 · · · AL

]

∈ F
a×b
q

and B⊺ =
[

B⊺

1 · · · B⊺

L

]

∈ F
c×b
q , where q = qp1p2...pL

0 .

Then, h(αi) can be decoded using Ni servers, for i ∈ [L],.

Proof. Let f(x), g(x) ∈ Fq[x] be polynomials such that

f(αi) = Ai, g(αi) = Bi for i ∈ [L] and

f(αL+i) = Ri, g(αL+i) = Si for i ∈ [T],

using the inner product partitioning A =
[

A1 · · · AL

]

and

B⊺ =
[

B⊺

1 · · · B⊺

L

]

and uniformly distributed random Fq-

matrices Ri, Si. Therefore, h(x) = f(x)g(x) is a polynomial

of degree 2L+ 2T − 2 such that h(αi) = AiBi, for i ∈ [L].

Let C = RSFq
(n, 2L+2T − 1,Ω). Since the degree of h is

smaller than 2L+2T−1, the vector (h(α1), h(α2), . . . , h(αn))
is in C.

Define, for i ∈ [L], Ui = {L+ 1, . . . , L +Ni}, which has

Ni elements. For each i ∈ [L], let

ki(x) =
∏

j∈[n]\(Ui∪{i})

(x− αj).

Note that

deg(ki(x)) = (pL + 3L+ 2T − 2)− (pi + 2L+ 2T − 1)

= pL + L− 1− pi,

and so deg(ki(x)x
s) < pL + L− 1 for s = 0, . . . , pi − 1.

Using V as in Definition 2, it follows that the General-

ized Reed-Solomon with parameter n, pL + L − 1, Ω and

V contains the element (v1ki(α1)α
s
1, . . . , vnki(αn)α

s
n), for

s = 0, . . . , pi − 1, i.e.,

(v1ki(α1)α
s
1, . . . , vnki(αn)α

s
n)

∈ C⊥ = GRSFq
(n, pL + L− 1,Ω, V).

The dual-code property implies that

n
∑

j=1

vjki(αj)α
s
jh(αj) = 0.

For each i ∈ [L], we have ki(αj) = 0 if j 6∈ Ui∪{i}, hence

viki(αi)α
s
ih(αi) = −

∑

j∈Ui

vjki(αj)α
s
jh(αj).

Applying tri := trFq/Fi
to both sides yields, using the Fi-

linearity and αj ∈ Fi for j ∈ Ui,

tri (viki(αi)α
s
ih(αi)) = −

∑

j∈Ui

αs
j tri (vjki(αj)h(αj)) .

Let {λs,i = viki(αi)α
s
i : 0 ≤ s < pi}. Since viki(αi) 6= 0

and αi is a primitive element, the set {λs,i} is an Fi-basis of

E. Further, there exists a set {µs,i : 0 ≤ s < pi} which is the

trace-dual Fq0 -basis to {λs,i} of Fq0(αi). Thus,

pi−1
∑

s=0

tri (λs,ih(αi))µs,i = h(αi) = AiBi.

Decodability is then obtained by repeating the process given

in Lemma 1 and summing it over i ∈ [L],

L
∑

i=1

pi−1
∑

s=0

tri (viki(αi)α
s
ih(αi))µs,i = AB.

Next, we show that FTP codes are T -secure.

Lemma 2. FTP codes are T -secure.

Proof. Since f(x) is independent from B and g(x) is indepen-

dent from A, proving T -security is equivalent to showing that

I(A; f(αi1), . . . , f(αiT)) = I(B; g(αi1), . . . , g(αiT)) = 0.

We prove the claim for f(x); the proof for g(x) is analogous.

By Lagrange interpolation, f(x) can be expressed as

f(x) =
L+T
∑

i=1

fi(x)f(αi),

where the Lagrange basis polynomial fi(x) is given by

fi(x) =
∏

1≤m≤L+T
m 6=i

x− αm

αi − αm
.

