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Abstract

Virtual synchrony, also known as view synchrony, has proven to be a powerful
paradigm to build distributed applications. Informally, virtual synchrony provides to
each process group membership information in the form of views and guarantees that
all processes that install a given view have delivered the same set of messages from
the previous view. Implementations of virtual synchrony usually require the use of
failure detectors and failure recovery protocols.

There is a range of applications that require the use of a large number of groups
with the same membership. In such applications, significant performance gains can be
attained if these groups share the resources required to provide virtual synchrony. A
service that maps user groups into instances of a virtually synchronous implementation
is called a Light-Weight Group Service.

This paper proposes a new design for the Light-Weight Group Service protocols
that circumvents some of the limitations of previous approaches. As a test case,
the new protocols were implemented in the Horus system, although the underlying
principles can be applied to other architectures as well. The paper also presents
performance results from this implementation.

1 Introduction

Virtually synchronous group communication [1, 2, 13] has proven to be a powerful paradigm
for developing distributed applications. This paradigm allows processes to be organized in
groups within which they exchange messages in order to achieve a common goal. Virtual
synchrony ensures that all processes in the group receive consistent information about the
group membership in the form of views. The membership of a group may change with time
because new processes may join the group and old processes may fail or voluntarily leave
the group. Virtual synchrony also orders messages with view changes, and guarantees that
all processes that install a given view have delivered the same set of messages from the

previous view.

To provide virtual synchrony, implementations require the use of failure detectors and

the execution of agreement and ordering protocols. Naturally, these components consume



some amount of system resources, such as bandwidth or processing power. Although
the impact of these services in the overall system performance is usually small, there are
opportunities for optimization when several groups have a large percentage of common
members, because these groups can share common services. Such opportunities appear
in many applications [6, 11], in particular when object-oriented programming styles are
used [9, 10]. For instance, a parallel application programmed using an distributed object

memory can create hundreds of groups with similar membership [3].

A technique that allows the previous type of optimization consists of mapping several
user level groups into a single virtually synchronous group. Since these groups share
common resources, they can be implemented more efficiently than standalone groups and
are called Light- Weight Groups (LwaGs). In contrast, the underlying virtually synchronous
group is called in this context a Heavy-Weight Group (HwG). A service that maps

Lwasinto HwaGsis usually called a Light- Weight Group Service.

Light-Weight Group Services have been implemented before in different group based
communication systems [6, 11]. Unfortunately, in these previous works, LwaGsdid not
preserve the exact interface of the underlying virtually synchronous group, imposing re-
strictions on group usage. This paper proposes a new design for the Lwc protocols that
circumvents such limitations, in particular, it proposes a innovative dynamic mapping
approach that allows the Light-Weight Group Service to be implemented in a fully trans-
parent manner. As a test case, the new protocols were implemented in the Horus sys-
tem [14] (as a new protocol layer) but the underlying principles can be applied to other

architectures (including the Isis [6] and NAvTECH [15] systems).

The paper is organized as follows. Related work is surveyed in Section 2. The design of
the Light-Weight Group Service is described in Section 3 and the protocols are presented
in Section 4. An implementation in Horus is presented in Section 5 and Section 6 concludes

the paper.

2 Related Work

To our knowledge, Delta-4 [11] was the first system to offer some form of Light-Weight
Group Service. The Delta-4 group communication subsystem was structured as a layered
architecture, in a fashion similar to that of the ISO stack. Virtually synchronous support

was provided in the lower layers of the architecture, immediately on top of standard MAC



protocols. Several session level groups could be mapped into a single MAC level group,
but that association was statically defined by labeling all session groups (such a label is

called a connection in the Delta-4 terminology).

The Isis system has extended this principle, offering a Light-Weight Group Service
that supports dynamic associations between user level groups and core Isis groups [6].
Still, in order to make appropriate mapping decision, Isis Lwcsrequire the specification

of the target membership of an user group.

