Fault Detection Using Hints from the Socket Layer

Nuno Neves

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract

This paper describes a fault detection mechanism that
uses the error codes returned by the stream sockets to lo-
cate process failures. Since these errors are generated
automatically when there is communication with a failed
process, the mechanism does not incur in any failure-free
overheads. However, for some types of faults, detection can
only be attained if the surviving processes use certain com-
munication operations. To assess the coverage and latency
of the proposed mechanism, faults were injected during the
execution of parallel applications. Our results show that in
most cases, faults could be found using only the errors from
the socket layer. Depending on the type of fault that was
injected, detection occurred in an interval ranging from a
few milliseconds to less than 9 minutes.

1 Introduction

Systems targeted to support the execution of long-
running parallel applications should provide fault detec-
tion and recovery, since the probability of failure increases
with the execution time and number of used nodes. How-
ever, since applications of this type do not have high-
availability or safety requirements, they are only willing to
accept small decreases in performance caused by the fault-
tolerance mechanisms. This paper describes a way to de-
tect failures in distributed systems, whose main advantage
is having minimal overheads during failure-free operation.
Conceptually, the fault detection mechanism is very sim-
ple. It looks at the values returned by the stream socket
functions as a process exchanges messages. If one of these
values belongs to the set of errors associated with process
failures, the mechanism can assume that the remote pro-
cess was terminated. Fault detection based solely on these

Nuno Neves was supported in part by the Grant BD-3314-94, spon-
sored by the program PRAXIS XXI, Portugal. This research was sup-
ported in part by the Office of Naval Research under contract NO0014-95-
1-1049, and in part by the Defense Advanced Research Projects Agency
(DARPA) under contract DABT 63-96-C-0069. Any opinions, findings
and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of DARPA.

W. Kent Fuchs

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285

errors is not accurate since some errors might indicate a
process failure, when in reality there was a network prob-
lem [1]. Nevertheless, the errors imply that at least the
socket has to be recovered.

This paper studies two stream socket implementations
based on the TCP/IP communication protocols, four types
of faults that result in the termination of a process, and two
parallel applications. The types of faults that were ana-
lyzed ranged from the simplest one where a process failed
without disturbing the rest of the system, to permanent ma-
chine failures. It was determined for each type of fault
in which cases the stream sockets returned an error, and
which errors were reported. It was observed that all con-
sidered faults could be detected as long as the surviving
processes attempted to communicate with the failed pro-
cess. However, some types of faults were only found if
processes used particular communication operations. Our
experimental results show that in most cases the process
failures could be located using the errors reported by the
stream sockets.

2 Related Work

The fault detection problem in distributed systems has
been usually solved either using a process membership ser-
vice, or a distributed system-level diagnosis protocol. Pro-
cess membership services have been developed in the con-
text of group-based systems, and their main objective is to
provide a consistent view of which processes are currently
members of a group, despite process joints, departures or
failures [2-8]. Distributed system-level diagnosis proto-
cols locate process failures, and then distribute this infor-
mation in such a way that each node can independently de-
termine the set of failure-free processes [9-14]. Member-
ship services normally assume that processes fail by crash-
ing, and that the communication subsystem can suffer from
performance or omission failures. Failures of this type
lead to detection mechanisms based on watch-dogs. On
the other hand, distributed diagnosis uses a polling-based
mechanism, since the assumed failure model requires ex-
plicit testing to detect failed processes [15, 16]. There are

also recent results on categorizing crash failures [17].

The main motivation for our work is to make the best
use of an available fault detection mechanism, the error
codes returned by the stream sockets. Process failures can
be located in a timely manner if there is a correct under-
standing in which cases errors are reported by the stream
sockets. The information about the failures can then be
disseminated using one of the previously proposed mem-
bership or distributed diagnosis protocols. The results
presented in this paper are applicable to a large number
of applications, since the stream sockets are one of the
most common communication interfaces utilized to pro-
gram distributed applications.

