Performance Comparison of a Rotating Coordinator
and a Leader Based Consensus Algorithm

Péter Urkan', Naohiro Hayashibara
André Schipet, and Takuya Katayama

1School of Information Science, Japan Advanced Institute of Science and Technology
2Swiss Federal Institute of Technology in Lausanne (EPFL)

March 30, 2004
IS-RR-2004-008

Research Report

JAIST

School of Information Science
Japan Advanced Institute of Science and Technology

ISSN 0918-7553

Performance Comparison of a Rotating Coordinator anc
a Leader Based Consensus Algorithm

JAIST Research Report 1IS-RR-2004-008

Peter Urkar®, Naohiro Hayashibata André Schipef, Takuya Katayama
*School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan
Email: {urban,nao-haya,katayaf@jaist.ac.jp
fFacule Informatique et Communication&cole Polytechnique &krale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
Email: andre.schiper@epfl.ch

Abstract— Protocols that solve agreement problems are essen-performance study focusing on consensus, a problem related to

tial building blocks for fault tolerant distributed systems. While most other agreement problems [3], in scenarios that involve
many protocols have been published, little has been done to failure handling.

analyze their performance, especially the performance of their . i

fault tolerance mechanisms. In this paper, we compare two well- 1) The two algorithms:We present a study comparing the
known asynchronous consensus algorithms. In both algorithms, performance of two consensus algorithms: the Chandra-Toueg
a leader process tries to impose a decision, and another leader[4] and Paxos [5], [6] algorithms. We have chosen these
retries if the leader fails doing so. The algorithms elect leaders algorithms because they are well-known, and because there

differently: the Chandra-Toueg algorithm has a rotating leader, . L : : -
whereas processes in the Paxos algorithm elect leaders directly.IS an ongoing informal debate in the community about their

We investigate the performance implications of this difference. ~ relative performance. We hope that our comparison will bring
In the system under study, processes send atomic broadcastsSOome objective arguments to this debate.

to each other. Consensus is used to decide the delivery order The algorithms share a number of characteristics: they are

of messages. We evaluate the steady state latency in (1) runsdesigned for the asynchronous system model with minimal

with neither crashes nor suspicions, (2) runs with crashes and . .
(3) runs with no crashes in which correct processes are wrongly extensions needed to solve consensus, they need that a major-

suspected to have crashed, as well as the transient latency after (4)ity Of processes is correct, and they have a similar structure:
one crash and (5) multiple correlated crashes. The results show they execute a sequence of rounds whereby each round has
that the Paxos algorithm tolerates frequent wrong suspicions a leadet that tries to impose a decision. They differ in how
(3) and correlated crashes (5) better, while the performance is hey tolerate (suspected) failures of the leader: processes in

comparable in all other scenarios.)
Keywords: simulation, consensus, atomic broadcast, rotating the Chandra-Toueg algorithm rotate the leader role among all

coordinator, leader, asynchronous, failure detector processes, whereas processes in the Paxos algorithm elect lead-
ers directly in an uncoordinated manner (the two approaches
. INTRODUCTION are sometimes called rotating coordinator paradigm and leader

Agreement problems — such as consensus, atomic broQ&-Sed paradigm). In this paper, we investigate the performance

cast or atomic commitment — are essential building blocks f8PPlications of this difference.

fault tolerant distributed applications, including transactional 2) Eléments of the performance studhe two consensus
and time critical applications. These agreement problems h&/gorithms are analyzed in a system in which processes send
been extensively studied in various system models, and még}{g)m!c broadcasts to each other. Since the. atomic broadcast
protocols solving these problems have been published [& gorithm that we use [4] leads to the execution of a sequence
[2], offering different levels of guarantees. However, thesd COnsensus to decide the dellv_ery order of messages, eval-
protocols have mostly been analyzed from the point of viedfting the performance of atomic broadcast is a good way
of their safety and liveness properties, and very little has be@h evaluating the performance of the underlying consensus
done to analyze theiperformance Also, most papers focus @lgorithm in a realistic usage scenario. In our study, the
on analyzing failure free runs, thus neglecting the perfoRfomic broadcast algorithm uses elthe'r of the two consensus
mance aspects of failure handling. In our view, the limite@l90rithms. We study the system using simulation, which
understanding of performance aspects, in both failure fr@d0Ws us to compare the algorithms in a variety of different
scenarios and scenarios with failure handling, is an obstagfdvironments. We model message exchange by taking into

for adopting such protocols in practice. This paper present@gfount contention on the network and the hosts, using the

Research supported by the Japan Society for the Promotion of Science antRef. [4] uses the terntoordinator We stick to leader throughout the
the CSEM Swiss Center for Electronics and Microtechnology, Inc., Negeth paper.

