Software Licenses, Coverage, and Subsumption

Thomas A. Alspaugh and Walt Scacchi
Institute for Software Research
University of California, Irvine

{alspaugh,wscacchi} @ics.uci.edu

Abstract—Software licensing issues for a system design,
instantiation, or configuration are often complex and difficult
to evaluate, and mistakes can be costly. Automated assistance
requires a formal representation of the significant features of
the software licenses involved. We present results from an
analysis directed toward a formal representation capable of
covering an entire license. The key to such a representation
is to identify the license’s actions, and relate them to the
actions for exclusive rights defined in law and to the actions
defined in other licenses. Parameterizing each action by the
object(s) acted on, the instrumental entities through which the
action is performed, and similar contextual variables enables
a subsumption relation among the actions. The resulting
formalism is lightweight, flexible enough to support the scope of
legal interpretations, and extensible to a wide range of software
licenses. We discuss the application of our approach to the
Lesser General Public License (LGPL) version 2.1.

I. INTRODUCTION

Heterogeneously-licensed systems are increasingly pre-
valent as organizations seek lower development costs, in-
creased reliability and quality, and faster development cy-
cles [3], [6], [11]. Such systems presents challenges in
ensuring all pertinent obligations from the various possibly-
conflicting licenses are met, which can easily involve eval-
uating dozens of distinct licenses applied on a component-
by-component basis [4], [12]. The challenges arise indepen-
dently during design, development, integration, distribution,
configuration, and execution, and may present different con-
cerns involving different fundamental copyright and patent
rights at each of these stages. The goal of our research is to
provide licensing guidance to designers, developers, system
integrators, and those responsible for software acquisition.

In our previous work we presented an approach and proof
of concept of automated licensing analysis integrated into
system design at the level of software architecture [3], [5],
[6]. The work was based on a sequence of grounded-theory
analyses on (eventually) 46 software licenses, focusing on
propagation of obligations through the architectural config-
uration (the most challenging area for manual analysis).
Rights and obligations were the fundamental units of the
metamodel we obtained for licenses, with actions as compo-
nents of rights and obligations and implicitly parameterized
in a fixed pattern accommodating the license provisions that
were the focus of the work. The textual analyses aimed for

Rihoko (Inoue) Kawai

Saitama Institute of Technology, Saitama, Japan and

National Institute of Informatics, Tokyo, Japan
rihoko @nii.ac.jp

coverage of key provisions across a wide range of licenses.

The present work, in contrast, focuses on complete
coverage of all license provisions, especially those that
might not fit the earlier metamodel. License provisions
are represented using a more flexibly extensible approach
in which the fundamental unit is an action. Actions are
parameterized as needed, recognizing that the subsumption
relationship that can be inferred among actions is determined
by the form in which the actions are parameterized. Rights
and obligations then express relationships among desired,
required, and forbidden actions. During our analysis we
identified subsumption relationships among actions, linking
each action involved in a license right back to the exclusive
right subsuming it defined in copyright and other intellec-
tual property law, specifically the U.S. Copyright Act and
the Berne convention [16], [7]. Where possible, we also
identified subsumptions of the actions of license obligations
by the actions of rights. Figure 1 shows the subsumption
relationships identified for a single license’s actions.

In this paper we focus on the Lesser General Public
License (LGPL), version 2.1 [10]. LGPLv2.1 is the seventh
most widely used open-source software (OSS) license, ac-
counting for about 6.5% of open source projects [8]. At 4341
words, it is substantial (almost double the mean length of
licenses we have analyzed) yet small enough to be discussed
manageably. It addresses the most challenging license inter-
action issue, propagation of obligations to components under
other licenses, in a relatively straightforward way compared
to other licenses that do so. It has provisions in many of the
categories that are challenging for analysis, including:

« accumulation of copyright notices,

« alternative obligations,

o clauses with null effect,

o definitional clauses,

« the distinction between collective and derivative work,

« distribution under alternative licenses,

o distinct rights and obligations for build scripts, inter-

faces, header files, source, object, and executable forms,

« license acceptance and termination,

« license exceptions,

« license notices of several types,

« output from licensed software, and

« relicensing under other licenses.