3 Background

Stream sockets based on the TCP/IP communication
protocols offer a full-duplex connection between pro-
cesses [18]. Processes establish a connection by opening
a socket. Messages are exchanged by writing to or read-
ing from the socket. Stream sockets deliver messages reli-
ably and in order, but they do not preserve message bound-
aries. TCP uses checksums, sequence numbers, and ac-
knowledgments to guarantee that messages are not lost or
damaged [19, 20]. Conceptually, each byte of a message is
assigned a sequence number. When TCP wants to trans-
mit a message, it adds the sequence number of the first
byte and the size of the message. Then, it saves a copy of
the message in a send queue and starts a timer. The mes-
sage is removed from the queue as soon as the acknowl-
edgment arrives. If for some reason the acknowledgment
is lost or delayed, TCP re-transmits the message when the
timer expires. The receiver side saves the messages on a
receive queue until the process reads them and uses the
sequence numbers to detect duplicate messages due to re-
transmissions.

4 Types of Faults

Four distinct types of faults were examined, each re-
sulting in the termination of a process, but with different
behaviors observed at the socket interface. The four types
of faults that were considered were:

Kill : The fault terminates the process, but does not affect
the rest of the system. Examples of this type of fault
are the following: the process is aborted because it
executed an illegal instruction; the owner of the ma-
chine kills the process; or one of the assertions of the
program is violated, and the process exits.

Crash : The machine where the process is running crashes
permanently or stays down for a long period of time.
Examples of this type of fault include a permanent

Inputs: Error values:

RST -- Reset 0 -- Read returns 0 bytes
TOUT -- Timed Out BP -~ Broken Pipe

SQ=0 - Send Queue empty CT -- Connection Timed Out
SQ!=0 -- Send Queue not empty CRP -- Connection Reset by Peer
RQ=0 -- Receive Queue empty IA" . Invalid Argument

RQ!=0 --Receive Queue notempty ~ SBP -- Signal Broken Pipe

R -- Read

W -- Write

R_Block -- Read Blocks in the OS

W_Block -- Write Blocks in the OS

Figure 1: Terminology used in the state diagrams.

failure in one of the machine's components, or a situ-
ation in which an unattended machine crashes and no
one is available to restart it .

Reboot : The machine where the process is executing
shuts down, and then boots. A machine might be re-
booted because a new software version requires re-
booting in order to be installed, or because the ma-
chine is not performing as expected.

Crash & boot : The process is running on a machine that
crashes, and then boots. Possible causes of such faults
include power failures, incorrect usage by users, or
operating system bugs.

5 Fault Detector

This section describes in which circumstances the
stream sockets generate an error after a process failure.
Two stream socket implementations were studied, both
built on top of the TCP/IP communication protocols. The
first implementation is based on the Berkeley sockets
(SunOS 4.1.3) and the second implementation is based on
the streams from the UNIX System V R4 (Solaris 2.5).
From the various functions of the socket interface that can
be used to send or receive information, we chose to study
the read and write system calls. The other functions pro-
vide similar error codes. To simplify the presentation, it is
assumed that sockets are configured for blocking I/O (e.g.,
a read blocks when there are no messages available). The
same errors would be seen if the sockets were set for non-
blocking I/0.

A state diagram that explains the behavior of the sock-
ets after the termination of a process was developed for
each type of fault. The diagrams were derived by looking
at the values returned by the read and write system calls,
and at the messages exchanged by the surviving machines

W_Block, BP

RQ=0&5Q!=0

Figure 2: State diagram for kill fault on Solaris.

and the machine where the failure occurred. In the follow-
ing subsections the term local is used to identify the failed
machine, and the term remote denotes the machine that de-
tects the fault by trying to communicate with the failed one.
The terminology used in the state diagrams is presented in
Figure 1.

5.1 Kill

Whenever a kill fault terminates the execution of a pro-
cess, the operating system asks the local TCP to close all
connections associated with the process. A connection al-
lows messages to travel in two directions, therefore, both
directions have to be shut down before the connection is
completely closed. During the closing procedure, the lo-
cal TCP sends a special FIN message to the remote TCP
indicating that no more messages will be sent.! Next, it
completely closes the connection. After receiving the FIN
message, the remote TCP closes the receive-half of the
connection, but leaves the send-half open. When it tries
to transmit a message, the local TCP responds with a RST
message. The remote TCP completely closes the connec-
tion when the RST arrives.