metrics described in [7], [8]. We model failure detectors in Most papers on the performance of agreement algorithms
an abstract way, using the quality of service (QoS) metricsly consider failure free executions (our normal-steady fault-
proposed by Chen et al. [9]. We compare the algorithms usitggad), which only gives a partial and incomplete understanding
the benchmarks proposed in [8], [10] (which are stated of the behavior of the algorithms. We only note a few interest-
terms of the system under study, i.e., atomic broadcast). Guoig exceptions here. The transient effects of a crash are studied
main performance metric for atomic broadcastasly latency in [10], [11], [16], but the faultload in [11], [16] is different
the time that elapses between the sending of a messagdrom our crash-transient faultioad. Ref. [11] assumes that the
and the earliest delivery of.. We use symmetric workloads.crash occurs at the worst possible moment during execution,
We evaluate the steady state latency in (1) runs with neitHeading to the worst case latency. In contrast to our faultload,
crashes nor suspicions, (2) runs with crashes and (3) runs wilifs faultioad requires a detailed knowledge of the execution,
no crashes in which correct processes are wrongly suspeatgdch is only available if one considers very simple workloads
to have crashed, as well as the transient latency after (4) dismlated executions of consensus in [11]) in an analytical or
crash and (5) multiple correlated crashes. simulation model. The other paper [16] measures the latency
3) The results:Our main finding is that, although the twoof the group membership service used by the algorithm to
algorithms have comparable performance in scenarios (1), {@erate crash failuresThis way of considering the transient
and (4), the Paxos algorithm performs significantly betteeffects of a crash is less general compared to our faultload, as it
in scenarios 3 and 5With multiple correlated crashes, thes stated in terms of an implementation detail of the algorithm
reason is that the Paxos algorithm elects a correct leadeder study.
immediately after detecting the crashes. We found the largesiThe assumptions and/or the algorithms used in all the
difference when wrong failure suspicions were frequent and/studies listed are too different to allow a meaningful com-
long lasting wrong failure suspicions. The reason is that tiparison of the results with those in this paper. Our previous
Paxos algorithm generates less contention: its leader electwork [14] would be an exception: it compares the same
mechanism makes sure that only a small subset of all procesaig®rithms using measurements rather than simulation, and
start concurrent rounds, whereas the rotating leader schemwvitn fewer faultioads. However, bugs discovered and fixed
the Chandra-Toueg algorithm results in nearly all process&ace its publication invalidate the results presented there.
starting concurrent rounds. Therefore the leader based ap-
proach seems more suited to environments in which the failure
detection service makes mistakes often. A. System model

4) Structure: The rest of the paper is structured as follows. \we consider a widely accepted system model. It consists
Section Il presents related work. Section Ill defines the syste§p,, processes, . . ., p, that communicate only by message
model and the agreement problems used in this paper. Wessing. The system is asynchronous, i.e., we make no as-
introduce the algorithms in Section IV. Section V describegmptions on its timing behavior: there are no bounds on
the benchmarks we used, followed by our simulation modgje message transmission delays and the relative processing
for the network and the failure detectors in Section VI. OWpeeds of processes. The network is quasi-reliable: it does
results are presented in Section VII, and the paper concluggs ose, alter nor duplicate messages (messages whose sender
with a discussion in Section VIII. or recipient crashes might be lost). In practice, this is easily
achieved by retransmitting lost messages. We consider that

] . processes only fail by crashing. Crashed processes do not send
Most of the time, consensus algorithms are evaluated Usiggy further messages. Process crashes are rare, processes fail

simple metrics like time complexity (number of communicapgependently, and process recovery is slow: both the time
tion steps) and message complexity (number of messag@@veen crashes and time to repair are much greater than the
This gives, however, little information on the real performanqgtency of the algorithms investigated.

of those algorithms.. A few papers provide a more detailgd The consensus algorithms used in this paperasaelesto
performance analysis. Ref. [11] compares the impact of difsierate process crashes: the Chandra-Toueg algorithm (CT)
ferent implementations pf failure detectors on the Chandrgsesfailure detector oraclesnd the Paxos algorithm (Paxos)
Toueg consensus algorithm; Ref. [12] and [13] analyze thResleader oraclesA failure detector oracle outputs a list of
latency of the same algorithm, concentrating mostly on thgocesses it suspects to have crashed. It might make mistakes:
effect of wrong failure suspicions; All these papers considﬁrmight suspect correct processes and it might not suspect
only isolated consensus executions, which are a special cgggshed processes immediately. A leader oracle outputs a
of our workloads, corresponding to a very low setting fogjngle leader process that it trusts to be alive. All leader oracles
the throughput. Other papers [10], [15] consider a consengysthe system strive to output the same leader process. This
algorithm embedded in an atomic broadcast algorithm, Dyfacle might make mistakes as well: it might elect crashed
they do not aim at comparing consensus algorithms. NQigocesses as leader, and different oracles might elect different

also that the performance of atomic broadcast algorithms égiders. To make sure that the consensus algorithms terminate,
studied more extensively in the literature than the performance

of consensus algorithms (see [8] for a summary). 2Certain kinds of Byzantine failures are also injected.

IIl. DEFINITIONS

Il. RELATED WORK

we need some assumptions on the behavior of the oraites: Moreover, leaders execute a very similar protocol in each
for CT [4] andQ) for Paxos [17]. These assumptions are ratheound? discussed in detail in Section IV-A.3.

weak: they can usually be fulfilled in real systems by tuning 2) Electing a leader: The main difference between the
implementation parameters of the oracles [15], [18]. Also, theégorithms is how the leaders are chosen. A new leader is
are equivalent: one can solve the same set of problems win@eessary whenever the current round is not successful. A
using the asynchronous model with oracles fulfilling either abund may not be successful if one or more processes want a

¢S and 2 [17]. different leader, usually because they suspect the current leader
to have crashed.
B. Agreement problems The CT algorithm is based on the rotating coordinator

o — aradigm. Whenever the current leader is suspected, the leader
We next give informal definitions of the agreement problen% chosen to be the next process, in a round-robin fashion.

