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Abstract

A formal definition of strong virtual synchrony, capturing the semantics of virtual syn-
chrony as implemented in Horus, is presented. This definition has the nice property that
every message is delivered within the view in which it was sent. However, it is shown
that in order to implement strong virtual synchrony, the application program has to block
messages during view changes.

An alternative definition, called weak virtual synchrony, which can be implemented
without blocking messages, is then presented. This definition still guarantees that messages
will be delivered within the view in which they were sent, only that it uses a slightly weaker
notion of what the view in which a message was sent is. An implementation of weak
virtual synchrony that does not block messages during view changes is developed, and it is
shown how to use a system that provides weak virtual synchrony even when strong virtual
synchrony is actually needed.

To capture additional ordering requirements, the definition of ordered virtual synchrony
is presented. Finally, it is discussed how to extend the definitions in order to cope with the
fact that a process can become a member of more than one group.

*This work was supported by ARPA/ONR grant N00014-92-J-1866



1 Introduction

Virtual synchrony is a convenient paradigm for developing distributed applications in asyn-
chronous systems in which processes may crash, messages may get lost, and the communication
network may get partitioned, since it simulates a reliable delivery fail-stop model to the ap-
plication. That is, virtual synchrony creates an illusion to the application that it runs in
an environment in which crashed processes are always detected, and if a certain process is
suspected of being crashed, then this process has really crashed. This is done by presenting
processes with views, which consists of the set of currently reachable and operational processes.
The system then guarantees that between every two consecutive views v; and vy, no message
that was sent from a process not in vy can be delivered and that all processes that appear in
both »; and vy have to see the same set of messages.

In particular, the use of virtually synchronous communication systems greatly simplifies
the task of developing replicated services: It it possible to send a message to the entire set of
processes, and the system would ensure that all live replicas will receive a copy of the message.
Moreover, if one of the replicas would become faulty, other replicas will learn about it by
receiving a new view which does not include the crashed replica, and one of the live replicas
would take over the job of the crashed replica. Also, in the event of a network partition, each
partition will receive a view which includes only the processes that belong to that partition.
Later, when the communication links are fixed, a specific join request would allow the two
partitions to negotiate a new state. Finally, after the combined state of the two partitions has
been resolved, a new view which consists of all processes would be generated for all participating
processes.

During the course of years, several systems that support a virtually synchronous commu-
nication paradigm have been developed [1, 2, 3, 5, 25]. These systems usually perform quite
well in terms of average message latencies, but exhibit harsh slow downs during view changes,
making them impractical for applications that require timed response. In this paper, we re-
port a formal and practical study of the membership layer of Horus [24], i.e., the layer which
is responsible for implementing virtual synchrony, aimed at improving this situation. That is,
we would like to come up with a membership layer that will be very efficient in the normal
case, and will continue to perform well during view changes.

We start by presenting a formal definition of strong virtual synchrony, capturing the se-
mantics of virtual synchrony as it is implemented by Horus. This is the first time that a
formal definition of the membership layer of Horus is given. The definition of strong virtual
synchrony includes a requirement that a message is delivered only within the view in which it
was sent. The only other definition to include this requirement is the definition of extended
virtual synchrony, which is supported by the Transis project [1, 2] and the Totem project [3],
but is not supported by other definitions of virtual synchrony, including the definition used by

ISIS [5, 7).

We believe that this additional requirement is important for many applications, since it
allows for immediate local delivery of messages, without any further computations or book-



keeping. In other systems that do not have this guarantee [4, 5, 7, 9], local deliveries must
be delayed until the system can figure out in what view the message is supposed to be deliv-
ered. Also, the fact that messages are delivered within the view in which they were sent can
reduce the amount of information that needs to be sent with each message, and simplifies the
computation which is needed in order to handle each message. For example, the CAUSAL
and ORDER layers of Horus implements causal [15] and uniform [13, 20] delivery of messages
by using vector timestamps. The fact that the view of the sender when a message is sent is
identical to the views of the receivers when the message is delivered, allows the sender to send
only a local vector timestamp without any additional context information. The recipients of
the message can safely assume that the ¢th entry of the vector they received corresponds to
the ¢th member in their view.

The current implementation of the membership layer of Horus blocks messages during
view changes. In this paper, we show that this blocking is necessary in order to support strong
virtual synchrony. Specifically, we show a lower bound, stating that in every implementation
of strong virtual synchrony, there exists a time d such that messages cannot be sent at least
d units of time before a view change. Here, d is the message delay of the underlying system
(layers), including the network itself.

The lower bound that we show depends on the requirement that messages are always
delivered within the view in which they are sent. On the other hand, in other systems that do
not support this requirement, local deliveries must incur some delays and possibly additional
bookkeeping, while some applications become more complex due to the need to add more
context information to every message. The immediate question that comes up is if this is a
real trade-off, or can we enjoy the benefits of both worlds? In this paper we give a partial
answer to this question by presenting the definition of weak virtual synchrony, which allows for
immediate local deliveries, but does not require blocking messages during view changes and
adds only little additional header information to messages. According to the definition of weak
virtual synchrony, during view changes, processes are supplied with a temporary suggested
view. Processes can send messages in a suggested view, and are guaranteed that this message
will be delivered within the next real view, and that the next real view will be an ordered
subset of the suggested view. We explain below the usefulness of these guarantees in reducing
the context information that needs to be sent when compared with other definitions that allow
to continue sending messages during view changes.

We have developed a protocol that provides weak virtual synchrony and does not block
messages during view changes. In the actual implementation of this protocol in Horus, during
views and suggested views, processes receive a membership list and an indication which of
the processes that appear in the membership list have failed. However, due to the guarantees
of suggested views, the membership list which is passed to the application is only changed
in the first suggested view event after a real view event and in real view events. In other
suggested view events, the membership list remains the same, and only the indication about
which processes have failed may change. Hence, for most messages, the membership list is the
same both when they are sent and when they are received. The only two cases where this may



not hold are the following: (@) a message that was sent between a suggested view event and the
next view event, but was received after the view event, and (b) a message that was sent when
a view is installed, but is received after a following suggested view event. For these messages,
the application can maintain a translation table, between the ranks of the members in the old
list and their ranks in the current list. We have used this technique in order to extend many
existing layers of Horus to work with weak virtual synchrony, which turned out to be a very
simple task.