None of these approaches is transparent, in the sense that none of them preserves the
original HWG interface. In both cases, it is necessary to provide additional information,
and it is our belief that this additional information limits the advantages of the utilization

of the LwaG in two ways:

e a powerful feature of virtual synchrony is that it does not require previous knowledge
of the group membership; requiring this additional information to implement the

Lwa protocols reduces the applicability of the system.

e having a different programming interface, not only forces existing applications to be
changed, but also prevents the Lwa protocols from being used as an optional feature,

in a transparent manner.

In this paper, we suggest a new suite of protocols that implement the Lwa abstraction,
in the meantime, still preserving the HwG interface, such that it may be optionally used

with full transparency by any application.

3 Design Overview

The main goal of the dynamic Lwa Service is to support resource sharing by mapping sev-
eral Lwas groups with similar membership into a single HWG in a way that fully preserves
the original HWG interface. Thus, the mapping between LwcGsand HwGs must be done in
a completely automated manner. As a positive side effect of resource sharing, we expect

to decrease the latency of group operations by avoiding redundant start-up procedures.

The LwaG Service performs its task by managing a pool of HwaGsand establishing
associations between LwGs and these HwGs. Every time a new Lwa is created, the Service

must decide if this LwG should be associated with one of the already created Hwas (if any),



or if a new HwWG should be added to the pool. Whatever decision is made, the new Lwa will
be associated with some HwG and will share that Hwa with other Lwas . Since the design
imposes no restriction in the way the membership of LwGschange in time, mappings
that are appropriate at one point may become ineflicient with the system progress. To
compensate these changes, the LwaG Service allows mappings to be dynamically redefined.
In such case, we say that a Lwa is switched from one HWG to another. If at some point in
time a given HWG seems to become unsuitable to establish further mappings it is released
from the pool. Thus, the pool of HwGs managed by the Service expands and shrinks in
time, not only due to the creation of new LwaGs, but also due to changes in membership

in these groups.

The LwG Service has then three main tasks: (i) preserves the virtually synchronous
interface of the HwGs to the LwaGs users; (ii) defines the mapping and switching policies;
and (iii) invokes a switching protocol, which is a protocol that allows the association
between a LwGand a HwGto be changed in run time. In this paper we present the
protocols that allow us to achieve the first of these tasks. This is a critical point in
the overall design as, if no performance advantages can be obtained by mapping several
Lwasin a single HwG , the implementation of mapping and switching strategies becomes

pointless (mapping and switching heuristics are discussed in another report [12]).

4 Protocols

This section describes the protocols that implement the Light-Weight Group Service.
These protocols perform the several tasks required to offer virtual synchrony: join a group,
leave a group, and multicast messages in a group. Additionally, the switching protocol
is also presented. The section starts by presenting the assumptions about the underlying

(Heavy-Weight) virtually synchronous service.

4.1 Assumptions

The Light-Weight Group Service described in this paper was designed to run on any of a
set of group communication architectures. Particularly, the service was designed having
in mind the Isis, Horus and NAVTECH systems. All these systems provide a virtually

synchronous communication service.



Downcalls Upcalls

Name Parameters Name | Parameters

Join Groupld gid, Pid pid View | Groupld gid, PidList view

Leave Groupld gid, Pid pid Data | Groupld gid, Pid src, BitArray data
Send Groupld gid, BitArray data || Hold | Groupld gid

HoldOk | Groupld gid

Table 1: VS Interface Primitives
4.1.1 Virtual Synchrony

Informally, virtual synchrony provides each process group membership information in the
form of views and guarantees that all processes that install a given view have delivered
the same set of messages from the previous view. More formally, virtually synchronous

multicast communication can be defined as follows [13]:

vs-multicast: Consider a set of processes g, a view Vi(g), and a message m multicast to
the members of group Vi(g). If 3p € V*(g) which has delivered m in view V*(g)
and has installed view V't'(g), then every process q € Vi(g) which has installed
Vi*l(g) has delivered m before installing V*1(g). The multicast of message m is
called a vs-multicast. The system is virtually synchronous iff every multicast is a

vs-multicast.