needed for understanding this paper; see [4], [19] for MOYF other words, each process executes a sequence of rounds

formal definitions. . 1,2...., and there is priori agreemenbn the identity of the
In the consensus problem, each process proposes an injtigyer- process; is leader for roundgn + i
: i .

value. Uniform consensus (considered here) ensures that alfhere is no such a priori agreement in the Paxos algorithm.

processes decide the same value, which is one (any oneghrocessp; considers itself leader (and starts a new round)
the proposals. when its leader oracle outputs. Other processes only start

Atomic broadcast is defined in terms of two primitiveg,articipating in this round when they receive a message from
called A-broadcastm) and A-deliver(m), wherem is some the |eader. Leaders always choose unique increasing round
message. Uniform atomic broadcast (considered here) guargimbers: process; is leader for roundsgn + 4, just like in
tees that (1) if a message is A-broadcast by a process, then@dl cT algorithm. However, unlike in the CT algorithm, a
correct processes eventually A-deliver it, and (2) all processgi§en process hardly ever executes all of the rounds. . .:
A-deliver messages in the same order. there are usually gaps in the sequence of rounds.

The algorithms in this study use (non-uniform) reliable 3) Execution of a round:We now sketch the execution
broadcast, which guarantees that if a message is broadcaspfoyne round in each of the two algorithms, illustrated in
a correct process, then all correct processes eventually deliggy. 1. Further details of the execution are not necessary for

it (even if the sender crashes). understanding the rest of the paper.
a) Read phase:Throughout the execution, processes
IV. ALGORITHMS maintain their currenestimateof the decision value. Both

algorithms start the round with @ad phasewhose purpose
Ao update the leader's estimate with a recent estimate. In
e Paxos algorithm, the leader sendeead message to all
ocesses, and all processes reply with their estinestinfate
messages). In the CT algorithm, the read message is not
necessary, as all processes execute every round. In each of
the two algorithms, the leader only waits for an estimate from
For solving consensus, we use the Chandra-ToQ¢y a majority of all processes, and then updates its own estimate.
algorithm [4] and the single-decree Synod algorithm from b) Write phase:In this phase, the leader sends its esti-
the Paxos paper [5], [6]. Henceforth, we shall refer to th®ate to all, proposing its acceptangeoposalmessages). A
algorithms a<CT algorithmandPaxos algorithmrespectively. Process accepts this estimate if it has not seen messages from
We also use these names to refer to the atomic broadcasgter round (in the case of the Paxos algorithm) or if it does

algorithm used with the corresponding consensus algoritHifit suspect the leader (CT algorithm).
if no confusion arises from doing so. When a process accepts a proposal, it updates its own

1) Common pointsThe algorithms share a lot of assumpgestimate and sends back aok message; otherwise, it sends
tions and characteristics, which makes them ideal candidab@sk anackmessage (not shown in Fig. 1). In the case of the
for a performance comparison. In particular, both algorithnfs! algorithm, the nack message is seeforereceiving the
are designed for the asynchronous model with equally stroREPPOS2l. _ o
oracles: (S failure detectors (CT algorithm; see Section Ill- e leader waits for messages from a majority of all
A) and Q leader oracles (Paxos algorithm). Both toleraggrocesses, and decides if it has received a majority of ack
f < n/2 crash failures. In both algorithms, processes execdi#ssages. In this case, it also senddeaisionmessage to

a sequence of asynchronous rounds (i.e., not all proces@léé’smg reliable broadcast. Upon receiving this message, the
necessarily execute the same round at a given tyn&€ach other processes decide as well. If the leader receives one nack

round has aeader (called coordinator in [4]), whose role Message before decidipg (thisis .nc_>t shown in Fig. 1) it finishes
is to try to impose a decision value on all processes. If §€cuting the round without deciding.

SUC(_:_eedS’ the consensus algorlthm term!nateS; _'f it fails, somerys is why we chose the CT algorithm over other algorithms written for
additional rounds are executed with possibly a different leade® same system model (e.g., [20]).

This section sketches the two consensus algorithms, ¢
centrating on their common points and their differences.
then introduce the atomic broadcast algorithm built on top B
consensus.

A. The consensus algorithms

read phase write phase it until the delivery order is decided. The delivery order is
2l S t decided by a sequence of consensus numbered 1, 2, etc. The
[Cproposéy) — —— d -----] value proposed initially and the decision value of each con-
p2 ' \ sensus areets of message identifietset msg(k) be the set of
p3 \ — message IDs decided by consengtis The messages denoted
p4 N\ by msg(k) are A-delivered before the messages denoted by
s msg(k + 1), and the messages denoted yg(k) are A-
delivered according to a deterministic function, e.g., according

Fig. 1. Example of a round in the CT and Paxos algorithms (CT does nt(% an order r.elatlo.n def.med on their IDs.

send theread message) The algorithm inherits the system model and any fault
tolerance guarantees from the underlying consensus algorithm.
We use this atomic broadcast algorithm with both the CT and