The low-level messages exchanged between the TCPs
result in errors returned by the socket interface. These er-
rors are used by the fault detection mechanism to locate
process failures. Figure 2 displays the various stages that
a connection can undergo after a failure, as perceived by a
remote process running on a machine with the Solaris op-
erating system. The connection goes from state OK to one
of the first four states depending on the status of the send
and receive queues when the FIN message arrives. If the
send queue is empty (SQ=0), there is a transition to either
state 1 or 2. The connection goes to state 1 provided that
there are messages to be read (RQ!=0); otherwise, it goes
to state 2 (RQ=0). In state 1, the process reads the queued

LA process can also close a connection by calling the close or
shutdown system calls. When this happens, the same FIN message is
sent by the local TCP. Therefore, the fault detection mechanism must be
disabled on a particular connection, before that connection is closed.

W_Block, SBP

W_Block, IA

RQ=0&SQ!=0 R,0| W, ok

Figure 3: State diagram for kill fault on SunOS.

messages without being informed about the failure. When
the receive queue becomes empty (RQ=0), the connection
goes to state 2. In this state, the failure is detected by a
read call because the function returns 0 bytes.

The connection remains in state 1 and/or 2 as long as
no messages are transmitted to the failed process. There is
a transition to state 3 or 4 if the process executes a write.
The connection can also leave state OK to one of these two
states if the send queue was not empty at the moment of the
failure (SQ!=0). The connection stays in states 3 and/or 4
during a short period of time, corresponding to the inter-
val limited by the send of the message and the reception of
the RST. Then, the connection moves to state RST. If the
process blocks in the operating system while doing a write
(W_Block), the function returns the error broken pipe when
the RST arrives. This error can be used to detect the fail-
ure. The blocking happens if the process attempts to send a
message larger than the available space in the send queue.
The arrow from OK to RST corresponds to the case when
the process is blocked in a write before the FIN message
arrives. Any read or write call from RST state produces an
error that can be used to detect the failure. The first read
gives connection reset by peer, and the subsequent ones re-
turn 0 bytes. A write from the state 5 or RST generates a
signal broken pipe that is thrown to the process. Unless this
signal is caught, it terminates the execution of the process.

Figure 3 displays the state diagram for the case when
the fault is detected by a process running on a machine
with SunOS (for space reasons, we will present only this
diagram for the SunOS). There are two main differences
between SunOS and Solaris. The first one is related to the
writes that block in the operating system (W _Block). In
SunOS, these writes usually generate a signal broken pipe
when the RST arrives. The only exceptions are in states 3
and 4, where the error invalid argument is returned (in state
4, the process sometimes received the signal broken pipe).
The second difference is related to the messages stored in
the receive queue. In SunOS, a process can continue to
read these messages even after the reception of the RST,
without generating any errors.

Figure 4: State diagram for crash fault on Solaris.

5.2 Crash

When a crash failure occurs, all the processes that were
running on the machine terminate their execution. With
this type of failure no warnings are transmitted to the re-
mote TCPs. However, they can be detected if a remote
TCP tries to communicate with the failed one. Since no
acknowledgments are received in response to the sent mes-
sages, the remote TCP re-transmits the messages a certain
number of times until it gives up, and then closes the con-
nection. At that moment, an error is passed to the socket
layer indicating a communication problem.?

After a crash, a process running on a Solaris machine
observes the connection going through the stages depicted
in Figure 4. As with the kill fault, the transition to one of
the first four states depends on the condition of the send
and receive queues. The connection goes from state 2 to
state RB if the process attempts to read a message. In this
state, the process blocks indefinitely in the operating sys-
tem while it is waiting to receive a message from the failed
process. The RB state corresponds to a case where the fail-
ure is not detected using only the errors from the sockets.?
The connection goes to states 3 and 4 if there is a mes-
sage to be transmitted. This can happen because the send
queue was not empty when the failure occurred, or because
the process tried to send a message. The connection stays
in either one of these states until there is a time out and
TCP closes the connection. If the process reads a message
while the connection is in state 4, it blocks in the operating
system as in state 2. However, the read returns the error
connection timed out after the time out takes place. The
write system call issues the error broken pipe if the process
blocks in the operating system while sending a message in

2 Even though a network partition does not terminate a process, it gives
the same type of errors as a crash. This is a problem that has to be solved
by any fault detection mechanism for distributed systems. Typical solu-
tions require the processes that were assumed to have failed to terminate
their execution.