Then,

I(A; f(αi1), . . . , f(αiT))

=H(f(αi1), . . . , f(αiT))−H(f(αi1), . . . , f(αiT)|A)

≤
∑

j∈T

H(f(αj))−H(f(αi1), . . . , f(αiT)|A)

=
∑

j∈T

H(f(αj))−H(f (T)(αi1), . . . , f
(T)(αiT)),

=
Tab

L
log(q0)−H(f (T)(αi1), . . . , f

(T)(αiT))

where f (T)(x) =
∑T

i=1 fL+i(x)f(αL+i) =
∑T

i=1 fL+i(x)Ri.

Since the evaluation points {αi : i ∈ T } are all different,

the following matrix has full rank.










fL+1(αi1) fL+1(αi2) · · · fL+1(αiT)
fL+2(αi1) fL+2(αi2) · · · fL+2(αiT)

...
...

. . .
...

fL+T (αi1) fL+T (αi2) · · · fL+T (αiT)











This is because the set of f ′
is are linearly independent

and the evaluation points are different which implies that

f (T)(αij)’s are uniformly distributed in the space of the

matrices Ma× b
L
(Fq0). Thus, H(f (T)(αi1), . . . , f

(T)(αiT)) =
Tab
L log(q0), and therefore, I(A; f(αi1), . . . , f(αiT)) = 0.

We now characterize the total communication.

Lemma 3. FTP codes have total communication rate

R =

(

NLb

L

(

1

a
+

1

c

)

+

L
∑

i=1

Ni

pi

)−1

.

Proof. All costs will be computed in Fq0 -symbols. The upload

and download costs can be directly calculated as

U = NL

(

ab

L
+

bc

L

) L
∏

j=1

pj ,

D = ac

L
∑

i=1

Ni

∏

j∈[L]\{i}

pj.

Since the matrix AB has S = ac
∏L

j=1 pj symbols of Fq0 ,

it follows that the total communication rate is given by S
U+D ,

which simplify to the presented formula.

VI. EXAMPLE: L = 3 AND T = 2

We present an example of an FTP code for L = 3 and

T = 2 and compare it to the current state of the art [11].

Choosing the field: We begin by choosing a set of three

prime numbers {5, 7, 11}, q0 = 27 a prime power, and

set 27385 = 275·7·11. Thus, we operate over F27385 . Let

α1, α2, α3 ∈ F27 be such that F27(α1), F27(α2), and F27(α3)
are field extensions of F27 of degrees 5, 7 and 11, respectively.

Therefore, F27385 = F27(α1, α2, . . . , αL). We also define

F1 = F27(α2, α3) = F
77
27, F2 = F27(α1, α3) = F

55
27, and

F3 = F27(α1, α2) = F
35
27.

Choosing the polynomials: Since L = 3, consider the setting

where the user partitions the matrices A ∈ F
a×b
27385 and B ∈

F
b×c
27385 as A =

[

A1 A2 A3

]

and B⊺ =
[

B⊺

1 B⊺

2 B⊺

3

]

such that AB = A1B1 + A2B2 + A3B3, where each Ai ∈

F
a× b

3

27385 and Bi ∈ F
b
3
×c

27385 . In order to obtain 2-security we

choose R1, R2 ∈ F
a× b

3

27385 and S1, S2 ∈ F
b
3
×c

27385 all independently

and uniformly at random. We then define f, g ∈ F27385 [x] as

the polynomials of degree 3 such that, f(αi) = Ai, g(αi) =
Bi, for every i ∈ [3], and f(α3+j) = Rj , g(α3+j) = Sj , for

j ∈ [2]. Hence, h(x) = f(x) · g(x) is a polynomial of degree

8 such that h(αi) = AiBi for every i ∈ [3].

Choosing the Evaluation Points: Let N1 = 13, N2 = 15,

N3 = 19, and n = 22. Consider the set {α1, α2, α3} of

primitive elements defined above. Let α4, . . . , α22 ∈ F27

be distinct elements which are not in {α1, α2, α3}. Define

Ω = {α1, . . . , α22}. The evaluation points the user sends are

those in the set {α4, . . . , α22} of size 19.