B. Optimizations to the consensus algorithms Paxos consensus algorithms.

The consensus algorithms implemented contain several opThe performance of the algorithms can be improved by
timizations with respect to the published versions [4]-[6]. Theacking messages from subsequent consensus executions into
goal of the optimizations is to reduce the number of messad¥i¢ message. For the sake of simplicity, we did not perform
in the most common scenario: when no process is suspectegh optimizations [23]-[25]. This decision affects the two
(CT algorithm) or when the leader is the same process (@lgorithms in the same way, hence we introduce no bias in

throughout the execution (Paxos algorithm). the performance study.
e Theread phase.is not necessary in.the first round, in either V. BENCHMARKS
of the two algorithms. This is why its messages are gray

This section describes our benchmarks, consisting of per-
« In the original CT algorithm, the non-leader processefgrma_nci rlnetrlcli, worklcza;jstz;ndbfaulﬂoadi. In (:rder tofgtﬁt
start the next round immediately after sending #uk me?nmg udresuts(,j we state the encd.mar tS n e[)ms g ?
message. This generatestimatemessages which are not>YStém under study (processes sending atomic broadcasts)
8@.” than in terms of the component under study (consensus).

) . r
needed in the most common scenario. These messages : .) .
grade performance. To prevent this, non-leader procesgégv'ous versions of the benchmarks are published in [8], [10].

wait for anabort message before starting the new rodnda. Performance metrics and workloads
Theabortmessage is sent by the leader if it receimask
messages. br
« Inthe write phase, the leader stops the current round aqu
receiving the firshack message, because it is known
this point already that the round has failed. The origin
algorithms always wait forgck andnack messages from
. ?rmnt])?t%rlgllgocfript)r:cr’r?;&?::decision message must be <Ie compute the mean fdr over a lot of messages and several

using reliable broadcast (see Section III-B). We use aeﬁ(_T_ﬁ'.“'t'onS]; i K : tice. Consid
efficient algorithm inspired by [21] that requires only one IS periormance metric makes sense In practice. L.onsider

broadcast message if the sender is not suspected a service replicated for fault tolerance using active replica-
o The CT algorithm always starts with the same IeadéiP n [26]. C_:Iients qf this se-rvice send their requests to th?
1. If py crashes, this affects steady-state performan grver replicas using Atomic Broadcast. Once a request is
negatively, We fix,this problem by having the consens elivered, the server replica processes the client request, and
decide on the first leader of the next consensus (besi nds back a reply. The client waits for the first reply, and
the order of messages) [22]. Processes propose the ards the other ones (identical to the first one). If we assume

process that their failure detector trusts as first Ieadé .at the time to service a request is the same on all replicas,

This choice makes sure that, eventually, crashed proces?@ the t|r:1ne ftorselllqd t?\? :esfﬁ nr.:,etrl:ror;rat ?ervernto t?e Cli'\?n(;
do not ever become first leaders. S he same lor all Servers, the € 1Irst response receve

by the client is the response sent by the server to which the
C. The Chandra-Toueg atomic broadcast algorithm request was delivered first. Thus there is a direct link between

In the Chandra-Toueg atomic broadcast algorithm [4], the response time of the replicated server and the laténcy
process executes A-broadcast by sending a message to di€eside the early latency, we also compute Ihte latency
processe8 When a process receives such a message, it bufft#g time that elapses until the last A-delivery of a message

Ligte = (max;—y,...,t;) — to.

4The non-leader processes also start a new round if they start S“Spe‘:ting;atency is a|WayS measured under a certain workload. We
the leader. ’

5This message is sent using reliable broadcast. We use the eﬁicigltlos_e simple workloads: (1) all destination processes send
algorithm mentioned Section IV-B. atomic broadcast messages at the same constant rate, and

in Fig. 1.

Our main performance metric is tiearly latencyof atomic
oadcast. Early latency. is defined for a single atomic
badcast as follows. LeA-broadcast(n) occur at timet,
ndA-deliver¢n) onp; at timet;, for eachi = 1,...,n. Then
tency is defined as the time that elapses until the first A-

(2) the A-broadcast events come from a Poisson stochagiarameter is discussed in Section VI-B.

process. We call the overall rate of atomic broadcast message$) Suspicion-steady faultloadso crashes occur, but failure
throughput denoted byT". In general, we determine how thedetectors generate wrong suspicions, and leader oracles change
latency L. depends on the throughpiit their mind about the leader. This causes the algorithms to

The system can only reach a steady state if the throughputdke extra steps and thus increase latency. Bedide and
under some maximal throughpit, ... Beyond this through- T, additional parameters include how often wrong suspicions
put, some processes are left behind. We detect if the systeotur and how long they last. These parameters are discussed
reaches steady state by observing if the late latency stabilibesSection VI-B.
over time.

VI. SIMULATION MODELS
B. Faultioads Our approach to performance evaluation is simulation,

The faultload is the part of the workload that describeshich allowed for more general results as would have been
failure-related events that occur during an experiment [27#gasible to obtain with measurements in a real system (we can
We concentrate on (1) crash failures of processes, and (e a parameter in our network model to simulate a variety
the behavior of unreliable failure detectors. We evaluate tlé different environments). We used the Neko prototyping and
performance of the algorithms with four different faultloadssimulation framework [28] to conduct our experiments. We
We now describe each of them in detail, mentioning whialsed the same models for our previous work [8], [10].
parameters influence latency with each faultload.