8 The optional keepalive mechanism of TCP would allow the detection
of the crash fault when the process blocks in a read. However, the detec-
tion latency is typically around 2 hours, which makes this mechanism not
very useful.

RQ!=0&SQ!=0

R, ok | W, ok

vﬁ'
NS

wrjeae>()

@ R.CT
‘ R_Block, CT |

R_Block, CRP
RQ=0&SQ!=0

W_Block, BP
Figure 6: State diagram for crash & boot fault on Solaris.

states OK through 4. Once the connection reaches the TOUT
state, the next read or write returns an error.

5.3 Reboot

The reboot of a machine can be divided into three
phases. During the first phase, while the machine is shut
down, the operating system syncs all disks and tells TCP
to close all connections. TCP transmits a FIN message
through each connection, and then awaits an acknowledg-
ment (for a few milliseconds). The second phase corre-
sponds to the initial period of the booting procedure. Dur-
ing this period, no messages are sent, even to respond to
remote requests. In the last phase, messages start to be
transmitted and received as usual; however, all the knowl-
edge about previous connections is lost. The TCP layer
answers with a RST message to all incoming messages re-
ceived at the end of the first phase (when the connections
are closed), or after the third phase has started.

Figure 5 displays the various stages that a connection
can experience after a reboot fault. Following the recep-
tion of the FIN message, the connection goes to one of the
first four states; the specific state depends on the condition
of the send and receive queues, as was explained for the
kill fault. There is a transition from state 3 or 4 to state
RST, if TCP receives a RST in response to a sent message.
Once in state RST, the fault is detected by the next read
or write. The connection can also go from state 3 or 4
to the state TOUT if no messages were transmitted in the

Table 1: Summary of the conditions and errors for the stream sockets on Solaris.

| I Condition | Function | Error |
Kill FIN arrived & Receive queue empty read 0
message send & RST arrived read/write CRP/BP, SBP
| Crash | message send & Time out | read/write | CT/BP,SBP |
Reboot FIN arrived & Receive queue empty read 0
message send & (RST arrived or Time out) | read/write | CRP, CT / BP, SBP

| Crash & boot || message send & (RST arrived or Time out) | read/write | CRP, CT / BP, SBP |

first phase of the reboot that resulted in a RST, and if the
second phase of the reboot takes longer than the time out
period. This situation usually does not occur; however, it
was added for completeness. A read or write after the con-
nection has reached the TOUT state produces an error.

5.4 Crash & boot

With a crash & boot fault the machine crashes, terminat-
ing all processes, and then boots. As with crash faults no
FIN messages are transmitted. Therefore, detection is only
possible if the remote TCPs try to send messages to the
failed TCP. During the booting of a machine, there is an
initial period where incoming messages are not acknowl-
edged; then, in a second phase, communication is restarted.
Messages belonging to previous connections that are re-
ceived in the second phase are answered with a RST. The
reception of the RST closes the connection of the remote
TCP.

The state diagram for the crash & boot fault is repre-
sented in Figure 6. This fault can be seen as a special crash
fault, for which detection can be accomplished earlier if a
RST is received before the time out occurs. The rest of
the diagram should be interpreted like the one for the crash
fault.

5.5 Summary

The previous four subsections explain, for each type of
fault, in which circumstances the stream sockets generate
errors. Failures are located using basically two methods: in
the first method, the TCP from the machine affected with
the fault sends a FIN message informing the other TCPs
about the process termination; in the second method, one
of the surviving TCPs attempts to send a message to the
failed TCP, and then either receives a RST as response or
receives no answer until the connection times out. When
TCP determines that there was a failure, it informs the
socket layer, which subsequently returns an error to the ap-
plication. Table 1 presents a summary of the conditions for
fault detection and the errors reported by the stream sock-
ets on a Solaris machine. On a SunOS machine the error
invalid argument also has to be considered.