This definition imposes a total order between view changes and multicasts, but does
not enforce any ordering between messages delivered in the same view. The implementa-
tion of virtual synchrony requires the use of a failure detector plus the execution of some
form of flush protocol to ensure that all messages delivered to some processes in a given
view are delivered to all processes in that view before a new view is installed. To guarantee
the termination of the flush protocol, the traflic may be temporarily stopped during the
protocol execution. This may lead to a short system slow down during the execution of
the view change protocol, but simplifies application design (for example, a process that
multicasts a message can deliver it locally immediately without any further computation
or bookkeeping). However, protocols exist that allow the continuation of the message flow
during view changes [4, 5]. The implementation of the Lwa service on top of these weaker

membership services is outside the scope of this paper.



4.1.2 Interface

A typical interface of a virtually synchronous layer contains the following primitives, as
listed in Table 1 (we denote the downcalls with the “.req” suffix and the upcalls with the
“.int” suffix): Join.req, is invoked by a member that wants to join a group; Leave.req,
invoked by a members that wishes to leave a group; Send.req, is used to send a virtually
synchronous multicast; View.int, installs a new view; Data.int, indicates the delivery
of a multicast; Hold.int, indicates that the traffic must be stopped temporarily; and
HoldOk.req, is used to confirm the Hold. int indication Hold.int requires the application
to stop sending new messages when a view change in the virtually synchronous layer is in
process. In this paper, we assume that the virtually synchronous layer delivers messages
according causal precedence (and that this guarantee is preserved across different groups).

User layer

G () () () (0

Lwg.View.int T Lwg.Data.int T ng.Hold.imT

Lwg Interface

Lwg.Leave.req l ng.Join,reql leg.Send.req l Lwg.HoldOk.req

Hwg.View.int T Hwg.Data.int T Hwg.Hold.int T

Hwg Interface

Hwg.Leave.req l Hwg.Join.req

CONNCD

Figure 1: Light-Weight Group Service Interface

l Hwg.Send.req l Hwg.HoldOk.req

HWG Layer

The main goal of our design is to build a service that allows several user groups to
share the same virtually synchronous group in a transparent manner. Thus, the Light-
Weight Group Service should export the same interface as the virtual synchrony service,

as illustrated in Figure 1.

The behavior of the interface is described by the state machine illustrated in Figure 2.
When the interface is not active, it is in the Idle state. As a response to a Join.req, it
leaves this state to the Joining state where it remains until a view that contains the local

process is received. From then on, the interface is said to be in Running state, and can



accept Send.req requests as well as Data.int interrupts. When there is the need to install
a new view, the user is requested to temporarily stop sending new messages through the
Hold.int. The interface remains in the Holding state until the user acknowledges this
request through the HoldOk.req. The interface is then in the WaitView state, where
messages from the current view can be delivered but no new messages can be sent. When
a new view is received (View.int) the interface returns to the Running state. Finally,
if the application wants to leave the group it issues a Leave.req and the interface goes
to the Leaving state, where a view excluding the local process from the group is awaited

before returning to the Idle state.

Send.req
Data.int

Join.req

Send.req
Data.int

View.int

View.int

HoldOk.req

Data.int
Data.int

Leave.req View.int

Figure 2: VS Interface State Machine

It should be noted that the details of the actual interface of each of the target archi-
tectures may differ. In particular, the details of the interface for the case of the Horus

system will be presented in Section 5.

4.1.3 Storing Mappings

The implementation of the Light-Weight Group Service requires mappings between Lwas and
Hwasto be stored in a way that can be accessed by every process. Typically, when
Join.req is issued at some process, that process has to find out if the associated Lwga is
already mapped on to some Hwa . In this paper we assume that mappings are stored
in some external Name Service. The name service exports three primitives, as illustrated
in Figure 2, namely: ns.set, which establishes a mapping between a Lwa and a Hwa ;
ns.read, which returns the current mapping for a given Lwa; and ns.testset, which
returns the current mapping for a given Lwa or, if no such mapping exits, established a
new mapping to the Hwa specified. This last primitive is offered to minimize the number

of accesses to the name service.