1) Normal-steady faultload:With this faultload, we have
neither crashes nor wrong suspicions in the experiment. WeWe now describe how we modeled the transmission of
measure latency after the system reaches its steady statg¢gsages. We use a model inspired from simple models of
sufficiently long time after startup). Parameters that influen&ghernet networks [29], and validated in [8]. The key point
latency under this faultload are the algorithr)(the number in the model is that it accounts feesource contentianThis
of processesr) and the throughputI(). point is important as resource contention is often a limiting

2) Crash-steady faultioad:One or more crashes occurfactor for the performance of distributed algorithms. Both a
before the experiment. We measure latency after the systBast and the network itself can be a bottleneck. These two
reaches its steady state: a sufficiently long time after startkigds of resources appear in the model (see Fig. 2): the
and any crashes. Besidg n andT, an additional parameter network resource (shared among all processes) represents the
is the set of crashed processes. In the steady state of Wa@smission medium, and the CPU resources (one per process)
system, all failure detectors in the system permanently suspegresent the processing performed by the network controllers
all crashed processes at this point, and all leader oracles hand the layers of the networking stack, during the emission and
elected the same correct process. No wrong suspicions octlug reception of a message (the cost of running the algorithm is
and the leader no longer changes. negligible). A message: transmitted for process; to process

3) Crash-transient faultloadWith this faultload, we inject p; uses the resources (CPU;, (2) network, and (3CPU;;, in
one or more crashes at some point in time after the systéis order. Message: is put in a waiting queue before each
reached a steady state. Multiple crashes represent correl&t@ge if the corresponding resource is busy. The time spent
failures. After the crashes, we can expect a halt or a significait the network resource is one time unit. The time spent on
slowdown of the system for a short period. We would like téach CPU resource istime units; the underlying assumption
capture how the latency changes in atomic broadcasts dire¢gythat sending and receiving a message has a roughly equal
affected by the crashes. Our faultload definition represer@st.
the simplest possible choice: we determine the latency of an

A. Modeling the execution environment

atomic broadcast sent at the moment of the crashes (by'a Process p; | send receive @) | Process p;
process that does not crash). Of course, the latency of this 7 -
atomic broadcast may depend on the choice for the sender %) < S
and the crashing processes. In order to reduce the numberS CPU m CPU fo
of parameters, we consider the worst case, i.e., the case that’ , N 1O) ® , J 5
. = (A time units) (A time units) 2
increases latency the most. N »
The precise definition for the faultioad is the following. = % ® ® % R
Consider that a set of processe¥ crashes at time¢ (no @
other crashes nor wrong suspicions occur). Let progess Network (I time unit)

(p ¢ C) executeA-broadcasm) at ¢. Let L(p,C) be the
mean latency ofn, averaged over a lot of executions. Then
Lerash def max, ¢ L(p7(j), i.e., we choose the sender and the Fig. 2. Transmission of a message in our network model.
crashing processes such that latency increases the most.

BesideA, n, T ande, an additional parameter describes how The A parameter ' <)\) shows the relative speed of
fast failure detectors and leader oracles detect the crashes. Phixessing a message on a host compared to transmitting it

over the network. Different values model different networking up .
environments. We conducted experiments with a variety of down
settings for\.

We model network-level multicasts: a message sent to -
several destinations is only processed once on the sending CPJP atq | suspect | suspect .
resource and on the network resource. L

detection time Tp

Crashes are modeled as follows. If a processcrashes « >
at time ¢, no messages can pass betweggnand CPU;
after ¢; however, the messages dnPU; and the content Fig. 3. Quality of service metric expressing the speed of failure detection.
of the attached queues are still sent, even after timin Process; monitors process.
real systems, this corresponds to a (software) crash of the
application process (operating system process), rather thanpa up >t
(hardware) crash of the host or a kernel panic. We chose to
model software crashes because they are more frequent in most
systems [30].

trust trust

trust trust

FD atq suspect suspect

B. Modeling failure detectors

One approach to examine the behavior of a failure detector mistake recurrence time TMR
is implementing it and using the implementation in the experi- « >
ments. However, this approach would restrict the generality AY. a. Quality of service metrics describing wrong suspicions made by
our performance study: another choice for the algorithm woutgliure detectors. Procegsmonitors process.
likely give different results. Also, it is not justified to model
the failure detector in so much detail, as other components
of the system, like the execution environment, are modelgtbdel simple, we assume that all failure detector modules
much more coarsely. We built a more abstract model insteade independent and the tuples of their random variables are
using the notion of quality of service (QoS) of failure detectoriglentically distributed. Moreover, note that we do not need
introduced in [9]. The authors consider the failure detector tt model how Ty and T, depend onTp, as the two
a process; that monitors another procesgs and identify the former are only relevant in the suspicion-steady faultload,
following three primary QoS metrics: whereaslp is only relevant in the crash-transient faultload.

« Detection timeT'»: The time that elapses fropis crash As for the distributions of the metrics, we took the simplest
to the time wheny starts suspecting permanently. The Possible choicesI; is a constant, and bothyz andT), are
definition is illustrated in Fig. 3. exponentially distributed with (different) constant parameters.