Exclusive Actions from Rights and Obligations in LGPL2.1
Actions from

Copyright Law

Reproduce original
source LGPLv2.1§I1.191

Distribute original
source LGPLv2.1§I1.191

Accompany with
corresponding
source
LGPLv2.1§11.491

Reproduce original
binary LGPLv2.1811.491

Distribute original
binary LGPLv2.1§]].491

Distribute portion of
original binary
LGPLv2.1811.491

Reproduce portion
of original binary
LGPLv2.1§11.491

Accompany
combined library
with WBOL under

LGPLv2.1
LGPL2.1§1l.791.a

Reproduce WBOL
source LGPLv2.1§11.291

Distribute WBOL
source LGPLv2.1§11.291

Distribute WBOL
binary LGPLv2.1§11.491

Reproduce WBOL
binary LGPLv2.1§11.491

Accompany with
copy of license
LGPLv2.18I1.191

Reproduce library
CW containing WBOL
LGPL2.1§11.791

Distribute library CW
containing WBOL
LGPL2.18I1.791

Distribute

original or DW

: \ Reproduce linked
WUL + library
LGPLv2.1§11.691

Distribute linked
WUL + library under
qualifying license

License WBOL freely
under LGPLv2.1
LGPLv2.1811.691

LGPLv2.1811.691

Create WBOL source
LGPLv2.1811.291

Insert notices of
changes
LGPLv2.1811.291.b

Create WBOL binary
implied LGPLv2.1811.491

Alter notices to GPL
LGPLv2.1§I11.391

Create DW

for exclusive

Create library CW
containing WBOL
LGPL2.1§11.791

Good-faith

independence effort
LGPLv2.1§11.191.d

W

Link WUL + library
LGPLv2.1811.691

Accompany with
WUL binary/source
LGPLv2.1811.692.a

ﬁ’ Offer same access to
copy corresponding
source

(Of license)
Original licensor
may limit license

geographically
LGPL2.1§I1.1291

LGPLv2.1811.492

Link using suitable
shared library
mechanism
LGPLV2.1§11.692.b

Prominent notice

that Library is used
LGPLv2.1811.692

Written offer of
source and WUL
LGPL2.1§11.692.c

Prominent notice

that Library is under

Grant license “

Relicense a copy
under GPLv2 or later
LGPLv2.1811.391

LGPLv2.1
LGPLv2.1811.692

Offer same access to

copy WUL
LGPLv2.1§11.692.d

Display copyright

Notice of WBOL

action N Any LGPL version if notice and LGPLv2.1 and where to
unspecified reference find Library
LGPLv2.1811.1392 LGPLV2.1811.612 LGPLv2.181.791.b
Ensure copyright Retain LGPL notices
notice LGPLv2.1811.111 LGPLv2.1§I1.191
Ensure disclaimer Retain disclaimers
notice LGPLv2.1811.171 LGPLv2.18I1.191
Key

An exclusive
action from
copyright law

An action defined
in a LGPLv2.1
right

In copyright law:
An action defined PyRd

in a LGPLv2.1

o CW = "Collective
obligation

Whole — > Part

In LGPL2.1:

DW = "Derivative Work"

Work"

WUL = "work that uses the library"

Action requiring the
first as prerequisite

WBOL = "work based on the library"

L
Action (other than the library itself)

Figure 1. Subsumption among the LGPLv2.1 actions for rights and obligations and the exclusive copyright actions. 18 rights actions are explicit in the
text, and three others are implied. The actions of the implied rights are italicized in the figure. Four obligations actions have no effect under the conditions
in which they are obligated (because the original source must itself satisfy LGPLv2.1); they are shown with a gray background.

[§1273s1] These requirements apply to the modified work as a whole.

If identifiable sections of that work are not derived from the Library, and
can be reasonably considered independent and separate works in themselves,
then this License, and its terms, ® do not apply to [por] those sections when you
distribute them as separate works. [d But when you distribute the same
sections as part of a whole which is a work based on the Library, [the
distribution of the whole @ must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

@ Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on the
Library.