Of course, the same thing can be done with other definitions of virtual synchrony. However,
with weak virtual synchrony, the application needs to maintain at most two translation tables
at a time. In order to do the same with other definitions of virtual synchrony that allow to send
messages during view changes, the application may need to maintain an arbitrary large number
of translation tables simultaneously. And, of course, other definitions of virtual synchrony that
allow to send messages during view changes do not allow for immediate local deliveries.

We have compared the latency of messages sent during view changes in both the imple-
mentation of strong virtual synchrony and the implementation of weak virtual synchrony with
the latency of messages sent during normal operation. Our measurements indicate that mes-
sages sent during view changes in the weakly virtually synchronous implementation are slower
than regular messages only by a small constant factor that does not depend on the load of
the system. On the other hand, messages that were sent during view changes in the strongly
virtually synchronous implementation were significantly slower than those sent in the weakly
virtually synchronous implementation, and this gap becomes larger as the load on the system
increases.

Our definitions of weak and strong virtual synchrony do not impose any ordering restrictions
on messages sent within the same view. However, in many distributed applications, it is useful
to have at least some of the messages delivered either in a total order or in a causal order. To
capture these ordering requirements, we add the definition of ordered virtual synchrony and a
short discussion about how these requirements are implemented in Horus.

Finally, we discuss how to extend our definitions so they can cope with the fact that a
process may become a member of more than one group. We introduce the notion of failure
domains, which means that if a process becomes a suspect in one group, it must be declared
suspect in all the groups in which it is a member. We suggest a formal definition for failure
domains, although this definition is slightly weaker than the semantics provided by Horus in
the case that a process can be suspected of being faulty more than once.

The rest of this paper is organized as follows: Related work is discussed in Section 2. We
present the formal model in Section 3. The definition of strong virtual synchrony and the
lower bound on its implementations is presented in Section 4. The definition of weak virtual
synchrony is presented in Section 5 while the protocol for implementing weak virtual synchrony
together with the latency measurements are given in Section 6. In Section 7 we present the
definition of ordered virtual synchrony. Multiple groups and failure domains are discussed in
Section 8 and we conclude with a discussion in Section 9.



2 Related Work

The notion of virtual synchrony was first introduced by Ken Birman in the ISIS project [5, 8, 7].
However, this definition of virtual synchrony in ISIS is somewhat different than our definitions,
as it does not provide any guarantee on the view in which a message will be delivered. Also,
the definition of virtual synchrony in ISIS requires the existence of a primary partition. Having
a primary partition is important for applications in order to acquire locks, or to perform any
kind of operations which require coherent behavior, e.g., directing an airplane to a certain area
in the sky. Our definitions allow keeping track of a primary partition, given some reasonable
rules for deciding if a certain partition is primary or not. An example of such a rule can be
the majority of processes within a fixed group of processes. On the other hand, our definition
does not require to have only one primary partition at all times, so applications that can safely
make progress even in the absence of a primary partition, will be allowed do so. As in our
definitions, virtual synchrony in ISIS does not require uniformity [20, 13] of regular messages
(also called safe delivery in [3]), i.e., that if a message is received by any process, faulty or
non-faulty, then every non-faulty process must receive it too. The decision not to support
uniformity of messages is motivated by the high cost associated with providing this guarantee.
However, in Horus, uniformity of messages can be added by using the ORDER layer [24].

Throughout the years, several other definitions of virtual synchrony were introduced, at
different levels of formality, and several algorithms for implementing them were also developed.
These works include projects like Transis [1, 2], Totem [3], Relacs [4], and Newtop [12], as well
as several other papers like [9, 10, 23]. ' Some of these works, e.g., [1, 2, 3, 10, 23], include a
variant of virtual synchrony which requires uniformity of messages, but others, e.g., [4, 9, 12],
do not. The only other definition that include the requirement that a message is always
delivered within the view in which it was sent is the definition of extended virtual synchrony
which is supported by Transis [1, 2] and Totem [3]. However, except for the Relacs protocol [4],
and the Newtop protocol [12], all of the protocols for providing virtual synchrony developed in
these works stop sending messages during the installation of new views, sometimes called the
reformation phase. This blocking of messages might be inherent in the protocols themselves,
but is not required by the semantics that these protocols provide. (We want to make clear that
there is a difference between what the protocol does internally, and what the semantics that
this protocols presents to the application is. In particular, it is possible that if some of these
protocols would have added a flush event to notify the application that a configuration change
is taking place, the resulting semantics would have been similar to strong virtual synchrony.
However, the fact is that these protocols do not inform the application when they block its
messages, so the application cannot take advantage of this.)

The definition of extended virtual synchrony [3] includes the notion of transitional view,
which must be delivered before a real view can be installed. The difference between a suggested
view and a transitional view is that a suggested view is a superset of the next real view, and

!The work of Chang and Maxemchuk [10] does not use the term virtual synchrony, but defines a very similar
semantics.



is used to allow processes to continue sending messages during view changes. In contrast, a
transitional view consists of the processes that appear in the intersection of the previous and
next real views, and is used to notify the application that all messages sent in the previous
real view are now stable w.r.t. to all the processes that appeared in that view.

One major difference between Horus and most other systems which provide virtual syn-
chrony is that Horus is a layered system, in which different concerns are decoupled, and each
concern is implemented in a different layer. The definitions of strong and weak virtual syn-
chrony developed in this paper follow this guideline. Hence, issues like uniformity (safe deliv-
ery), causal ordering, and atomic delivery of messages are not part of these definitions, and are
not implemented in the membership layer of Horus. However, there are separate layers which
can add any of these requirements to the overall semantics, in order to support applications
that need a stronger semantics.