. Mistake recurrence tim&yz: The time between two This choice only represents a starting point, as we are not
consecutive mistakeg (vrongly suspecting), given that aware of any previous work we could build on (apart from [9]

p did not crash; see Fig. 4. that makes similar assumptions). We will refine our models as

« Mistake duratioriZ,;: The time it takes a failure detectorWe gain more experience.
component to correct a mistake, i.e., to trgstagain Finally, note that this abstract model for failure detectors
(given thatp did not crash); see Fig. 4. neglects that failure detectors and their messages put a load on

Not all of these metrics are equally important in each of ofystem componeqts. This simplification is justified in.a variet.y
faultloads (see Section V-B). In theormal-steadyfaultioad, ©f Systems, in which a rather good QoS can be achieved with
the metrics are not relevant. The same holds in dresh- failure detectors that send messages infrequently.
steadyfaultload, because we observe the system a sufﬁcien&y Modeling leader oracles
long time after all crashes, long enough to have all failure))
detectors to suspect the crashed processes permanently. In tiHr léader oracles for the Paxos algorithm rely on failure
suspicion-steadfaultload no crash occurs, hence the laten@etectors: at any point in time, the leader is the process

of atomic broadcast only depends Bz andTh; (shown in with the smallest index of all processes trusted by the failure
Fig. 4). In thecrash-transientfaultioad no wrong suspicions detector. We implemented leader oracles with failure detectors

occur, hencel, is the relevant metric (shown in Fig. 3). because a leader oracle must detect the failures of the desired

In [9], the QoS metrics are random variables, defined onlegder, and it seems logical to use a service dedicated to failure
pair of processes. In our system, whererocesses monitor detection 'to implement this aspegt of the leader orécle.
each other, we have thus(n — 1) failure detectors in the The failure detectors underlying the leader oracles are
sense of [9], each characterized with three random variab[@gdeled with their quality of service parameters as described
(Tp, Tar, Thr). In order to have an executable model for thé the previous section.
failure detectors, we have to define (1) how these random . . .

iables depend on each other. and (2) how the distributi The Iead‘er oracle has other potential uses, e.g., it can be used to |_mplement
varia p _ :) f88d balancing among all correct processes (see Section VIII). We intend to
of each random variable can be characterized. To keep ouestigate this aspect in the future.

mistake duration Tm

VIl. RESULTS lambda = 1

We now present our results for all four faultloads and a
variety of network models. We obtained results at a variety
of representative settings for. 0.1, 1 and 10. The settings
A = 0.1 and 10 correspond to systems where communication
generates contention mostly on the network fat= 0.1)
and the hosts (ah = 10), respectively, whilex = 1 is an
intermediate setting. For example, in current LANs, the time 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
spent on the hosts is much higher than the time spent on the 0 100 200 iﬁ‘r’oug‘;‘:ﬁt [1/55‘;" 600 700800
wire, and thus\ = 10 is probably the setting that corresponds

best to such an environment. Fig. 5. Latency vs. throughput with the normal-steady faultload, for both

Most graphs show the early latency vs. the throughpl>°s 2" CT

Graphs showing the late latency are presented in the appendix
only. Values of the late latency are slightly higher, but all other % N
characteristics of the corresponding graphs are very similar. o MoEh .
The reason is that if one process reaches a decision in either of oF Sohe T 1
the consensus algorithms, all other processes will soon follow,)
thanks to the decision message (see Section IV-A.3). The max-
imal throughput is approximately the highest throughput value,
that is, thex coordinate of the rightmost point, in all graphs
showing the steady-state latency; beyond this throughput, the
late latency did not stabilize (see Section V-A). We set the time O 0 100 200 300 400 200 600 700 800
unit of the network simulation model to 1 ms, to make sure throughput [1/s]
that the reader is not distracted by an unfamiliar presentation _

. . . Fig. 6. Latency vs. throughput with the crash-steady faultload, for both Paxos
of time/frequency values (one that refers to time units). Any, ot
other value could have been used. The 95% confidence interval
is shown for each point in the graphs.

The two algorithms were always run with an odd numbd$- Crash-transient faultload (Figures 7 and 8, Appendix |l)
of processes. The reason is that the same number of crasWith this faultload andc crashes, we only present the
failuresk (k = 1,2,...) is tolerated if the algorithms are runlatency after crashing the first processesy,...,p.), as
with 2k + 1 and 2k + 2 processes; thus adding a process this is the case resulting in the highest transient latency (and
a system with an odd number of processes does not incretdsemost interesting comparison). The crash of any additional
the resiliency of the system. processes affects the two algorithms in the same way (slightly

decreased latency; cf. Fig. 6).
We set the failure detection timeoudf, to 100 ms at
A. Normal-steady and crash-steady faultloads Figures 5 and_ .1 or 1, and to 1000 ms ak = 10. This choice models
6, Appendixes | and II) a reasonable trade-off for the failure detector. On the one

With these faultloads, the two algorithms have the sa hé’:md, the detection tim@) is low enough (comparable to
the latency overhead) to make sure that the failure detector

performance. Each curve thus shows the latendyati algo- .
rithms. For the sake of readability, we only present a subsdecfes not degrade performance catastrophically when a crash
' ' ccurs. On the other hand, the detection time is high enough

of the results in Fig. 5 (normal-steady faultlogd) and Fig. 1t is a high multiple of the roundtrip time at low loads:-4\)
(crash-steady faultload). The full set of results is presented;in~ ". .
to avoid that failure detectors suspect correct processes.