In addition, mere aggregation of another work not based on the
Library with the Library (or with a work based on the Library) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

Figure 2. A portion of LGPLv2.1, divided into chunks and annotated
with categories of interest. The categories appearing here are, briefly: CW:
collective work; d: distribution; DW: derivative work; fire: license firewall;
O: apparent obligation; por: for a portion of the licensed entity; ppgn:
propagation of obligations to other entities; s: sublicensing, whether explicit
or in effect; and (): null effect.

Figure 2 shows an excerpt of the open-coded LGPLv2.1
text annotated with some of the 93 categories that were iden-
tified here or in other licenses [9]. The entire license text was
chunked and open-coded, reiterating until the boundaries of
chunks of text and the conceptual code characterizing each
chunk of text stabilized. The list of codes (or categories)
was initialized with the codes obtained from our previous
analyses of many licenses, and extended to include the
kinds of features uncovered by a focused analysis of the
LGPLv2.1 text. Portions of the chunking and open-coding
were verified by one of the other authors at several points
in the process. Axial coding was then used to identify
themes and relationships in the license text, resulting for
example in the categories of definitions, rights, obligations,
modifiers, and null effect discussed in Section IV, and the
characterization of a parameterized action as the basic unit
of software licenses discussed in Section V.

LGPLv2.1, like most licenses, is only partially organized
into numbered sections, hampering reference to specific
parts of the text. Citations of specific license sections, para-
graphs, and sentences refer to an online copy of LGPLv2.1
consistently numbered throughout by a program [2].

The remainder of this paper is organized as follows.
Section II presents related work. Section III lists questions of
interest that guide this work. Section IV presents the textual
analysis on which the work is based. Section V discusses
actions, Section VI sketches how actions are parameterized,
and Section VII outlines subsumption among parameterized
actions. Section VIII discusses some issues arising from the
work, and Section IX concludes the paper.

II. RELATED WORK

Hohfeld sought a theory by which to resolve the imprecise
terminology and ambiguous classifications he found in use
for legal relationships. In a seminal article published in
1913 and cited to the present day, he set forth a system
of eight jural relations intended to express and classify all
legal relationships between people. The first four regulate
ordinary actions and are right (“may”), no-right (“cannot”),
duty (“must”), and privilege (“need not”).

There has been much work on analysis of laws in Al
over the past few decades. A widely-cited example is Sergot
et al.’s re-expression of the British Nationality Act as a
Prolog program; the resulting program was able to apply the
Act to a particular person’s situation and characteristics to
determine nationality [15]. Sergot asserted that the primary
value of their approach was the insight that the process
of expressing a statute gave into what the statute says and
means, rather than any use of the Prolog program.

Otto and Antén survey the literature on modelling legal
texts and reach similar conclusions [14]. They highlight the
possibilities of conflicts among regulations, the evolution of
case law and passage of new regulations, and the frequent
cross-references within a single text or from one text to other
texts. They survey a number of modelling approaches, in-
cluding symbolic logic, knowledge representation (including
Sergot et al.), deontic logic, defeasible logic, temporal logic,
and so forth.

None of these approaches appear well suited to the
challenges of licenses. The problem of references among
documents, prominent in the modelling of statutes and reg-
ulations, is not significant for the licenses we have examined,
which make few references to other documents and exhibit
comparatively straightforward references within the license.
While the modelling approaches offer a certain degree of
automatic calculation, the calculations they support well do
not appear particularly useful for OSS licenses. The key
issue we have found for OSS licenses, namely how license
provisions refer to specific entities in the licensed system
and how obligations resulting from rights for one entity
are propagated to other entities based on the architectural
structure connecting them, is unlike anything addressed by
these approaches. While they may possibly offer an efficient
run-time implementation for the calculations needed for
licenses, it is not clear that they are particularly appropriate
for modelling licenses.

III. QUESTIONS OF INTEREST

Our work is in the context of software development and
the issues and concerns that arise there. The primary goal
in that context is to produce a software system for which
the desired rights are available in exchange for acceptable
obligations. Since the work originated in the context of
the OSS community, we assume good will on the part of
the actors involved, and do not concern our work with

approaches for subverting license provisions. We list the
following questions of interest that guide our research.