We do not claim that virtual synchrony is necessary for all types of applications. For
instance, applications which are very asynchronous may prefer a model in which a message that
was sent to a crashed process will be delivered to this process when it is re-booted. Examples
of systems that provide such a model include GTS [17], the ISIS wide-area facility [18], and
the Long-Term layer of Horus. (In fact, the Long-Term layer of Horus runs on top of the
membership layer, and uses the regular membership layer to propagate messages to the set of
currently active processors.)

The Psync protocol [21] provides causal delivery of messages among a fixed set of pro-
cesses. Psync does not support additional properties like total ordering or dynamic member-

ship changes, but provides hooks that enable higher level applications to do so, as done in
Consul [19].

Other related work is transaction-based technology, for example, such as used in the Harp
file system [16]. However, because these systems use only totally ordered transactions, their
performance is much worse than what can be achieved with Horus, and there are many appli-
cations, e.g., replicated servers and mission control systems, that do not need the semantics of
atomic transactions. A more detailed discussion of these issues appears in [6, 14, 26].

Since the membership layer of Horus is implemented on top of layers which do not provide
virtual synchrony, any potential application of Horus can also be developed directly with point-
to-point communication. However, we believe that, in general, developing a reliable distributed
application on top of a virtually synchronous system like Horus is simpler than without such
a layer. This is because virtual synchrony shields the programmer from many of the bad
scenarios that can otherwise happen in a distributed environment, resulting in fewer lines of
code, simpler code, and a higher degree of confidence in the correctness of the implementation.

In a recent paper, Ricciardi and Birman have formalized the notion of group membership
using temporal logic in [22]. However, this definition deals only with view changes, and does
not refer to other messages and their ordering.
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Figure 1: System illustration
3 The Model

We assume a finite (possibly unbounded) set of nodes 5, connected via some interconnection
network. FEach node in S consists of the following components: an application program, a
membership service, a failure detector, and a crash generator. The membership service is an
automaton, that accepts events either from the network or from the other components of the
same node, do some local computation, and generates zero or more events to the network and
the other components of the same node. (See illustration in Figure 1.) The membership service
can accept send events from the application program, suspect events from the failure detector,
crash events from the crash generator, and net_receive and join events from the network; the
membership service may generate receive and view events for the application program, and
net_send events for the network. In the rest of this paper, when we say process we refer to the
membership service.

A history h;, is a sequence of events that occur in a process p;, in the order of their
occurrence:

view: a view event ev includes an ordered list of processes, denoted by ev.view, and a view
id number, denoted by ev.vid.

send: a send event ev includes a message, denoted by ev.msg, a list of processes to whom the
message should be sent, denoted by ewv.target, the id of the process in which the event
occurs, denoted by ev.pid, and a view id number, denoted by ev.vid.



receive: a receive event ev includes a message, denoted by ev.msg, and an id number of the
process that sent the message, denoted by ev.pid.

join: a join event ewv includes a process id, denoted by ev.pid.
suspect: a suspect event ev includes a list of processes, denoted by ev.suspects.
crash: a crash event has no parameters.

net_send: a net_send event ev includes a message to be sent, denoted by ev.msg, and a list
of processes to whom the message should be sent, denoted by ev.target.

net_receive: a net_receive event ev includes a message, denoted by ev.msg.

We assume also that messages are unique, i.e., for every two send events ev and ev’, ev.msg #
ev’.msg and if ev appears in some history h;, then ev does not appear in any other history h;,
j # 1. (This can be implemented by timestamping the messages.) Note that since a receive
event and a view event are not characterized by the process in which they occurred, the same
receive or view events may occur in several histories.

Given a sequence of events h and two events ev and ev’ in h, we denote the fact that ev

h
appears in h before ev’ by ev — ev’. Similarly, given an ordered list of processes v and two

processes p; and p; in v, we denote the fact that p; appears in v before p; by p; . p;-

We say that a process history h; is admissible if the following holds:

1. If h; includes a crash event ev, then ev is the last event in h;.

. . . hi
2. For every send event ev in h;, there exists a view event ev’ such that ev’ — ev,

ev'.wid = ev.vid, ev.target C ev'.view, and there does not exist another view event ev”
;B n hi
such that ev’ — ev” — ew.

An ezecution is a collection of process histories, one for each process. We say that an
execution o is admissible if every history h; of p; in ¢ is admissible and for every net_receive
event ev in every history h; in o, there exists a net_send event ev’ in h., ;g such that ev.msg =
ev’.msg and p; € ev'.target. From now on, we assume that all executions are admissible.

We assume in this paper that the system is asynchronous. That is, different processes may
run at a different rate, and the delay of messages is unknown, and may vary from one message
to another. For reasons of time analysis, we assume that each event ev in every history h; is
associated with some real time Rp,(ev). We define Ry, (ev) to be L if ev is not included in
h;. We emphasize that a process may not know the real time associated with the events in its
history. Given a send event ev in some history &; of an execution o, and a receive event ev’ in
a history h; of o such that ev.msg = ev’.msg, we define d;(ev.msg) = Ry, (ev') — Ry, (ev); we
define d(ev.msg), the delay of the message, to be the maximum of d;(ev.msg) over all js for



which ev’ is included in h;, and to be oo if ev’ does not exist in any history of o. We assume
that for every send event ev, d;(ev.msg) > 0.

A protocol or an algorithm is any description of the transition function of the membership
service, i.e., any description of the local computations and events that should be generated by
the membership service whenever it accepts an event.

Note, that we do not explicitly model the failure detector, the application program, or
the communication network. However, the behavior of these elements must conform with
the other requirements of the system. In particular, the network may not generate spurious
messages, and may not duplicate messages. However, whether the actual network has these
characteristics, or in fact the network is totally unreliable, but there is a layer which sits
between the “real” network and the interface to the membership service in order to provide
these guarantees, is none of our concern in this paper. This matches the approach of Horus,
in which each layer implements only its own functionality, and does not care which layers are
placed below and how they are implemented, as long as these lower layers provide the right
semantics.