Appendixes | and II. The latency increases with the throughputBoth figures show thdatency overheadi.c., the latency

and with the ””mbt‘” of processes. Somewhat surprisingly, Frrﬁ‘lanus the detection tim&7p, rather than the latency. Graphs
latency decreasesith the number of crashes. The reason is, . 7
Showing the latency overhead are more illustrative; note that
that the crashed processes no longer load the network with : . ;
messages the latency is always greater than the detection tifpewith

this faultload, as no atomic broadcast can finish until the

_ The fact that the_l_tr‘]"’(_) a|g(|)l’l'Fth have(;hf? same perfﬁrman&%sh of the first leader is detected. We start by discussing
IS not surprising. 1 heir-onfy important di erence Is the Wahe results for the case of one crash, shown in Fig. 7. The
of electing a new leader, and no new leader is elected with
these faultloads (such that this influences the steady-staté\s we use an abstract model for the failure detectors for the sake of
performance). In fact. we have deliberately chosen similggnerality, this does not appear directly in our simulations. The argumentation
| ith f his st ,d th t t's about a hypothetical implementation. Given that this implementation can
algorithms Tor t IS study, so that We_ can concentrate on rd spending a high multiple of the roundtrip time before generating a
performance differences observed with the other faultloadssuspicion, wrong suspicions will be rare.

early latency [ms]

n =7, lambda = 1

early latency [ms]

after crash of p1; n = 3; lambda = 0.1 after crash of p1; n = 3; lambda = 1 after crash of p1; n = 3; lambda = 10

35 T T T T T T T 50 T T T T T T T 300 T T T T T
CT,TD =100 ms 45 CT,TD =100 ms CT, TD = 1000 ms
30 | Paxos, TD = 100 ms ------- i I Paxos, TD = 100 ms ------- T 250 Paxos, TD = 1000 ms -------
Z z o1 1z
e 1 23 L Y] B
; i - 30 }_{_&/}——%’ b ;
3 3 25 - E 3 150
5 g 5 5
5 5 208 1 =
z { =z sbw 1 =™
© © ©
8 | 3 10F b ° 5l R
5 4
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]
after crash of p1; n = 7; lambda = 0.1 after crash of p1; n = 7; lambda = 1 after crash of p1; n = 7; lambda = 10
90 T T T T T 90 T T T T T 700 T T T T T
CT,TD = 100 ms CT,TD = 100 ms CT, TD = 1000 ms
80 - Paxos, TD = 100 ms ------- b 80 - Paxos, TD =100 ms -----— b 600 |- Paxos, TD = 1000 ms ------- i
7 E z b ?
E E E i
a b a b a
= = = |
5 1 3 1 3
e 4 e 4 e
2 2 2 b
K} K} K}
>] >] > E
© N © N ©
o o o
E 10 | E T
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 7. Latency overhead vs. throughput with the crash-transient faultioad. One process crashes.
after 1, 2 and 3 crashes; n = 7; lambda = 0.1 after 1, 2 and 3 crashes; n = 7; lambda = 1 after 1, 2 and 3 crashes; n = 7; lambda = 10
120 T T T T T 120 T T T T T 600 T T T T T
CT, 2 crashes, TD = 100 ms CT, 2 crashes, TD = 100 ms CT, 2 crashes, TD = 1000 ms
CT, 3 crashes, TD = 100 ms ------- CT, 3 crashes, TD = 100 ms ------- j CT, 3 crashes, TD = 1000 ms ---7---
@ 100 - Paxos, 2 crashes, TD = 100 ms -------- 1 @ 100 - Paxos, 2 crashes, TD = 100 ms -------] @ 500 |- Paxos, 2 crashes, TD = 1000 ms_--- £+ |
E Paxos, 3 crashes, TD = 100 ms Z E Paxos, 3 crashes, TD = 100 ms --L* E Paxos, 3 crashes, TD = 1000 ms;
[a] 80 - b a 80 - 1 B o 400 ~ B
2 [= = o Fegom
g 60 B g 60 1 g 300 AR 4
c c N .7 c E\ L/
2 I § % 2 '
© 5] z--F ©)
= Pl iii 1z ®P7T pespeeeid S l
@ - geeeweEEET T @ S @
© 0f pescgadcEiEesod (= 1 S ol E 1 ® 400 | 1
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]

Fig. 8. Latency overhead vs. throughput with the crash-transient faultload. Multiple processes crash.

latency overhead of both algorithms is showmat 3 (top) network contention is proportional to the number of processes.
andn = 7 (bottom) and a variety of values for (0.1, 1 and This explains why the CT algorithm is favored by a fast
10 from left to right). network and a small number of processes.

The results show that (1) both algorithms perform rather)))
well (the latency overhead of both algorithms is only a few_The results in the case of multiple cras_hes are shown in
times higher than the latency with the normal-steady faultloagld- 8: The latency overhead of both algorithms is shown at
see Fig. 5) and that (2) the algorithms perform roughly tHe = 7, for 2 and 3 crashes (thg algorithms do not tolerate
same. The CT algorithm performs slightly bettenat 3, \ > more than 3 cra;hes) and a variety of valuesXd¢0.1, 1 and
1andn = 7, A = 10, i.e., with a small number of processes.0 rom left to right).
and a highA meaning a relatively fast network. The Paxos tne yegyits are different from those obtained with one

algorithm performs slightly better at = 7,A < 1, i.e., With ooqh oniy: the Paxos algorithm always outperforms the CT
a lot of processes and a smallmeaning a relatively slow giqrithm. The reason is that the CT algorithm takes more

network. rounds: it rotates over all crashed processes first, whereas the

The differences can be explained by differences in theyxos algorithm elects a correct leader after the first round.
execution of the algorithms once the crash of the first leader

is detected. In the CT algorithm, all processes senthek The fact that the CT algorithm rotates over the crashed

message to the first leader. In the Paxos algorithm, the nprocesses also explains why its latency increases with the
leader sends eead message. The rest of the execution (fromumber of crashes. The latency of the Paxos algorithm,

theestimatemessage of the second round) is the same. The Gdwever, decreases with the number of crashes. The reason
algorithm thus uses fewer communication steps, but generatethat fewer correct processes load the system with messages
more contention on the network; moreover, the increase tima smaller extent (cf. Fig. 6).