1) What rights are potentially available for a single
component under a given license, or for a given archi-
tectural configuration of components and connectors
under their licenses?

2) What obligations must be fulfilled in order for specific
rights to be granted for a given single component
under its license, or for a given architectural con-
figuration of components and connectors under their
licenses?

3) What license conflicts (if any) arise for a given archi-
tectural configuration of components and connectors
under their licenses?

We find that in addressing these questions we need not
consider any license provision that is neither enactable nor
testable. A surprising number of license provisions fall
into these categories, including text that we characterize
as exhortations, examples or informal explanations of other
clauses, and hopes on the part of the licensor that have no
legal force. Our focus on testable provisions also leads in
the intriguing direction of automated verification of whether
a testable license obligation has been fulfilled.

IV. TEXTUAL ANALYSIS

We find that everything in the text of LGPLv2.1 may be
classified as either

1) the definition of a term,

2) a right,

3) an obligation,

4) a modifier to a definition, right, or obligation, or
5) text without legal effect.

These five categories cover the entire text and partition
everything in it. Examples of each from LGPLv2.1 are given
below for readers unfamiliar with OSS licenses.

A. Definitions of terms

The first example is an explicit definition of a named term,
“work that uses the Library”.

A program that contains no derivative of any
portion of the Library, but is designed to work with
the Library by being compiled or linked with it,
is called a “work that uses the Library”. (§I1.092)

The second example is an implicit definition of an anony-
mous category of executables that might be termed “work
using the Library and linked with it”. Executables in this
category have rights and obligations different from those for
other executables. LGPLv2.1 gives this category no name.

... you may also combine or link a work that uses
the Library with the Library to produce a work
containing portions of the Library (§1.61s1)

B. Rights

The first example, as is common for statements of rights
in OSS licenses, grants several rights at once (the right to
copy and the right to distribute). The actions in this right
might be summarized as “reproduce complete original” and
“distribute complete original”. We use such summaries here
as tokens representing the full definitions.

You may copy and distribute verbatim copies of
the Library’s complete source code as you receive
it, in any medium ... (§IL.191s1)
The second example grants an interesting right to license
a specific copy of a work received under LGPLv2.1 under
another license. In both these examples, the word “may”
signals that a right is probably being defined. The action
might be summarized as “license a given copy under GPL”.

You may opt to apply the terms of the ordinary
GNU General Public License instead of this Li-
cense to a given copy of the Library. (§1L.391s1)

C. Obligations

The first example is signaled by the word “provided”,
unlike most LGPLv2.1 obligations which are signaled by
“must”. This obligation is notable because it would seem
to require no action unless the original source code, in
violation of LGPLv2.1, failed to include such a notice and
disclaimer of warranty. The actions might be summarized as
“ensure appropriate copyright notice” and “ensure disclaimer
of warranty”.

. provided that you conspicuously and appro-
priately publish on each copy [of the complete
original source code] an appropriate copyright
notice and disclaimer of warranty ... (§IL.191s1)

The second example contains no such identifying words,
but is the first of a list of alternatives preceded by “... you
must do one of these things”. Its action might be summarized
as “accompany with corresponding source”. Many OSS
licenses contain similar obligations.

Accompany the work with the complete corre-
sponding machine-readable source code for the
Library including whatever changes were used in
the work (§11.692.as1)

D. Modifiers

This first example contains the signal word “provided”
that often indicates an obligation, but it does not function
as such. Instead its effect is to restrict what “terms of your
choice” refers to.

... you may also combine or link a work that uses
the Library with the Library to produce a work
containing portions of the Library, and distribute
that work under terms of your choice, provided
that the terms permit modification of the work for

the customer’s own use and reverse engineering
for debugging such modifications. (§1L.691s1)

The second example limits the scope of the anonymous
category of “works that use the Library” that are also “works
based on the Library” because they incorporate material
from header files.

If such an object file uses only numerical param-
eters, data structure layouts and accessors, and
small macros and small inline functions (ten lines
or less in length), then the use of the object file is
unrestricted (§I1.594s1)

E. Text without Legal Effect

The first example below is an explanation and statement
of the intent of the license’s authors; we are told that if the
explanation differs from what it purports to explain, their
stated intent would be trumped by what the license actually
says.