Upload Phase: The FTP code uses 19 servers. The user

uploads f(α3+i) and g(α3+i) to each Server i.

Download Phase: Let vj =
∏

1≤i≤22
i6=j

(αj − αi)
−1. Let U1 =

{4, 5, . . . , 16}, U2 = {4, 5, . . . , 18} and U3 = {4, . . . , 22}
be the index sets of cardinality 13, 15, and 19, respectively.

For i ∈ [3], define ki(x) as the annihilator polynomial for

{αj : j ∈ [22] \ ([4 : Ni + 3] ∪ {i})}, i.e., ki(x) =
∏

j∈[22]\(Ui∪{i})(x − αj).

Defining V as in Definition 2 for the dual code, the Server

j, for each i ∈ [3], computes tri(v3+jki(α3+j)h(α3+j)) and

sends these Fi-values to the user.

User Decoding: In Lemma 1, we show that the user is able

to retrieve h(αi) = AiBi from {tri(vjki(αj)h(αj)) : j ∈ [4 :
Ni + 3]}. Because V is constructed as in Definition 2 for the

dual code, it follows that

tri(v1ki(αi)α
s
ih(αi)) = −

∑

j∈Ui

αs
j tri(vjki(αj)h(αj)),

where the trace dual is tri = trF
27385

/F27(αj :j∈[3]\{i}) Hence,

given {tri(vjki(αj)h(αj)) : j ∈ Ui}, the user can compute

tri(v1ki(αi)α
s
ih(αi)). Using trace-dual basis elements µi,s,

for i ∈ [3], we have h(αi) =
∑Ni−1

s=0 tri(vik(αi)α
s
ih(αi))µi,s.

Summing up the results, the user can then decode the product

AB = h(α1) + h(α2) + h(α3) = A1B1 +A2B2 +A3B3.

Communication Costs: Server i has h(αi) as in terms

of symbols of F27385 , but transmits only tri(vjki(αj)h(αj)),
symbols of Fi which is one symbol of Fi. To retrieve

h(αi), only a pi-th part of the information in each of |Ui|
servers is needed. Hence, to determine h(αi), it is enough

to download an x-th part of each of the y servers in Ui for

(i, x, y) ∈ {(1, 5, 13), (2, 7, 15), (3, 11, 19)}.

In conclusion, the FTP code used to compute the prod-

uct AB, with partitioning parameters L = 3 and security

parameter T = 2, uses N3 = 19 servers and achieves

a download rate of 1
6.47 . In comparison, the state of the

art traditional polynomial code in [11] has a download rate

of 1
7 . The scheme in [11] has a total communication rate

equal to
(

7
(

ab+bc
3ac + 1

))−1
. The total communication rate

of the above FTP code is
(

19
(

bc+ab
3ac + 2491

385

))−1
. A direct

calculation shows that the FTP code outperforms the scheme in

[11] for matrices with dimensions such that b
(

1
a + 1

c

)

< 306
2695 .

VII. PROOF OF THEOREM 2

We begin by proving a technical lemma.

Lemma 4. Let T,N,N ′, L, L′ be positive integers, λ, η ≥ 0
be real numbers, pi ≥ 2L(L+ T − 1)η be primes, for every

i ∈ [L], such that pi < pi+1 and pL > LN ′/L′−2L−2T+2,

Ni = pi + 2L+ 2T − 2, and λ < N ′−L−1/η
NL/L−N ′/L′

. Then,

(

NLλ

L
+

L
∑

i=1

Ni

pi

)−1

>

(

N ′

(

λ

L′
+ 1

))−1

. (3)

Proof. Note that pL > LN ′/L′ − 2L − 2T + 2 is equivalent

to NL/L −N ′/L′ > 0. Next, pi ≥ 2L(L+ T − 1)η implies
∑L

i=1
2L+2T−2

pi
≤ 1

η . Then, the statement implies

(

NL

L
−

N ′

L′

)

λ < N ′ − L−
1

η

≤ N ′ − L−

L
∑

i=1

2L+ 2T − 2

pi

= N ′ −

L
∑

i=1

Ni

pi
.