6 Experimental Results

6.1 Applications and Environment

To assess the coverage and latency of the fault detec-
tion mechanism, faults were injected during the execu-
tion of a particle simulator and a raytracer. These ap-
plications were chosen because they represent two of the
most common parallel programming models. These ap-
plications also have different communication frequencies,
and are sufficiently large to be considered complete paral-
lel applications. The particle simulator, ising, simulates
in two dimensions the spin changes of Spin-glass particles
at different temperatures [21]. Ising is a geometric de-
composition application where each process solves a sub-
region of the total particle surface. In each step, a process
first calculates the new spin values of its particles, and then
exchanges the boundary particles with two other processes.
The second application is a parallel implementation of the
raytracer POVRAY 2.2 [22]. Povray is programmed using
a master-slave model. The slaves receive from the master
a certain number of pixels of the image, then compute the
color of each pixel, and return the results to the master. The
master distributes the pixels and saves the results on disk.

The experiments were performed on two machines run-
ning SunOS 4.1.3, a SPARCstation ELC and a SPARCsta-
tion IPC, and on a third machine running Solaris 2.5, an Ul-
traSPARC 1. Faults were injected on the process executing
on the SPARCstation ELC, which left two processes, one
on the SunOS machine and another on the Solaris machine,
to detect the faults. The master process of the povray
application always ran on the SPARCstation ELC, which
means that fault detection was done by the slaves. The net-
work and machines were lightly loaded when the experi-
ments were done.

6.2 Coverage and Latency

The fault detection latencies collected in the experi-
ments are shown in Figures 7 and 8. The values displayed
correspond to the latencies observed by the first process
that discovered the fault. In most cases, faults were de-
tected by the Solaris machine since it is faster than the

KILL

= =

D X 2

I —
|

—
I
S

Fault Detection [ms]
_
[N - B
[T — I
|

e

0 10 20 30 40 50
Experiment
CRASH & BOOT
130 —
125
120
.E 115
g
< 110
[=]
= 105
<
o
100
g5 Tt e e e e
90 t t {
0 10 20 30 40 50
Experiment

REBOOT

6.0 —
55 —
£ 50—
g
°
[=]
= 45—
E]
<
[
4.0 -
35 } } } y
0 10 20 30 40 50
Experiment
CRASH
520
510
= 500
E .
~§ 490 e+ o esesticine seer o weee
°
2 480
El
<
= 470
460
450
0 10 20 30 40 50
Experiment

Figure 7: Fault injection on the ising application.

SunOS machine. From the total number of faults that were
injected, only three of them were undetected, all in the
povray application. The detection latencies ranged from a
few milliseconds for the kill faults to 511 seconds for the
crash faults.

As was explained in Section 5.1, kill faults can be lo-
cated rapidly because surviving machines are informed
about the failure. Typically, they are detected as soon
as the surviving processes had to exchange data with the
failed one. On the ising application, the Solaris process
sent its particles 15 ms after the beginning of the step, and
then it waited on a receive. The SunOS process, which
is slower, exchanged particles every 150 to 330 ms (com-
putation time is smaller when the spins start to converge).
On the povray application, slaves communicated with the
master every 850 ms to 4.1 s in Solaris, and 11.5 sto 35 s
in SunOS (certain parts of the image require more compu-
tation than others). Faults were detected with random la-
tencies because they were injected at random times. How-
ever, the maximum latency was limited by the largest pe-
riod without communication. The observed minimum and
maximum latencies for ising were 2 and 195 ms, and for
povray were 9 and 2443 ms. In both applications, the error
reported most frequently was read returned 0 bytes. Other
returned errors were connection reset by peer with 6 cases

for ising, and 2 cases for povray; and signal broken pipe
with 2 cases for povray.

In the initial part of the reboot procedure, the operat-
ing system syncs the file systems and then closes all TCP
connections. Reboot faults were discovered with a latency
of 3.7 to 3.8 s, in most cases, for both applications. How-
ever, in a few other cases, fault detection took longer since
the connections were closed later because of loaded file
servers. The machine where faults were injected had sev-
eral remote file systems that were mounted locally. There-
fore, during the sync operation, it had to exchange many
messages with a number of servers, so that all information
that was cached in memory (e.g., modified superblocks)
could be written to the remote disks. The error used to
detect all faults was read returned 0.