Thus, it is not the intent of this section to claim
rights or contest your rights to work written en-
tirely by you (§11.294)

The second example is more problematic. It is phrased
as an obligation, but the action involved (“make a good
faith effort”) is in our view not testable; compare for
example the undoubtedly testable action “conspicuously and
appropriately publish on each copy an appropriate copyright
notice” (§IL.191s1). Of course, a specific legal interpretation
of LGPLv2.1 might give this text a testable interpretation,
for example by operationalizing “good faith effort” in some
way.

If a facility in the modified Library refers to a
function or a table of data to be supplied by an
application program that uses the facility, other
than as an argument passed when the facility is
invoked, then you must make a good faith effort
to ensure that, in the event an application does
not supply such function or table, the facility still
operates, and performs whatever part of its purpose
remains meaningful. (§I1.291.d)

F. Other features

In addition to the five categories of definitions, rights,
obligations, modifiers, and null effect that jointly partition
and cover the entire LGPLv2.1 text, we identified or con-
firmed several other significant license features.

1) Right/Obligation Structure: All rights and obligations
shared the conceptual structure of an actor, a Hohfeld jural
relation [13], and an action. The actor was the licensee for
each of LGPLv2.1’s 18 rights and 20 obligations. The jural
relation was that of a Hohfeld right (“may”) or privilege
(“need-not”) for each right, and of a duty (“must”) or
no-right (“cannot”) for each obligation. Actions will be
discussed in Section V.

2) Time and State: Time and state are barely present in
LGPLv2.1, figuring only in license acceptance (§11.9) and
termination (§11.8). There is no provision for reinstatement
after termination.

3) Obligation Propagation: Propagation of obligations to
other entities is mediated structurally by the architecture in
which LGPLv2.1-licensed entities are combined:

1) to other elements incorporated into the same library

(§11.291.c);

2) to programs designed to use an LGPLv2.1-licensed
library, when linked to the library (§11.592), except if
certain obligations are met (§IL.691); and

3) to the object code for modules that include more than
a stated amount from an LGPLv2.1-licensed header
file (§IL593).

4) Enactability and Testability: The constructs that ap-
pear intended as LGPLv2.1 rights or obligations all involve
actions that are clearly testable, with the single exception of
the “good faith effort” obligation discussed above. Every ac-
tion (even the questionable one) is, unsurprisingly, enactable.

V. ACTIONS, THE CENTRAL CONSTRUCT

Actions are the most common constructs in LGPLv2.1,
and are essential in how the license is applied in the world.
Focusing on actions as the key element of licenses brings
several advantages.

o Actions are more manageable than rights and obliga-
tions. Each action is a concept representing an un-
bounded set of instances of the action; e.g. “distribute
the Library ... in object code ... form” (§I1.491) is
instantiated by “distribute g1l ibc to John Doe on 2012
June 18” along with any number of similar instances.
Therefore set operations may be used on actions. The
operations on rights and obligations, in contrast, are
quite limited. For example, the common idiom of first
stating an obligation to do action X, then reducing it by
granting the right to not do W where W overlaps with
or is part of X, is easily expressed as set subtraction
on the actions (X — W) but has no simple expression
in terms of the obligation and right themselves.

« A single action, or two actions related by subsumption,
often appear in both a right and an obligation. In
LGPLv2.1 examples are numerous, for example the
obligation ““You must cause the files modified to carry
prominent notices stating that you changed the files
and the date of any change” (§I1.291.b) whose action
is subsumed by that of the right “You may modify
your copy or copies of the Library” (§IL.291). This
phenomenon is essential to the propagation of obliga-
tions from one license to entities under another license,
which doesn’t work unless the other license permits the
actions required by the propagated obligations.

« Distinguishing an actual right or obligation from a
modifier in the form of a right or obligation can be

problematic, as observed in Section IV, but in our
analysis we found identifying actions to be uniformly
straightforward.

« If rights and obligations are the primary constructs, then
their similarities (both comprise an actor, a Hohfeld
jural relation, and an action) and unwieldy difference
(though each contains a Hohfeld relation, it can’t be
the same one) are prominent and difficult to justify.
But if actions are the primary construct, then rights and
obligations become emergent phenomena arising from
the relationships among a license’s desired, required,
and forbidden actions, and the description of the license
metamodel becomes simpler and more uniform.