Note also that Figure 1 illustrate the system architecture as it appears in a single node.
This is why the events of the crash generator are sent to the membership service and not to the
failure detector. That is, a crash event generated by the crash generator only causes the local
membership service to crash by halting. (In particular, crashes do not cause the membership
service to generate spurious messages).

4 Strong Virtual Synchrony

In this section, we define the notion of strong virtual synchrony formally, capturing the original
semantics provided by the membership layer of Horus. We then show that these semantics
impose long delays on messages that are about to be sent just before a view change.

The definition of strong virtual synchrony is divided into two parts. In the first part, we
define the requirements from views, while the second part includes the requirements about the
ordering of messages w.r.t. these views. However, before we can introduce these definitions,
we need the following notion of consecutive view events in a history. Formally, we say that two

hs
view events ev’ and ev” are consecutive view events in a history h; if ev’ — ev” and there

. . . h; h;
does not exists another view event ev’ such that h; if ev! — ev'" — ev”.

An intuitive explanation of the following definition is given in the text below it.

Definition 4.1 (Strong View Admissibility) An ezecution o is strongly view admissible

if the following holds:

1. For every history h; in o and every view event ev in h;, p; is included in ev.



. . ki . .
2. If ev and ev' are two view events in h; such that ev — ev’, then ev.vid < ev'.vid.

3. If some history h; includes a crash event ev and there exists another history h;, j # t,
that includes a view event ev' such that p; € ev'.view, then there exists another event
hi . . . .
ev' in h; such that ev’ — ev” and either ev” is a view event and p; ¢ ev" . view or ev”
is a crash event.

4. If some history h; includes a join event ev and does not include a crash event, then h;

. hi . . .
includes another event ev' such that ev — ev' and either ev' is a view event such that
ev.pid € ev'.view or ev’ is a suspect event and ev.pid € ev'.suspects.

5. For every view event ev that appears in a history h; and every process p; such that
p; € ev.view, if ev is the last view event in h; and h; does not include a crash event, or
if ev' is a consecutive view event in h; and p; € ev.view N ev’.view, then h; includes ev.

6. For every two consecutive view events ev and ev' in a history h; and every process p;, if
p; € ev.view \ ev’'.view, then there exists a history hy that includes a suspect event ev”

by . . .
such that p; € ev”.suspects, ev — ev” and there is no view or crash event ordered in
hi between ev and ev”.

The first condition in the definition of strong view admissibility requires that every process
will be included in all of its local views. The second condition requires that the vid field of
view events will reflect their relative order within a history. The third condition requires that
every process that crashes will eventually be removed from the views of all processes (if it
appeared there). The fourth condition requires that if a process wishes to join a view, it will
either be added eventually, or declared suspect. The fifth condition requires that if process p;
appears in two consecutive views of another process p;, denote the first one of these views by
V, then p; must have seen view V as well. The sixth condition requires that a process can
only be removed from a view if it was suspected of being faulty by a member of that view.
(Note that in this case, h is not necessarily the same as h; and therefore, ev and ev’ need not
be consecutive view events in hy.)

Before we can define strong virtual synchrony, we introduce the notion of the view event
which generates the view in which a message is sent. Given a send event ev and a view event
ev’, we say that ev’ generates the view in which ev.msg is sent if ev.vid = ev’.vid.

An intuitive explanation of the definition below, appears in the text that follows.

Definition 4.2 (Strong Virtual Synchrony) An ezecution o is strongly virtually syn-
chronous if the following holds:

1. o is strongly view admissible.



2. For every history h; in o and every receive event ev in h;, if ev' is the view event that
h; . . .
generates the view in which ev.msg is sent, then ev’ — ev, and if there exists a view
hs
event ev” in h; such that ev”.vid > ev'.vid, then ev — ev”.
3. Let ev be a send event, ev' the view event in which ev.msg was generated, and p; a process
such that p; € ev.target, then if ev' is the last view event in both h; and he, iq and neither

hi nor hey piq includes a crash event, or if ev” is a consecutive view event in both h; and
hey.pid, then there exists a receive event ev™ in h; such that ev.msg = ev”.msg.

4. Let ev be a send event, ev' the corresponding receive event, ev” the view event in which
ev.msq is generated, and h; a history that includes both ev’ and ev”. Then the following

. . . . hi .
holds: (a) If ev" is a consecutive view event in h;, and ev’ — ev"', then every history
!
h;,

view event in h; and there are no crash events in h;, then every history h;, in which ev”

in which ev” and ev" are consecutive view events, includes ev’. (b) If ev” is the last

is the last view event in h; and h; does not include a crash event, includes ev'.

5. For every history h; and two send events ev and ev’' such that for some history h;,

h
ev —» ev', the view in which ev.msg and ev'.msg are generated is the same, and
p; € ev.targetNev’ .target, if h; includes the receive event that corresponds to ev’, denoted
by ev', then h; includes the receive event that corresponds to ev, denoted by ev”, and

hs
6,0// ., 6’0///.

By the first condition in the definition of strong virtual synchrony, a strongly virtually syn-
chronous execution must also be a strongly view admissible execution. The second condition
requires that every message must be delivered within the view in which it was sent. The third
condition requires that every message sent by a process that remains in the view of other
processes, is delivered by these processes. This requirements guarantees reliable delivery of
messages. The fourth condition requires that all “surviving” members of a view agree on the
set of messages delivered within this view. The fifth condition requires that between two con-
secutive view events, Horus simulates a no-omission failures model among messages sent to the
same destinations, and that these messages are delivered in fifo order.

A protocol P implements strong virtual synchrony if every execution generated by it is
strongly virtually synchronous. For the rest of this paper, we use SVS as shorthand for strong
virtual synchrony.

Note that the vid field is used in the definitions of admissible executions, view admissibil-
ity, and virtual synchrony only for bookkeeping and these definitions could have been written
without it. However, without the vid field these definitions would have been more complex
and formal reasoning about them would have been even more difficult. Also, currently there
is no starting event in the definition of admissible executions. This may contradict the intu-
itive thought that an application program needs to do something active in order to become a
member of a group. To overcome this concern, we can introduce a new event, start, that the

10



membership service may accept from the application program, and require that this event will
be the first event in every admissible history. We have decided not to add this event to the
formal definition of admissible executions presented in this paper, since it is not required for
any of the other results presented in this paper. On the other hand, we believe that the current
definitions allow to develop self stabilizing protocols [11], and by adding a starting event we
would have prohibited such protocols.