Crash & boot failures can only be detected if the surviv-
ing processes attempt to send messages to the failed ma-
chine. However, the detection can not be done immediately
after the crash because, during the initial part of the boot-
ing procedure, the crashed machine does not respond to the
arriving messages. Messages have to be re-transmitted sev-
eral times before the RST is returned. Consequently, faults
are detected at discrete points of time, only at the end of
the re-transmissions. Re-transmissions were usually done
after the following intervals (in seconds): Solaris = 0.18,

KILL
2500 —

2000 —
1500 —

1000 —

Fault Detection [ms]

s00 =~

0 10 20 30 40 50
Experiment
CRASH & BOOT
99 —
97 > ..
= 95 —
5
'«:;: 93 —
o
291 -
El
<
= 89 —
87 —
85 t t t {
0 10 20 30 40 50
Experiment

REBOOT

= 49

35 } |
0 10 20 30 40 50

Experiment

CRASH
494

493
492 —
491 .,

490

Fault Detection [s]

P
® X
x &

487 —
486

485 |
0 10 20 30 40 50

Experiment

Figure 8: Fault injection on the povray application.

0.38, 0.75, 1.5, 3, 6, 12, 24, 48, 56.25, 56.25, ...; SunOS
=0.5, 2, 4, 8, 16, 32, 64, 64, ... The detection latencies
for ising can be divided into 3 clusters, one below 95 s,
another around 96.5 s, and the last one at 127.5 s. The
faults corresponding to the second cluster were located by
the Solaris process (0.18 + 0.38 + ... + 48 = 95.81), and
the faults belonging to the third cluster were found by the
SunOS process (0.5 + 2 + ... + 64 =126.5). The faults from
the first cluster were also detected by the SunOS process.
The SunOS machine sometimes used a different set of re-
transmission intervals that resulted in an earlier detection
(12543 +6+ 12+ 24 + 48 =94.25). On povray, the ma-
jority of faults were located by the Solaris process roughly
96.5 s after fault injection. A few other faults were found
before 95 s by the SunOS process. As was mentioned pre-
viously, the SunOS process had computation intervals as
large as 35 s. Therefore, it could send a message to the
failed process several seconds after the crash, resulting in
re-transmissions in the period between the time when the
crashed machine started to respond to incoming messages
and the 96.5 s. The error reported for all faults was con-
nection reset by peer.

Crash faults are detected when the surviving machines
quit re-transmitting messages. The usual time out inter-
vals for Solaris and SunOS machines are 490 s and 511 s,

respectively. On the ising application, three faults were
found by the SunOS process at roughly 511 s, and the rest
were discovered by the Solaris process. Most of the faults
located by the Solaris process had a latency of 490.5 s;
however, a few others were detected with latency some-
what smaller or larger. By looking at the re-transmission
times of the Solaris machine, we derived the following for-
mula for the re-transmission intervals: I,y = min(l, *
2,56.25). The usual value observed for Iy was 0.18, which
gives 490 s for the time out. However, sometimes Solaris
used a distinct Iy, or one of the first I was larger than ex-
pected because of a delay. These small differences in the
intervals explain the detection latencies that are smaller or
larger than 490 s (e.g., Iy = 0.20 results in a time out of
501 s). On the povray application, all faults were detected
by the Solaris process at approximately 490.5 s. The error
reported for all faults was connection reset by peer.

7 Conclusions and Future Work

This paper examines the effectiveness of a fault detec-
tion mechanism based on the errors from the stream sock-
ets. First, it was explained in which circumstances the error
codes can be used to locate process failures. It was shown
that all faults under study could be detected, as long as the
surviving processes tried to communicate with the failed

one. Second, it was shown that process failures during the
execution of parallel applications could be effectively de-
tected using the errors from the stream sockets.

The paper studies two implementations of the stream
sockets with the TCP/IP protocols, SunOS 4.1.3 and So-
laris 2.5. In the future we would like to test the fault de-
tection mechanism with other implementations (e.g., non-
UNIX platforms). We expect results similar to SunOS for
all implementations based on the Berkeley sources (e.g.
AIX). For the other implementations, we expect most con-
clusions from Section 5.5 to be applicable, since the imple-
mentations are based in the same specification.

References

[1] K. P. Birman and B. B. Glade, “Consistent failure re-
porting in reliable communications systems”, Tech.
Rep. CS TR 93-1349, Dept. of Computer Science, Cor-
nell University, May 1993.

[2] F. Jahanian, R. Rajkumar, and S. Fakhouri, “Proces-
sor group membership protocols: Specification, design
and implementation”, in Proc. of the 13th Symposium
on Reliable Distributed Systems, October 1993, pp. 2—
11.