Note that, for availability, the name service may be replicated. A possible implemen-

-~



Name Parameters Returns

ns.set Lwgld lwg, Hwgld hwg | none
ns.read Lwgld lwg Hwgld hwg

ns.testset | Lwgld lwg, Hwgld hwg | Hwgld hwg

Table 2: Name Service Interface Primitives

tation would replicate the name service at every process, making updates expensive but

read operations purely local.

4.2 Variables

The protocols use the following variables for each Lwa : 1wgId, the identifier of the LwaG ;
currentHwg, the identifier of the HWG on which the LwaG is currently mapped; nextHug,
the identifier of the HwG where the LwG is going to be mapped in the future (usually the
same as currentHwg, except when a switch is being executed); currentView, the current
group view of the LwG; joiningList, a list of processes that want to join the LwG ;
leavingList, a list of processes that want to leave the LwG ; state, the current state
of the protocol, which is one of the states showed in Figure 2; nacks, some protocols
require an acknowledgment to be collected from every group member (the number of
acknowledgments received is collected in this variable); doFlush, a boolean variable which
is set whenever a flush needs to be performed; coordinator, a boolean flag which is set

to true when the local process is the oldest member of the Lwa .

Additionally, for each HwG , the following variables are also used: hwgId, the iden-
tifier of the HWG; currentView, the current group view of the HWG; mappedLwgs, a
list of LwGs mapped on to this HWG ; nHold0k, the number of Hold0Ok.req acknowledg-
ments received. Sometimes, in order to flush the Hwca , the traflic must be stopped at all
mapped Lwcs, nHoldOk is used to keep track of how many Lwdas have acknowledged an

lwg.Hold.int.

4.3 The Flush Protocol

The core of the Light-Weight Group implementation is the flush protocol, which is re-
sponsible for installing a new view. The protocol is illustrated in Figure 3. The protocol

is initiated by the coordinator that multicasts a FLUSH message when the doFlush flag



when lwg.doFlush and lwg.coordinator and lwg.state = Running do
lwg.doFlush := FALSE; lwg.nacks := 0;
hwg.Send.req ( lwg.currentHwg, (FLUSH, Iwg.lwgld));

od

when (FLUSH, Iwgld) received do
lwg.Hold.int ( lwg.lwgld ); Iwg.state := Holding;
od

when Iwg. HoldOk.req ( Iwgid ) do

Iwg.state := Wait View;

hwg.Send.req ( lwg.currentHwg, (FLUSH_OK, lwg.lwgld) )
od

when (FLUSH_OK, lwgld) received do
Iwg.nacks := lwg.nacks + 1;
od

when nacks = # lwg.curentView and lwg.coordinator do
newView := lwg.currentView N lwg.joiningList - lwg.leavingList;
hwg.Send.req ( lwg.currentHwg, (VIEW, lwg.lwgld, Iwg.nextHwg, new View) )
od

when (VIEW, lwgld, nextHwg, newView) received do
if local process in newView then
Iwg.currentView := newView;
Iwg.joiningList := lwg.joiningList - new View;
lwg.leavingList := lwg.leavingList N new View;
Iwg.currentHwg := nextHwg;
if Iwg.coordinator then ns.set ( lwg.lwgld, Iwg.currentHwg ); fi
Iwg.state := Running;
else
lwg.state := Idle;
fi
lwg. View.int ( lwg.currentView );
od

Figure 3: Flush Protocol

is set (we will later show the scenarios that trigger this condition). When the FLUSH
is received, the application is requested to stop sending through the Hold.int interrupt.
When the correspondent HoldOk.req is received from the application, the Lwa member
acknowledges the FLUSH message with a FLUSH_OK. The protocol is terminated by the
coordinator that sends a VIEW message as soon as a FLUSH_OK is received from every
member. When the VIEW message is received, the traffic is resumed by delivering the
new view through the lwg.View.int interrupt. In addition to the new membership of the
group, the VIEW messages disseminates the identity of the Hwa that should be used dur-
ing the next view. Thus, the flush protocol is used both to change the group membership

and to execute the switch protocol.