VI. ACTION PARAMETERIZATION

In our previous work we proposed that actions be param-
eterized with the entity on which they acted, if any, and the
license used in the action, if any. However, a more careful
examination of license rights and obligations, showed that
this simple pattern, while sufficient for the majority of cur-
rent rights and obligations, is neither universally sufficient
nor conceptually necessary. Our current work has shown that
no fixed pattern or patterns is necessary for formalization
and automated inference, and that a small but stubborn set
of actions cannot be accommodated in that way. LGPLv2.1
offers two examples, of which the following (from a right)
is the clearest.

In the action “distribute that work under terms of your
choice” (§11.691), the work in question is a “work that uses
the Library” combined or linked with the Library, and the
terms in question must meet two conditions (licensee may
modify the work, and may reverse-engineer the work). This
action thus involve two entities:

1) “that work”, upon which the action is taken, and
2) the “terms of your choice” through which the distri-
bution is licensed.

Each of these should be a separate parameter of the action,
since they vary from instance to instance of the action
and may vary independently of each other. If the action is
parameterized in this way, then it becomes a special case of
the general action “distribute an entity under a license” and
its parameters place it properly in the subsumption hierarchy,
as discussed in Section VII.

(We note in passing that the approach in our previous
work for parameterizing the actions of obligations through
functions or quantifiers operating on the parameter(s) of the
corresponding right continues to suffice, based on the results
reported here; we refer interested readers to that work [3],

(51, [6].)
VII. PARAMETERIZED SUBSUMPTION

In addressing subsumption among parameterized actions,
we follow the approach of Abadi and Cardelli in the area
of object-oriented type systems [1]. Figure 3 illustrates

)@

o

D(S)

Subsumption of simple entities and parameterized entities

A CR g
O 5
B

Figure 3.

subsumption between pairs of simple actions and pairs of
parameterized actions.

In the figure, every instance of action B is also an instance
of action A; we say A subsumes B.

On the right is a more complex situation. Actions C'(P)
and D(P) are parameterized with arguments R and S
respectively. As is normally the case for parameterized
actions in licenses, the parameter is covariant: the sense
of the subsumption of the arguments matches their effect
on the subsumption of the actions they parameterize. Every
instance of D(S) is an instance of C'(R) if every instance of
S is an instance of R; argument S is subsumed by argument
R so therefore D(S) is subsumed by C(R).

An example from LGPLv2.1 is the right “You may
modify your copy or copies of the Library” (§11.291) and
the obligation “You must cause the files modified to carry
prominent notices stating that you changed the files and the
date of any change” (§I1.291.b) In other licenses we have
seen actions to modify licensed entities other than libraries,
and to insert various kinds of notices appropriate for the
license in question, so we propose generalizing these actions
to covariantly parameterized actions informally defined as

M(F,L) =
N(F,L) =

“modify source file F licensed under L’
“add change notices appropriate for

license L to source file F licensed under L’

Let us assert that M subsumes N covariantly
N(g,m) C M(f,1)ifgC fand m C1l

and also assert that
“modify your copy or copies of the Library”
(§IL.291)
is equivalent to the union of M (F,LGPLv2.1) for each
Library file ' you modify, and that
“cause the files modified to carry prominent no-
tices stating that you changed the files and the date
of any change” (§I1.291.b)
is equivalent to the union of N(F,LGPLv2.1) for each
Library file F' you modified. Then we have taken several

steps towards being able to automatically determine that
modifying 1ibfile.c under LGPLv2.1 subsumes adding
LGPLv2.1 changes notices to 1ibfile.c. Our assertions
have expressed part of the interpretation of the two actions,
and constituted a step in the formalization of an interpreta-
tion of LGPLv2.1 as a whole.

We have made such formalizations of portions of licenses
in our previous work, and believe the present work provides
a foundation for doing the same for entire licenses.

VIII. DISCUSSION

In this section we discuss some of the issues arising from
this approach.