The following lemma shows that in every implementation of strong virtual synchrony,
processes have to stop sending messages at least d time before a new view is installed, where
d is the delay of the underlying layers (including the delay of the network itself).

Lemma 4.1 (Lower Bound for SVS) In every SVS implementation, no send event can be
generated by a process p; at least d time before a view event is generated by any process that
appears in the target field of this send event.

Proof: Assume, by way of contradiction, that there exists an SVS implementation £ in which
a send event can be generated d’ < d time before a view event. Consider the following execution
o of £ that includes two processes pg and p; that send a message to every process in their view
at least every d’ < d time. We assume that there exist two consecutive view events ev and ev’
in hg and hq; ev occurs at real time #g in kg and at real time #; in hq; ev’ occurs at real time
ty in hg and at real time ¢} in hy. In particular, this means that both py and p; are included
in ev.view and ev’.view. We assume also that ¢],1{, > to + d' and #{,t;, > t; + d'.

Assume, without loss of generality, that t; > #). Hence, during the time interval [t}, — d’, (],
there is a send event ev” by p; such that ev”.vid < ev.vid and py € ev”.target. Due to the
message delay, the corresponding receive event occurs in pg after time #{,. Hence, ev” is ordered
after ev’, although ev’.vid > ev”.vid. A contradiction to the assumption that £ is an SVS
implementation. [ |

5 Weak Virtual Synchrony

In order to define weak virtual synchrony, we introduce a new type of event called suggested
view. A suggested view event ev includes a view id number, denoted by ev.vid, and an ordered
list of processes, denoted by ev.sview.

A process history h; is weakly admissible if the following holds:

a. If h; includes a crash event ev, then ev is the last event in h;.

. . . ki
b. For every send event ev in h;, there exists a suggested view event ev’ such that ev’ — e,

ev'.vid = ev.vid, ev.target C ev’.view, and there does not exist a suggested view event
h; h;
ev” such that ev) — ev” — ew.

11



An execution o is weakly admissible if every history in ¢ is weakly admissible and for every
receive event ev in every history h; in o, there exists a send event ev’ in h.y g such that
ev.msg = ev'.msqg and p; € ev'.target.

Definition 5.1 (Weak View Admissibility) An ezecution o is weakly view admissible if it
is weakly admissible and the following holds:

a. o obeys all the conditions in the definition of a strong view admissibility.

b. In every history there exists at least one suggested view event before the first view event
and between every two consecutive view events.

. h;
c. For every history h; and every two events ev and ev’ such that ev — ev’ and each
of ev and ev' is either a view event or a suggested view event, ev.vid < ev'.vid. In
particular, if ev' is a suggested view event, then ev.vid < ev'.vid.

d. For every suggested view event ev and every view or suggested view event ev’ such that
ki . . hi ki
ev — ev' and there does not exist another view event ev” such that ev — ev” —»
i i i i X ev' wiew
ev', ev'.wiew C ev.view and ev.vid < ev'.vid. Moreover, if a process p; — py, then

ev.view

p; — Dk

By requirement (d) in Definition 5.1, every view or suggested view, except for the first suggested
view after a view event, must be an ordered subset of the previous suggested view. In particular,
this means that new processes can only join in the first suggested view that follows a view
event; other suggested view events, and the view event itself, can only eliminate processes from
previously suggested views.

We now slightly modify the definition of the view event that generates the view in which

a message is sent, and introduce the notion of the suggested view which proposes a view to

a process. Let h; be some history, ev a send event in h;, ev’ a view event, and ev” the first
hi . .

suggested view event such that ev” — ev’ and there does not exist another view event ev”

hi

" — ev'. If ev" .wid < ev.vid < ev’.vid, then we say that ev’ generates

hs
such that ev” — ev
the view in which ev.msg is sent, while ev” proposes to p; the view in which ev.msg is sent.
Note that by this definition, a message can be sent before the event that generates the view in
which it is sent.

Definition 5.2 (Weak Virtual Synchrony) An execution o is weakly virtually synchronous

if the following holds:

a. o is weakly view admissible.

12



b. For every history h; in o and every receive event ev in h;, if ev' is the suggested

. . . . . h
view event that proposes 10 pey pid the view in which ev.msg is sent, then ev’ — ev.
Moreover, if ev” is the view event that generates the view in which ev.msg is sent and

!

7 "o "o, hi "
in h; such that ev' . vid > ev".vid, then ev — ev'.

there exists a view event ev'

c. o obeys Conditions 3, 4, and 5 in the definition of a strong virtual synchrony.

Note that by requirement (b) in Definition 5.2, the suggested view event that proposes the
view in which a message was sent must be seen by all the processes that receive this message.
For example, consider histories h; and h; that appear in Figure 2. In this example, v, proposes
to p; the view in which m is sent, while v3 generates the view in which m is sent. p;, which
receive m, must see vy before the receive event of m. Moreover, the receive event of m can be
ordered either before or after v4, but must be ordered before vs.

A protocol P implements weak virtual synchrony if every execution generated by it is
weakly virtually synchronous. For the rest of this paper, we use WVS as shorthand for weak
virtual synchrony.

The lower bound shown in Lemma 4.1 is valid for weak virtual synchrony as well. However,
in this case, there is no need to stop sending messages when the view change protocol is being
run. Instead, whenever there is a problem, a suggested view which is a composition of the
old view and every process that wishes to join can be introduced to the processes in it. A
process that receives a suggested view can send his messages in this suggested view, knowing
that some members of the suggested view can be later removed from this view. Finally, when
all the messages that were sent in the old view are delivered to all live processes and all the
processes that are suspected of being faulty were identified, the “real” new view is introduced
to the processes that remains in the “real” view.