4.4 The Create/Join Protocol

The create/join procedure consists of two main steps, as illustrated in Figure 4. In the
first step, a map is established between the LwG and some HwG . To minimize accesses to
the name service, the joining process proposes a mapping based on its own local Hwas,
according to the heuristic presented in Section 3. Then, in a single access to the name
service it commits this mapping or, in the case where the Lwa is already mapped to some
other HWG, obtains the existing mapping. Additionally, if the process is not a member

of the selected HWG , it joins the HwG before executing the second step.

when Iwg. Join.req ( Iwgld, processld ) do
// first step
Iwg.lwgld := lwgld; lwg.state := Idle;
lwg.currentHwg := proposeLocalMapping ();
lwg.currentHwg := ns.testset ( lwgld, lwg.currentHwg );
if local process not member of hwgld then
hwg.Join.req ( lwg.currentHwg );
wait hwg. View.int (lwg.currentHwg);
fi
localMap ( lwg.lwgid, lwg.currentHwg );
// second step
Iwg.state := Joining;
hwg.Send.req (lwg.currentHwg, (JOIN, lwg.lwgld, processld) );
od

when (JOIN, lwgld, processld) received do
lwg.joiningList := lwg.joiningList U processld;

Ilwg.doFlush := TRUE;
od

Figure 4: The Create/Join Protocol

The second step consists of sending a JOIN message to all members of the HwG .
When the JOIN message is received, the identifier of the joining process is added to the
joiningList and doFlush flag is activated. The coordinator of the Lwa will then trigger

a flush protocol which, in turn, will install a new view.

4.5 The Leave Protocol

The Leave procedure in Figure 5 is similar to the Joining protocol. The process simply
sends a LEAVE message to all members of the HwG. When the LEAVE message is
received, the identifier of the process is added to the leavingList and the doFlush flag
is activated. The coordinator of the LwaG will then trigger a flush protocol which, in turn,

will install a new view.
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when Iwg.Leave.req ( Iwgld, processld ) do

lwg.state := Leaving;

hwg.Send.req ( lwg.CurrentHwg, (LEAVE, lwgld, processld) );
od

when (LEAVE, lwgld, processld) received do
Iwg.leavingList := lwg.leavingList U processld;
Iwg.doFlush := TRUE; // will trigger flush
od

Figure 5: The Leave Protocol
4.6 The Message Passing Protocol

The principle of the message passing protocol is very simple. The Lwc service simply
encapsulates the LwG message in a dedicated (DATA, Iwgid, data) message which is mul-
ticast on the HwG . On the recipient side, when such message is received the lwgid part

is examined and the data part is forwarded to the specified Lwa .

A message multicast on a Hwa could be performed using two main approaches. In the
first approach, the message is multicast to all members of the HwWG and then each site that

is not a member of the concerned Lwa discards the message. This has two disadvantages:

e it makes the multicast more expensive, since more destination sites are used than

those strictly needed;

e it consumes resources to handle the received messages at those sites.

The other approach consists of using some form of selective address mechanism, that
allows to multicast a message in a HWG just to a subset of all the members of the Hwc .
An approach similar to this was used in the Delta-4 [11] and Isis lightweight group mech-

anisms [6].

4.7 The Switch Protocol

Although this paper is not concerned with describing the policies that trigger the switch
procedures, for self-containment, the switch protocol is briefly presented. Assume that
a given LwG , lwgld, needs to be switched from one HwG | hwgFrom, to another HWG ,
hwgTo. The switch protocol is initiated by some process member of 1lwgId. In order to
inform other members of 1lwgId of the start of the switching procedure, it multicasts a

(OPEN, lwgld, hwgTo) message on hwgFrom. When this message is received, all members

11



of 1wgId check if they are already members of hwgTo and, in case they are not, join this
group.