A. What is and is not formalized?

These are formalized:

o The subsumption relation among actions, including the

effect of the actions’ argument.

o The entity types over which each parameter ranges, and

the subsumption relation among the types.

o The entailment relation from obligations to the rights

granted in exchange from them.

This is not formalized:

o The interpretation of each action.

This formalization is sufficient to support automated li-
censing calculations to support designers, developers, inte-
grators, and acquisition analysts.

The task of creating the formalization is not small, but
the resulting automation saves substantial work with every
licensing analysis.

B. Testable leaves

We hypothesize that software oracles can be constructed
for many or even nearly all actions in license obligations.
Examples are:

« an oracle to check for specific warranty disclaimers in

source code

o an oracle to check whether a specific source file is

available at a specific URL

And so forth. In most cases it will be impractical or
impossible to automatically check for any condition that
would fulfill the obligation (say, for any copyright notice
that would serve for LGPLv2.1), but it will be practical to
check for a specific condition known to fulfill it (say, for
one specific copyright notice that serves).

C. How subsumption fits into license analysis

In our previous work we explored license relationships
among rights and obligations using Hohfeld jural relations,
and described how we automated licensing analyses for
specific systems and incorporated the analyses into a soft-
ware architecture development environment [3], [5], [6]. The
work presented here provides a new and more extensible
foundation for those analyses.

For example, LGPLV2.1 states

You may modify your copy ... of the Library ...
and ... distribute such modifications ... provided
that you ... cause the files modified to carry
prominent notices stating that you changed the
files and the date of any change. (§I1.291)

A specified subsumption relation among actions might
classify “Richard Roe distributed glibc v1.2.3 source on
2012 July 26” as an instance of the rights action “Distribute
WBOL source” (§11.191) and “Jane Doe placed LGPLv2.1
change notices in glibc v1.2.3 on 2012 July 25”7 as
an instance of the obligations action “Insert notices of
changes”(§11.191), which is itself subsumed by rights action
“Create WBOL source”(§11.191) (Figure 1). It still remains
to relate the fulfilled obligation of placing the notices to
the desired right of distributing the modified source (as
well as the other obligations imposed by LGPLv2.1), and
presumably to decide whether Jane Doe and Richard Roe
were acting jointly so that her fulfilled obligation supported
his exercised right.

D. Legal interpretations

We believe the interpretation provided by the formaliza-
tion provides sufficient scope for legal interpretations, based
on informal conversations with lawyers and researchers in
law, but the choices provided by the formalization do not
appear to be a natural expression of the choices a lawyer
would make. This will require future work.

E. Questions we need not ask

For the goals we have set for this research, it is not
necessary to be able to answer certain research questions.
Examples we have identified are:

o Given two software licenses, how are they related?
We believe the answer for any pair of existing li-
censes is that they are not equivalent and neither one
subsumes the other. Our research indicates that useful
comparisons are only possible for individual rights or
obligations, or at most for groups of a few.

e Can our approach account for delegation?

We are not aware of any licenses with provisions that
explicitly address delegation of obligations. Licensing
is of course a delegation of one or more rights. Our
approach does not analyze this kind of delegation
beyond a surface level.

o Would it be advantageous to apply a temporal, deontic,

or other specific logic to licensing analysis?
Perhaps; such logics might enable the asking of differ-
ent kinds of questions that we cannot address at present.
Our combination of a logic based on Hohfeld and
description logic has sufficed so for our stated goals.
We continue to look for contexts in which additional
kinds of reasoning would be beneficial.

F. Future work

We hypothesize that license-based reasoning about soft-
ware systems offers benefits in domains beyond that of
intellectual property licenses such as LGPL. Our ongoing
research program is examining the use of license-like struc-
tures for security, envisioning “security licenses” to fulfill
the goals of security policies and similar measures but more
manageable and scalable manner, with direct application
to software engineering processes such as open-architecture
OSS development of systems integrated from components
from many sources. Data licensing is another promising area,
especially since data licenses already exist.