6 Implementing WVS

In this section we describe the details of a possible implementation of weak virtual synchrony.
Our implementation makes the following assumptions:

1. The underlying environment provides reliable (best effort) FIFO communication. That
is, if a process p; sends a message to another process p;, then the underlying system will
do its best to deliver the message, until either p; receives that message, or p; decides to
remove p; from its view. Also, every two messages that were sent by the same process
to the same process are delivered in the order they were sent.

2. If a process p; stops receiving messages of another process p;, either because p; really
crashes, because the communication links become too lossy, or because p; has eliminated
p; from it’s view, then the failure detector of p; will eventually generate a suspect event
that includes p;.

13
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suggested view vy

recv m
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hi h

Figure 2: A weakly virtually synchronous execution
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3. If a message becomes stable, i.e., received by every live member of the view, then every
live process in the view will eventually learn about it. (We say that a view is stable if all
live processes in that view have received it.)

4. Fach message is broadcast to all live processes in the suggested view of its invoking
process (at the time the message is invoked).

Assumptions 1 and 2 are supported by the NAK layer of Horus, while Assumption 3 is sup-
ported by the STABLE layer of Horus. Assumption 4 is a restriction on the layers which run
on top of the WVS layer.

Basically, the algorithm goes as follows: Every process initially constructs a view that
consists only of itself, and declares itself the contact for that view. Whenever a contact of a
view which is already stable learns about another reachable contact with a smaller address, it
sends the smaller contact a join request, which includes its view. Note that if the view is not
stable, it is not safe to try to join another group; otherwise, some members of the current view
may receive the next suggested view before receiving the current view.

A contact that receives a join request, or suspects that a member of its view has failed,
and that is not already busy with a view change, starts a view change. This is done by adding
to the current view every process that wishes to join (only if this is the first suggested view
after a view), and by deleting all processes that are presumed to be faulty. The initiator of a
view change also eliminates from the suggested view processes that wish to join, but appear in
the current view. This is done to satisfy Condition 5 in the definition of SVS, which must be
satisfied by the definition of WVS too: These processes thought that they were separated from
the rest of the view and may have refused to receive some of the messages that were received by
the rest of the view. Hence, we must eliminate them before allowing them to rejoin. Similarly,
whenever a contact has two pending join requests whose views intersect, the contact ignores
one of them.

If a process learns about a new suggested view, it adopts this suggested view, and sends all
unstable messages from faulty processes to the initiator of the view change. This process then
schedules a flushed message to be sent to the new contact immediately after all the messages
it has sent in the previous view become stable. Also, if this process was the contact of the
previous view, it stops acting as a contact.

If all flushed messages arrive, the initiator of the suggested view adopts the suggested view
as the new view and sends all unstable messages that it knows of followed by the new view to
all other processes in this view. On the other hand, if before receiving all flushed messages,
the initiator of a suggested view receives an indication that a member of this suggested view
has failed, then a new suggested view that does not include this faulty member has to be
initiated, as described before.

A non-contact process that receives a new view, adopts it. On the other hand, a non-
contact process that thinks that all lower ranked processes in its view are faulty, declares itself
a contact and initiates a new view change without the processes that it thinks are faulty.
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However, before it sends the newly suggested view to other processes, it must send all unstable
messages of the previous contact, so if one of these messages was a view or a suggested view,
it will be delivered everywhere before the newly suggested view.

6.1 Pseudocode

Each process maintains its own copy of the following variables:

view_state Indicates the state at which the view is. The possible values for view_state
are running and reforming.

suspects The list of processes which are suspected of being faulty.

faulty The list of processes that were declared faulty.

joiners The list of pending join requests.

suggested_view The list of processes that appear in the suggested view.

view The list of processes that appear in the view.

contact The id of the contact of the view.

contacting Holds the id of a process it is trying to contact in order to
join its group.

svid The suggested view identifier, consists of a sequence number and process id.

vid The view identifier, consists of a sequence number and process id.

Sflush_cnt Counts how many flushed messages were received for the

current suggested view.

Note that svid and vid can be compared lexicographically, to determine if a certain (suggested)
view is “older” or “newer” than another (suggested) view.

When sending and receiving messages, processes use a temporary variable msg, which is a
structure that consists of the following fields: type — sview, flushed, join, view, and cast;
svid — the value of svid when it was sent; vid — the value of vid when it was sent; contact
— the contact of the view; sview — the value of suggested_view when it was sent; view — the
value of view when it was sent; faulty — the value of faulty when it was sent. We also make a
distinction between the process the initiates a message, and a process that sends the message,
since unstable messages can be retransmitted. Processes are not willing to accept messages
that are sent from failed members. However, in order to guarantee virtual synchrony, they
accept messages that were originated by a faulty member and retransmitted by a live member.

In the code of the algorithm, we denote by - the concatenation of several lists. That is, -
preserves the order among members of the original lists and has the property that if one
member of list A appears in the concatenation before a member of list B, then all the members
of list A will appear in the concatenation before all members of list B.

Although most of the code is given as in an event driven form, there are two proce-
dures, init_view_change and create_new_view. These procedures are presented in Fig-
ure 3: init_view_change is responsible for generating a new suggested view and distributing
it among the members of that suggested view; create_new_view is responsible for adopting a
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suggested view as the next (real) view, and distributing this information among the members
of this view. The code for handling net_receive events (messages that are received from the
network) is given in Figure 4. In Figure 4 we assume that p; is the process that sent the
message. Finally, the code for handling other events is given in Figure 5.

6.2 Performance Measurements

In this section we compare the latency of messages sent during view change using both the SVS
protocol that is used by Horus and the WVS protocol described in this paper, under various
background loads. These measurements were taken on 4 Sparc-20s, connected by a 10 Mbps
Ethernet. In order to create the background load, each machine broadcast a message to all
other machines in fixed intervals of time. The load on the system is increased by shortening
this interval, and is decreased by lengthening this interval. The latency measurements were
taken by timestamping each message at each of the layers in Horus, on its way to the Ethernet,
and, by using a special device driver, immediately before going out to the Ethernet. At the
receiver side, messages were timestamped by our device driver immediately when they were
received from the Ethernet, and then at each layer. Using these timestamps, we were able
to collect accurate measurements of the one-way latency from the application to the network,
denoted by 41, and the one-way latency from the network to the application, denoted by é5. If
we assume that the time that messages of the same size spend on the wire is the same, then
by adding é; and 4,5, we get a good estimate of the behavior of the real latency.