When a member of the Lwa detects that all members have joined hwgTo, it sets
the variable nextHwg and activates the doFlush flag. As in the previous cases, this will
trigger the execution of the flush protocol that will install a new view and commit the

new mapping. The switch protocol is presented in Figure 6.

when lwgld needs to be switched to hwgTo do
hwg.Send.req ( lwg.currentHwg, (OPEN, lwgld, hwgTo) );

when (OPEN, lwgld, hwgTo) received through hwgFrom do
if I am not member of hwglo then hwg.Join.req ( hwgTo ); fi
od
when lwg.currentView C hwgTo.currentView do
Iwg.nextHwg := hwg'To; lwg.doFlush := TRUE;
od
od

Figure 6: The Switch Protocol

4.8 The Failure Handling Protocol

The failure handling protocol is quite simple because all complexity is handled by the
virtually synchronous service. Whenever a failure is detected by a HwWG a Hold.int is
generated in order to stop the traffic flow. This interrupt must be multiplexed to all
LwaGs mapped on that HWG (see Figure 7). The Light-Weight Group Service waits for an
acknowledgment from every LwG and then acknowledges the Hold.int interrupt. Finally,
when a new view is installed in the HWG , the failed processes are removed from the views

of all mapped LwcGs.

4.9 Synchronization with the Name Server

When a switch occurs, the name service is informed of the new mapping such that further
joins are directed to the appropriate HWG . A problem of using an external name service
to keep information about the mapping between Lwasand Hwas, is that it is difficult
to guarantee that processes always read up-to-date information. To avoid expensive syn-
chronization procedures, we allow processes to read outdated information (for instance,
when a read to the name service is executed concurrently with the execution of the switch

protocol). To compensate for this, all members of a HWG keep information about the new

12



when hwg.Hold.int (hwg) do
forall lwg in hwg.mappedLwg
lwg.Hold.int (Iwg);
endfor
od

when Iwg. HoldOk.req (lwg) do
hwg.nHoldOk := hwg.nHoldOk +1;
if hwg.nHoldOk = # hwg.mappedLwg then
hwg.HoldOk.req (hwg.hwgld);
fi
od
when hwg. View.int (hwgld, newview) do
hwg.currentView := newview;
forall lwg in hwg.mappedLwg do
Iwg.currentView := lwg.current View N new View;
lwg.joiningList := lwg.joiningList N new View;
lwg.leavingList := lwg.leavingList N new View;
lwg. View.int (lwg.lwgld, lwg.curentView);
if local process oldest in lwg.currentView then
lwg.coordinator := TRUE;
fi
endfor
od

Figure 7: Failure Handling

mappings of previously mapped Lwas. This information is used like a forward-pointer,
to redirect a process that is using outdated mapping information. Forward-pointers are
discarded based on the passage of time. Thus, we assume that when a process gets a
mapping from the name service, this information is valid just for some reasonable period

of time (in some sense, it works as a lease[7]).

4.10 Interleaving of Protocols

The final protocols are slightly more complex than the ones presented in this paper due
to the possible interleaving of the failure handling protocol with the remaining protocols.

The complete protocols are not presented here due to lack of space.

5 An Implementation in Horus

5.1 Horus Overview

Horus is a group communication system which offers great flexibility in the properties

provided by protocols. It uses virtually synchronous protocols to support dynamic group

13



membership, message ordering, synchronization and failure handling.

In the Horus architecture, protocols are constructed dynamically by stacking small
microprotocols, which support a common interface. Each microprotocol offers a small
integral set of communication properties, and is implemented as a layer in Horus. Each

“ ”

layer has a set of entry points for downcall and upcall procedures denoted with the “.req

and “.int” suffixes respectively.

Horus provides a large set of microprotocols. The following are related to our design
of the Light-Weight Group Service. The COM layer provides the Horus interface over
other low-level communication interfaces (including IP, UDP, ATM, the x-kernel and a
network simulator). The NAK layer provides reliable FIFO unicast and multicast. The
FRAG layer implements fragmentation and reassembly of messages. The MBRSHIP layer
guarantees virtual synchrony. The CAUSAL and TOTAL layers offer causally and totally

ordered message delivery respectively.