[3] L. Rodrigues, P. Verissimo, and J. Rufino, “A low-level
processor group membership protocol for LANs”, in
Proc. of the 13th International Conference on Dis-
tributed Computing Systems, May 1993, pp. 541-550.

[4] A. M. Ricciardi and K. P. Birman, “Using groups to
implement failure detection in asynchronous environ-
ments”, in Proc. of the 10th Annual ACM Symposium
on Principles of Distributed Systems, August 1991, pp.
341-351.

[5] K. H. Kim, H. Kopetz, K. Mori, E. H. Shokri, and
G. Gruensteidl, “An efficient decentralized approach to
process-group membership maintenance in real-time
LAN systems: The PRHB/ED scheme”, in Proc. of
the 11th Symposium on Reliable Distributed Systems,
October 1992, pp. 74-83.

[6] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis:
A communication sub-system for high availability”, in
Proc. of the 22nd International Symposium on Fault-
Tolerant Computing, July 1992, pp. 76-84.

[7] A. Mishra, L. L. Peterson, and R. D. Schlichting,
“Consul: A communication substrate for fault-tolerant
distributed programs”, Distributed Systems Engineer-
ing Journal, vol. 1, no. 2, pp. 87-103, 1993.

[8] F. Cristian, “Reaching agreement on processor group
membership in synchronous distributed systems”, Dis-
tributed Computing, vol. 4, pp. 175-187, 1991.

[9] S. H. Hosseini, J. G. Kuhl, and S. M. Reddy, “A di-
agnosis algorithm for distributed computing systems

with dynamic failure and repair”, IEEE Transactions
on Computers, vol. C-33, no. 3, pp. 223-233, 1984.

[10] R. Bianchini, K. Goodwin, and D. S. Nydick, “Prac-
tical application and implementation of distributed
system-level diagnosis theory”, in Proc. of the 20th In-
ternational Symposium on Fault-Tolerant Computing,
June 1990, pp. 332-339.

[11] R. Bianchini and R. Buskens, ‘“An adaptive dis-
tributed system-level diagnosis algorithm and its im-
plementation”, in Proc. of the 21st International Sym-
posium on Fault-Tolerant Computing, June 1991, pp.
222-229.

[12] R. Bianchini, M. Stahl, and R. Buskens, “The Adapt2
on-line diagnosis algorithm for general topology net-
works”, in Proc. of GLOBECOM, December 1992,
pp- 610-614.

[13] S. Rangarajan, A. T. Dahbura, and E. A. Ziegler,
“A distributed system-level diagnosis algorithm for ar-
bitrary network topologies”, IEEE Transactions on
Computers, vol. 44, no. 2, pp. 312-334, 1995.

[14] E. P. Duarte and T. Nanya, “Hierarchical adaptive
distributed system-level diagnosis applied for SNMP-
based network fault management”, in Proc. of the 15th
Symposium on Reliable Distributed Systems, October
1996, pp. 98-107.

[15] M. A. Hiltunen, “Membership and system diagno-
sis”, in Proc. of the 14th Symposium on Reliable Dis-
tributed Systems, September 1995, pp. 208-217.

[16] F. P. Preparata, G. Metze, and R. T. Chien, “On the
connection assignment problem on diagnosable sys-
tems”, IEEE Transactions on Electronic Computing,
vol. EC-16, no. 12, pp. 848-854, 1967.

[17] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and
T. Marz, “Comparing operating systems using robust-
ness benchmarks”, in Proc. of the 16th Symposium on
Reliable Distributed Systems, October 1997.

[18] W.R. Stevens, Unix Network Programming, Prentice
Hall Software Series, 1990.

[19] J. Poster (ed.), “Transmission control protocol”, RFC
793, September 1981.

[20] W. R. Stevens, TCP/IP Illustrated, Volume 1: The
Protocols, Addison-Wesley, 1994.

[21] J. G. Silva, J. Carreira, H. Madeira, D. Costa, and
F. Moreira, “Experimental assessment of parallel sys-
tems”, in Proc. of the 26th International Symposium on
Fault-Tolerant Computing, June 1996, pp. 415-424.

[22] POV-Ray Team,
tracer (POV-Ray):
http://povray.org.

Persistency of vision ray
User's Documentation, 1993,