Since we are running on real systems, there is always the problem of operating system’s
interference with the measurements. Luckily, all the measurements that we got were either
within a factor of three of the average, or at least two order of magnitudes higher than the
average. This allowed us to identify measurements which were probably the result of operating
systems’ related issues, e.g., context switches, and to discard these measurements from the
latency graphs.

The results of our measurements appear in Figure 6. As can be seen, the latency of
messages sent during view changes in the WVS implementation is higher than the latency of
messages sent during normal operation by only a small constant which does not depend on the
background load. We explain this difference by the extra overhead associated with handling
a suggested view event. On the other hand, messages sent during view changes in the SVS
implementation were significantly slower than those sent in the WVS implementation, and the
gap between the two implementations increases with the background load.

Also, the results reported in Figure 6 were obtained under fairly simple failure modes, that
could have been generated in a systematic manner. Since under more complex failure scenarios
it may take much longer to recalculate the new view, we anticipate that in these failure modes
the difference between SVS and WVS is even more significant.
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procedure init_view_change

faulty := faulty U suspects
suspects := nil
if view_state = running then

suggested_view := suggested_view - {ev.view | ev € joiners}
endif
if contact # me then

rebroadcast all unstable messages of contact to every member

in suggested_view \ faulty
endif
contact := me
msg.type := sview
msg.sview := suggested_view
msg.contact := contact
msg.faulty := faulty
msg.svid := svid := ( max(svid,{ev.svid | ev € joiners}) + 1, me )
generate a suggested view event with suggested_view and faulty
broadcast msg to every process in suggested_view \ faulty
flush_ent := 0
view_state := reforming
endproc

procedure create_new_view
view := suggested_view := suggested_view \ faulty
oldvid := vid ; vid := svid
faulty := nil
msg.type := view
msg.view := view
msg.vid := vid
view_state := running
generate a view event with view
rebroadcast all unstable messages from previous view that I know
of to every process in view
broadcast msg to every process in view
if joiners is not empty then call init_view_change endif
endproc

Figure 3: The WVS protocol — procedures

18



if msg.type = sview and msg.svid > svid and contacting = L then
if vid # svid or msg.sview and msg.faulty do not form an ordered subset of
suggested_view and faulty then
quit
endif
send every unstable message that was originated by a faulty process to p;
view_state := reforming
suggested_view := msg.sview
svid := msg.svid ; contact := msg.contact
faulty := msg.faulty ; suspects := suspects \ faulty
msg.type : = flushed ; msg.svid : = svid
schedule to send msg to p; immediately after all my messages send in the previous
view become stable
generate a suggested view event with suggested_view and faulty
elseif msg.type = flushed and msg.svid = svid and view_state = reforming then
flush_cnt := flush_cnt + 1
if every process in the suggested view returned a flushed message then
call create_new_view
endif
elseif msg.type = join and contact and contacting = L and msg.view does not overlap
with the view of other join requests in joiners then
if msg.view N suggested_view # () then
add every process in msg.view N suggested_view to suspects
call init_view_change and quit

endif
ev.view := msg.view ; ev.svid := msg.svid
ev.pid := p;

joiners 1= joiners U ev
if view_state = running then call init_view_change endif
elseif msg.type = view and msg.vid = svid and msg.view = suggested_view \ faulty then
view := suggested_view := msg.view
oldvid := vid ; vid := msg.vid
faulty := suspects := nil
generate a view event with view
elseif msg.type = cast and msg.svid > oldvid and p; € suggested_view and
p; € faulty U suspects then
generate a receive event with msg
endif

Figure 4: The WVS protocol — handling messages (sent by p;)
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Whenever the failure detector indicate that process p; is faulty do:
if contact then

if contacting = p; then contacting := L
else

add p; to suspects

if contacting = 1 then call init_view_change endif
endif

elseif all process that appear before me in suggested_view seem to be faulty then
add them to suspects and call init_view_change

else
add p; to suspects and inform the failure detector of the lowest ranked
live process in suggested_view about p;
endif
enddo

if contact and contacting = | and view_state = running and

the last view is stable and p; is a smaller but reachable contact then
contacting := p;

msg.type := join

msg.view := view

send msg to p;
endif

Whenever the application generates a send event with message m do:
msg.svid := svid
msg.msg := m.msg
msg.type := cast

broadcast msg to every process in suggested_view \ faulty
enddo

Figure 5: The WVS protocol — handling local events

20



Maximum Latency Average Latency
T T T

45 T T T T T T T T 40
X
40+ | + normal - 350 + normal X|
o WVS * o WVS
35 | X SVS 1 X 8SVS

30

| | | | | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
load (msgs/sec) load (msgs/sec)

Figure 6: Latency measurements

6.3 Implementing SVS on top of WVS

The following lemma states that if the application program would stop sending messages
between suggested view events and the following view events, then the resulting semantics
would be of strong virtual synchrony.

Lemma 6.1 Let o be a WVS execution in which for every history h; and every send event ev
in h;, ev is ordered in h; after the view event that generates the view in which ev.msg is sent.
Then o is an SVS execution.

If the WVS layer is implemented using the protocol described in Section 6, then the fol-
lowing scheme can be used to optimize the performance when a process experiences several
suggested views before a “real” view is installed: Whenever the application receives a suggested
view event, it sends all the messages awaiting to be sent in the “old” view, and only then it
allows the membership layer to issue the flush message. This way, messages may never have
to be delayed for more than one round of flush messages, although the view change itself may
take up to t + 1 rounds, if ¢ processes crash during this view change.

7 Ordered Virtual Synchrony

In this section we define ordered virtual synchrony and discuss how Horus’ implementation of
ordered virtual synchrony can benefit from using WVS instead of SVS.