5.2 Horus Virtual Synchrony Protocols

The MBRSHIP layer in Horus implements virtually synchronous membership and message
atomicity. During message transmission, members of the group are constantly collecting
stability information of all the messages they have sent or received. A message is stable
if it has been received by every member of the group. Virtual synchrony is ensured by a
flush protocol that is conceptually similar to that presented in this paper. However, the
implementation of the flush protocols in Horus, both in the MBRSHIP layer and in the
Lwd layer, uses a coordinator based approach to reduce the number of multicast messages

exchanged.

In the MBRSHIP layer, the oldest member in a view is designated as the coordinator.
During a membership change, the coordinator decides which members are correct and
should be included in the next view. It broadcasts a FLUSH message to the surviving
members, requesting them to stop sending messages and to ignore messages from incorrect
members. Upon receipt of a FLUSH, a member forwards to the coordinator its unstable
messages followed by a FLUSH_OK message (these messages are point-to-point). When
the coordinator has received a FLUSH_OK message from all correct processes in the current
view, it rebroadcasts those unstable messages. Upon receiving rebroadcast messages, the

members ignore those it has already delivered. The flush is completed after all the messages

14



have stabilized. At this point a new view may be installed.

In our implementation, the Lwa layer is put on top of the “MBRSHIP:FRAG:NAK:COM”
stack. The LwaG flush protocol is implemented in a coordinator based version where the
FLUSH_OK and VIEW messages carry the causal dependencies required to automatically

flush data messages.

5.3 Performance

We conducted the performance tests for LWG in Horus on a system of SUN Sparcl0 work-
stations running SunOS 4.1.3, connected by a loaded 10M bps Ethernet. The transport
protocol we used is UDP/IP with the Deering multicast extension. Each machine runs

only one process in our test.

We conducted three different types of tests to measure the impact of Lwa Service on:
(i) group membership operation, (ii) failure handling and (iii) data transfer. To evalu-
ate the effectiveness of the Lwa layer, the exactly same tests were run on the traditional
Hwas also. For the Lwa test, every group member has the stack “LWG:MBRSHIP:FRAG:-
NAK:COM” underneath it. Whereas for the HwG test, every member executes on top of
the stack “MBRSHIP:FRAG:NAK:COM?”. In the rest of the section, all the flush time
measurements are taken at the coordinator. When a member joins, the flush time is mea-
sured between a Join.req and a View.int. When a member fails or leaves the group, the
flush time is measured between the detection of the problem and the installation of a new

view.
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To evaluate the effect of LwGson membership operations, we measured the total
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flush time at the coordinator when another process joins, one by one, n groups with the
same membership. We measured the flush time between the time when the coordinator
receives the first Join.req and the last View.int. Figure 8 shows the flush time when
a process joins as the second and fourth member. In each graph, the flush time for
HwGscan be expressed as F'(n) = Fgwe X n, where Fpy is the amount of time
for each Hwc flush, and n is the total number of groups. The flush time for Lwascan
be expressed as G(n) = Fpwe + FLwe X 7 where Fyy is the amount of time for
each Lwda flush. When the process joins the first of the n Lwd groups, it has to join the
underlying Hwa first, as a result, the first join involves a HwaG flush and a Lwa flush.
From Figure 8 we can see that Flyywg > Fwe - The reason is described below.

One process crashes — leaving n groups.
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Figure 9: Recovery from crashes (comparative)

In the Horus implementation, the flush process is identical for both HwGsand Lwa .
In either case, the coordinator waits until it has collected FLUSH_OK messages from
all other members. After a flush is done, a new view is installed. In order to install a
view in a HWG , a member needs to install the same view in all the underlying layers:
MBRSHIP, FRAG, NAK and COM, only after it gets confirmation from all the layers,
can a HWG member deliver the View.int to its application. On the other hand, when a
LwG member installs a view, it can directly send its its application the View.int, since
the view of the HWG cannot change during a Lwé flush. The difference between Fpy
and Fy solely comes from the installation of the view in lower layers in HWG , so is the
difference between Fpyy and Iy (it is observed that these parameters are constant,

with Fjwe being 3 milliseconds higher than Ff . )-
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To evaluate the effect of Lwason failure recovery, we conducted two tests. In both

tests, there are n identical four-member groups.