IX. CONCLUSION

We present initial results from an analysis of LGPLv2.1 in
its entirety, based on earlier work that analyzed high-value
areas of a collection eventually numbering 46 licenses. The
analysis covers the license textually in several senses:

1) as a grounded-theory analysis chunking and open-
coding the entire text;

2) as a higher-level synthesis by which the license text
was partitioned a second time (into definitions, rights,
obligations, modifiers, and no-effect); and

3) as all LGPLv2.1 actions and the relations among
them from which arises the structure of rights and
obligations for the license.

The analysis also identified actions as the central concept
around which license structure is organized. When actions
are taken as the fundamental construct, the characteristics of
rights and obligations become emergent phenomena arising
from the relationships among a license’s desired, required,
and forbidden actions. The focus on actions also led us to a
more flexible and generalized approach for parameterizing
actions and deriving a subsumption relation among them.
We extended the subsumption relation to include the actions
for the relevant exclusive copyright rights (Figure 1), and
to relate the actions for rights and obligations. Grounding
the relation in the actions of the exclusive rights proved
helpful in distinguishing actual rights and obligations from
provisions in the textual guise of rights or obligations but
serving the function of modifiers of definitions, rights, and
obligations. While no analysis or interpretation of a license
can be considered final, the three kinds of coverage achieved
and cross-correlated (of the text at both an open-coding and
an axial coding level, and of the license’s actions supported
by a grounding in the copyright exclusive actions) give
confidence in the results.

ACKNOWLEDGEMENTS

This research is supported by grant #N00244-12-1-0004
from the Acquisition Research Program at the Naval Post-
graduate School, and by grant #0808783 from the U.S.
National Science Foundation. No review, approval, or en-
dorsement implied.

The authors thank the anonymous reviewers whose in-
sightful suggestions helped us improve the paper.

REFERENCES

[1] M. Abadi and L. Cardelli. A theory of objects. Springer-
Verlag, New York, 1996.

[2] T. A. Alspaugh. GNU Lesser General Public License, version
2.1, §/9/sentence-numbered.
http://www.thomasalspaugh.org/pub/osl-sps/Igpl2.1.html.

[3] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. In-
tellectual property rights requirements for heterogeneously-
licensed systems. In I7th IEEE International Requirements
Engineering Conference (RE’09), pages 24-33, 2009.

[4] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. The role
of software licenses in open architecture ecosystems. In First
Int. Workshop on Software Ecosystems, pages 4—18, 2009.

[5] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Presenting
software license conflicts through argumentation. In 23rd Int.
Conf. on Software Engineering and Knowledge Engineering
(SEKE 2011), pages 509-514, 2011.

[6] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion. Software li-
censes in context: The challenge of heterogeneously-licensed
systems. Journal of the Association for Information Systems,
11(11):730-755, 2010.

[7] Berne Convention for the Protection of Literary and Artistic
Works, 1979. http://www.wipo.int/treaties/en/ip/berne/.

[8] Black Duck Software. Top 20 most commonly used licenses
in open source projects.
http://www.blackducksoftware.com/oss/licenses.

[9] J. M. Corbin and A. C. Strauss. Basics of Qualitative Re-
search: Techniques and Procedures for Developing Grounded
Theory. SAGE Publications, 2007.

[10] Free Software Foundation. GNU Lesser General Public
License, version 2.1, 1999.

http://www.gnu.org/licenses/Igpl-2.1.html.

[11] D. M. German and A. E. Hassan. License integration
patterns: Addressing license mismatches in component-based
development. In 28th International Conference on Software
Engineering (ICSE ’09), pages 188-198, 2009.

[12] R. Gobeille. The FOSSology project. In Int. Working Conf. on
Mining Software Repositories (MSR’08), pages 47-50, 2008.

[13] W. N. Hohfeld. Some fundamental legal conceptions as
applied in judicial reasoning. Yale Law J., 23(1):16-59, 1913.

[14] P. N. Otto and A. I. Antén. Addressing legal requirements
in requirements engineering. In I5th Int. Requirements
Engineering Conference (RE’07), pages 5—14, 2007.

[15] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Ham-
mond, and H. T. Cory. The British Nationality Act as a logic
program. Communications of the ACM, 29(5):370-386, 1986.

[16] U.S. Copyright Act, 17 U.S.C.
http://www.copyright.gov/title17/.