In order to define ordered virtual synchrony, we must introduce the notion of causal order,
originally defined by Lamport in [15]. Given an execution o, we say that event ev causally
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. hi . . . .
precedes event ev’ if (a) ev — ev’ for some history h;, (b) ev is a send event, ev’ is a receive
event and ev.msg = ev'.msg, or (c) there exists another event ev” such that ev causally
precedes ev” and ev” causally precedes ev’.

We assume that send events can be labeled as either abcast, cbcast, or unordered. Given an
execution o, we define a partial order 7+ on the receive and send events of o as follows: Let
ev and ev’ be two receive events in o and let ev” and ev” be the corresponding send events,
respectively. Then the following holds:

. o o
1. If ev” and ev” are labeled as abcast, then either ev — ev’ or ev’ — ev. Moreover,

. h . o
if ev” — ev" for some 7, then ev — ev’.

2. If ev is labeled as cbcast, then ev is ordered in s after any event the causally precedes
it in o, and before any event that causally follows it in o.

We denote by 2 | 7 the restriction of 7+ to events that occur in h;. Given a sequence of

events h and a partial order 7+ on the set of events in h, we say that h extends s if for

. a
every two events ev and ev’ in & such that ev — ev’, ev — ev’.

Definition 7.1 (Ordered Virtual Synchrony) An SVS (or WVS) execution o is strongly
(or weakly) ordered virtually synchronous if there exists a partial order —+ such that for every

a .
process p;, h; extends — | 1.

Horus implements ordered virtual synchrony in two layers, called total and causal. We now
discuss how these layers of Horus can benefit by having the lower layers implementing WVS

instead of SVS.

7.1 Total Delivery and Causal Delivery

It is clear that total delivery and causal delivery can be implemented with weaker guarantees
than those provided by SVS. However, it is also clear that the total layer cannot deliver a
message sent in a new view until all messages of the old view are guaranteed to be delivered.
This is due to the possibility that some messages that are missing from the old view were
delivered in some of the processes before any of the messages of the new view. However, we
believe that a protocol for implementing total delivery can still benefit from WVS since even
in cases as described above, messages are delayed at the receiver side and not at the sender
side. Hence, when the “real view” is installed, the delivery of these messages does not require
any network traffic.

As for the causal layer, in the worst case, a message may have to wait for the new view to
be installed, like in the total layer, before it can be delivered. However, from our experience,
messages of a new view can often be delivered before the “real” view is installed, since usually
none of the missing messages from previous views causally precede them. In particular, local
deliveries do not have to be blocked at all.
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8 Multiple Groups

Up until now, the discussion about virtual synchrony was limited to the case were there is
only one group. However, in practice, there can be many groups and every process may be a
member of several groups simultaneously. This, of course, can be modeled in our framework by
adding a new field called group to every event and then use the definitions of Sections 4 and 5
on the restriction of executions and/or histories to events of the same group. For example, an
execution o is SVS (WVS) if for every group g, o | g, the restriction of o to events of group g,
is an SVS (WVS) execution according to the definitions of Section 4 (5).

Although the above definition correctly describes the guarantees provided by Horus, Horus
provides an additional guarantee known as failure domains. That is, if a process is a member
of several groups and is declared or suspected of being faulty, then it is declared or suspected
of being faulty in all the groups it belongs to. The following is a suggested definition for failure
domains:

Definition 8.1 (Failure Domain) Given a set of groups G, we say that G shares the same
failure domain if the following holds: For every history h; and every process p;, if h; includes
a suspect event ev such that p; € ev.suspects, then for every group g € G' for which h; includes
a view event ev’ such that ev'.group = g and p; € ev'.view, there exists another event ev” such

h

J . .
that ev’ — ev”, ev”.group = g, and either ev” is a suspect event such that p; € ev”.suspects
or ev” is a view event such that p; ¢ ev” . view.

This definition is slightly weaker than the behavior of failure domains when a process is
suspected of being faulty more than once. Unfortunately, we are currently not aware of any
simple way to define this behavior formally and precisely.

9 Discussion

Our current research with Horus is aimed at developing a tool that will provide the application
with a semantics which is strong enough to cope with failures, while ensuring low message
latencies, even in “bad” scenarios. In this paper we take a step towards this goal, by looking at
the membership layer of Horus. We presented a formal definition of strong virtual synchrony,
capturing the guarantees provided by this layer. Using this formal definition, we were able to
identify sources for long delays in this layer, and to suggest a way to overcome these delays
without sacrificing the desired properties of the existing semantics, namely, by introducing
the notion of weak virtual synchrony. We have developed an implementation for weak virtual
synchrony and showed that indeed, in our system, weak virtual synchrony does not incur the
same long latencies as strong virtual synchrony.

In addition to the membership layer, Horus has several other layers that may incur un-
bounded latencies. Hence, we would like to study these layers too, and make sure that, at
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least with very high probability, we can eliminate the sources of uncertainty from these layers
as well. At the moment we are also studying the layer that is responsible for providing total
delivery of messages, and are looking at the behavior of several total delivery protocols.

In order to reach a higher degree of confidence in our protocols, we would like to formally
prove their correctness. This can be either by composing formal proofs of correctness, or by
using automatic verification tools. For this, the formal definitions presented in this papers will
be very helpful.

We believe that it is possible to slightly modify the protocol developed in Section 6 to make
it self stabilizing [11] under certain assumptions. For example, if we assume that processes
have a unique name, that cannot be corrupted, then we believe that by adding several sanity
checks, this protocol would become self stabilizing. If the processes’ name can be corrupted,
but they have a way to retrieve it, e.g, the name of a process is the address of the network
device and this address cannot be corrupted, then we believe that by verifying the name every
so often, and by adding some sanity checks, the protocol would also become self stabilizing.

Acknowledgements: We would like to thank Ken Birman, David Karr, and Werner Vogels
for many helpful discussions and comments. We would also like to thank Gil Neiger and Ozalp
Babaoglu.
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