Figure 9 shows the flush time when one process crashes. Since a failure is notified at
each of the n groups, each group starts its own flush. The total flush time for Hwas shows
a more than linear increase as n increases, whereas for LwGs, the total flush time increases

linearly with a very flat slop.

In the HWG test, there are n HwG flushes running in parallel, whereas in the Lwa test,
there are n Lwda flushes and one HwG flush running in parallel. If the processors in our
system have infinite processing power and the network has infinite bandwidth, the flush
time for both tests should be equal to the flush time for one HwG flush. But this is not

true in reality.

Total crash handling time for n LWGs
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Figure 10: Recovery from crashes (Lwa)

In order to offer timely failure detection and reliable FIFO communication, the NAK
layer in Horus has each group member multicast one “status” report background message
every 2 seconds. Every member therefore receives one “status” report every 2 seconds.
When there are n Hwason each process, a total of n/2 background messages need to be
handled every second. Experiments show that the network bandwidth is more than enough
to handle n/2 IP multicasts per second of small background messages even when n = 200.
The bottleneck is the receiver processing speed [8]. As n increases, the process is not
fast enough to handle all the incoming messages, therefore, it drops them from the input
buffer. The resulting requests for retransmissions and retransmissions themselves add even

more load to the system. This snowball effect causes the total time for n Hwa flushes
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increase dramatically. Another contributing factor to the total flush time is that since n
Hw flushes are in parallel, the coordinator process must handle (4—1)n = 3n FLUSH_OK

replies during short period of time, this becomes an implosion problem when n is large.

Leaving one group only.
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Figure 11: Group leaves

In the Lwa test, there is only one HwG for all the n Lwas. Every 2 seconds, each
process multicasts one “status” report message in the Hwa , therefore receives only one
“status” report. The background messages in this case has very limited effect on the
system load. Since there is only one HwG flush going on, the coordinator process only
needs to collect 3 FLUSH_OK replies. The linear increase in the total flush time as
depicted in Figure 10 comes from the fact that there is only one coordinator process

delivering FLUSH_OK events to n LwaG applications.

Figure 11 shows the flush time measured when a non-coordinator member leaves one
of the n groups. This invokes flush in one group only. For HwGs, F(n) = Fyjy and for
Lwas, G(n) = Flyg -

To evaluate the impact of LwG on data transfer, we measured one-way latency when
one member is multicasting 10-Byte messages in one of the n groups. Figure 12 shows
that up to n = 50, the one-way latency of the HWG test is slightly better than that of
the Lwa test, with the difference being 20 microseconds. After n = 50, The Lwg figure
stays constant at 1.25 milliseconds, while the HWG figure increases dramatically from 1.28

to 2.90 milliseconds as n increases from 50 to 200. This is because in the HWG test, there
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Figure 12: Data transfer

are n/2 background “status” report messages arriving at each process per second, whereas
in the LwG test, there is only one arriving report message every 2 seconds. The linearly
increasing number of report messages in the HwaG test contributes to the more than linear

increase in one-way latency.

6 Conclusions and Future Work

In this paper we have presented a technique that promotes resource sharing among user
groups that have the same or similar membership. This is achieved by executing, in a fully
transparent manner, a set of inexpensive protocols on top of a virtually synchronous layer.
An implementation of these protocols in the Horus system has shown that this approach
offers clear performance advantages. The experiments were done in a environment where
the mapping between light-weight groups and heavy-weight groups remains constant over
significant periods of operation. We are currently experimenting with switching heuristics
(that dynamically modify these mappings) to extend these results to less stable group

patterns.
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