This is equivalent to NLλ
L +

∑L
i=1

Ni

pi
< N ′λ

L′
+N ′, which in

turn proves the claim.

Consider a traditional polynomial scheme with partitioning

parameter L and security parameter T . Given the trivial lower

bound N ′ > L on its recovery threshold N ′, it follows from a

direct calculation that the total communication rate R′ of the

traditional polynomial scheme is upper bounded by

R′ <

(

N ′

(

b

L

(

1

a
+

1

c

)

+ 1

))−1

. (4)

Let λ = b
(

1
a + 1

c

)

, µ > (N ′ − L)−1 and select L primes

p1, . . . , pL in increasing order and such that pi ≥ 2L(L+T −
1)η and pL > LN ′/L − 2L − 2T + 2. Next, define Ni =
pi + 2L+ 2T − 2 and set

K =
N ′ − L− 1/η

NL/L−N ′/L
. (5)

Then, by Theorem 1, the communication rate R of the FTP

code with these parameters, given by (1), is equal to the left

hand side of (3). For these same parameters, the right hand

sides of (3) and (4) are the same. Thus, if b
(

1
a + 1

c

)

< K ,

it follows from Lemma 4 that the communication rate of the

FTP code R is larger than the right hand side of (3), and is

therefore larger than the communication rate of the traditional

polynomial scheme R′.

ACKNOWLEDGMENT

Rafael D’Oliveira was supported by MIT Portugal Pro-

gram (Project SNOB5G with Nr. 045929 [CENTRO-01-0247-

FEDER-045929]), MIT Lincoln Laboratory Purchase Order

7000500173, and the FinTech@CSAIL Research Initiative.

Salim El Rouayheb was partially supported by the NSF under

grant CNS-1801630. Daniel Heinlein is supported by the

Academy of Finland, Grant 331044.

REFERENCES

[1] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in 2018 IEEE Global Communications Conference

(GLOBECOM), 2018, pp. 1–6.
[2] J. Kakar, S. Ebadifar, and A. Sezgin, “On the capacity and straggler-

robustness of distributed secure matrix multiplication,” IEEE Access,
vol. 7, pp. 45 783–45 799, 2019.

[3] H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Transactions on Information

Forensics and Security, vol. 14, no. 1, pp. 141–150, 2018.
[4] R. G. L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “Gasp codes for

secure distributed matrix multiplication,” in 2019 IEEE International

Symposium on Information Theory (ISIT). IEEE, 2019, pp. 1107–1111.
[5] R. G. L. D’Oliveira, S. El Rouayheb, D. Heinlein, and D. Karpuk,

“Degree tables for secure distributed matrix multiplication,” in 2019

IEEE Information Theory Workshop (ITW), 2019.
[6] M. Aliasgari, O. Simeone, and J. Kliewer, “Distributed and private

coded matrix computation with flexible communication load,” 2019

IEEE International Symposium on Information Theory (ISIT), pp. 1092–
1096, 2019.

[7] ——, “Private and secure distributed matrix multiplication with flexible
communication load,” IEEE Transactions on Information Forensics and

Security, vol. 15, pp. 2722–2734, 2020.

[8] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink-
downlink tradeoff in secure distributed matrix multiplication,” ArXiv,
vol. abs/1910.13849, 2019.

[9] R. G. L. D’Oliveira, S. E. Rouayheb, D. Heinlein, and D. Karpuk,
“Notes on communication and computation in secure distributed matrix
multiplication,” in 2020 IEEE Conference on Communications and

Network Security (CNS), 2020, pp. 1–6.

[10] Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure,
private, and batch distributed matrix multiplication: Breaking the ”cubic”
barrier,” ArXiv, vol. abs/2001.05101, 2020.

[11] N. Mital, C. Ling, and D. Gunduz, “Secure distributed matrix computa-
tion with discrete fourier transform,” arXiv preprint arXiv:2007.03972,
2020.

[12] R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Adaptive private dis-
tributed matrix multiplication,” arXiv preprint arXiv:2101.05681, 2021.

[13] B. Hasircioglu, J. Gomez-Vilardebo, and D. Gunduz, “Speeding up
private distributed matrix multiplication via bivariate polynomial codes,”
arXiv preprint arXiv:2102.08304, 2021.

[14] R. G. L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “Gasp codes
for secure distributed matrix multiplication,” IEEE Transactions on

Information Theory, pp. 1–1, 2020.

[15] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,”
IEEE Transactions on Information Theory, vol. 63, no. 9, pp. 5684–
5698, 2017.

[16] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proceedings of the IEEE, vol. 99,
no. 3, pp. 476–489, 2011.

[17] Q. Yu, M. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[18] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” in 2018 IEEE International Symposium on Information Theory

(ISIT). IEEE, 2018, pp. 2022–2026.

[19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Transactions on Information Theory, 2019.

[20] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen,
T. Roos, and P. Grover, “An application of storage-optimal matdot codes
for coded matrix multiplication: Fast k-nearest neighbors estimation,” in
2018 IEEE International Conference on Big Data (Big Data). IEEE,
2018, pp. 1113–1120.

[21] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
109–128, 2017.

[22] H. A. Nodehi and M. A. Maddah-Ali, “Limited-sharing multi-party
computation for massive matrix operations,” in 2018 IEEE International

Symposium on Information Theory (ISIT). IEEE, 2018, pp. 1231–1235.

[23] Z. Jia and S. A. Jafar, “On the capacity of secure distributed matrix
multiplication,” arXiv preprint arXiv:1908.06957, 2019.

[24] H. Akbari-Nodehi and M. A. Maddah-Ali, “Secure coded multi-party
computation for massive matrix operations,” IEEE Transactions on

Information Theory, vol. 67, no. 4, pp. 2379–2398, 2021.

[25] M. Kim, H. Yang, and J. Lee, “Private coded matrix multiplication,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
1434–1443, 2019.

[26] J. Zhu, Q. Yan, and X. Tang, “Improved constructions for secure multi-
party batch matrix multiplication,” arXiv preprint arXiv:2103.09592,
2021.

[27] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE

transactions on information theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[28] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5227–5239, 2011.

[29] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of mds codes in
distributed storage,” IEEE Transactions on Information Theory, vol. 59,
no. 5, pp. 2974–2987, 2013.

[30] I. Tamo, M. Ye, and A. Barg, “Optimal repair of reed-solomon codes:
Achieving the cut-set bound,” in 2017 IEEE 58th Annual Symposium on

Foundations of Computer Science (FOCS). IEEE, 2017, pp. 216–227.

[31] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for
secure coded computing using secret sharing via staircase codes,” IEEE

Transactions on Communications, vol. 68, no. 8, pp. 4609–4619, 2020.
[32] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Centralized repair

of multiple node failures with applications to communication efficient
secret sharing,” IEEE Transactions on Information Theory, vol. 64,
no. 12, pp. 7529–7550, 2018.

[33] W. Huang and J. Bruck, “Secret sharing with optimal decoding and re-
pair bandwidth,” in 2017 IEEE International Symposium on Information

Theory (ISIT). IEEE, 2017, pp. 1813–1817.
[34] W. C. Huffman, J.-L. Kim, and P. Solé, Concise Encyclopedia of Coding

Theory. Chapman and Hall/CRC, 2021.

	I Introduction
	I-A Related Work
	I-B Main Contributions

	II Preliminaries
	III A Motivating Example: L=T=1
	IV Field Trace Polynomial Codes
	V Proof of Theorem 1
	VI Example: L=3 and T=2
	VII Proof of Theorem 2
	References