n = 3, throughput = 10 1/s, lambda = 1 n =7, throughput = 10 1/s, lambda = 1
100 T T T 100

80 80

60 [60

40 40 |

early latency [ms]
early latency [ms]

T
.

20 =
ﬁ"*'*a»—#r-r-‘.

20

0 I I I 0 I I I

1 10 100 1000 1 10 100 1000
mistake recurrence time TMR [ms] mistake recurrence time TMR [ms]
n = 3, throughput = 300 1/s, lambda = 1 n =7, throughput = 300 1/s, lambda = 1
100 T T T 100 T T T
CT ——
Paxos --------
80 80 .
z 60r > 60f 1
s} © E
> 40p > Yor %agz.
E 5 i
20 20 B
0 Il Il Il 0 Il Il Il
1 10 100 1000 1 10 100 1000
mistake recurrence time TMR [ms] mistake recurrence time TMR [ms]

Fig. 9. Latency vsT'y/r with the suspicion-steady faultload, wiffih,; = 0 (A = 1).

C. Suspicion-steady faultload (Figures 9 and 10, Appendix I'glspicions occur frequently, a lot of rounds are needed to
- e ... finish a consensus execution, and all processes become leaders,
The occurrence of wrong suspicions are quantified with the : .
X . . executing rounds that overlap. In contrast, the Paxos algorithm
Tyr and Ty; QoS metrics of the failure detectors. As this - ?
. . .1Is run with a leader oracle that elects the process with the
faultload does not involve crashes, we expect that the mistake

duration Ty, is short. In our first set of results (Fig. 9 forsmallest index among all suspected processes. If suspicions

A = 1; the results forA = 0.1 and 10 are similar and are are short iy = 0), the leader oracle will only ever elept

omitted here for better readability; see Appendix IV for thgmdp2 as leader. Only these two processes start overlapping

. founds. Moreover, suspicions, even if they lead to a change in

full set of results) we hence séf,; to 0, and latency is
d . the output of the leader oracle, do not abort the current round

shown as a function of’y;z. In each figure, we have four

ranhs: the left column shows results with 3 processes %iéectly; their only effect is to start other rounds in parallel
?ighrt) célumn those with 7; the top row show:f results éttgl]at might conflict with the current round. Because of these
low load (10 s'; 1 51 if A = 10) and the bottom row at a ifferences, the CT algorithm generates much more contention

moderate load (300-3: 30 s if A — 10): the algorithms can on the hosts and the network: it is likely thatprocesses run
take a throughput of ébout 700°5(70 §'1 if \ = 10) in the rounds in parallel, whereas the Paxos algorithm only has two

.. . . ocesses that run rounds in parallel. The increased contention
absence of suspicions (i.e., with the normal-steady faultlodd; : .
: . of' CT is the reason why the Paxos algorithm performs better
see Fig. 5 and Appendix I).

The results show that the CT algorithm is much morvt\e”th this faultioad.
sensitive to wrong suspicions if these occur frequenti In the second set of results (Fig. 10 far= 1; the results
illustrate this on Fig. 9: an = 3 and T = 10 s, that for A = 0.1 and 10 are similar and are omitted here for better
is, the settings at which the CT algorithm tolerates wrorf§adability; see Appendix IV for the full set of resultg);r
suspicions most, the CT algorithm only worksTf,g > 5 is fixed andT’,, is on the x axis. We chosEy;r such that the
ms, whereas the FD algorithm still works at the smallgg;, latency of the two algorithms is close to equallat = 0. For
value considered (1 ms); the latency of the two algorithms &le, withA =1 (Fig. 10), (i) T)yr = 100 ms forn = 3
only equal afl’;z > 100 ms. The CT algorithm breaks down@nd (ii) Tar = 1000 ms forn = 7.
at higher values ofl’y;r for all other settings, whereas the The results show that the CT algorithm is sensitive to the
Paxos algorithm continues to work even with 1 ms. mistake duratiori’,; as well, not just the mistake recurrence
The results can be explained by the difference in thame T),z. Once again, the difference can be attributed to
mechanisms that the algorithms use to elect the next leadbe fact that the Paxos algorithm generates less contention: its
The CT algorithm always chooses the next process (inleader oracle usually outputs only a small subset of all pro-
round-robin manner) as the next leader. Moreover, suspiciaesses, hence only a few processes start rounds concurrently,
are likely to abort the current round. Therefore, if wrongvhereas all processes are likely to do so in the CT algorithm.

n = 3, throughput = 10 1/s, TMR = 100 ms, lambda = 1 n =7, throughput = 10 1/s, TMR = 1000 ms, lambda = 1
100 T T

u 80 |

60

40 -

early latency [ms]
early latency [ms]

g 20 T g
,,,,,,, s ,,r¢»7$>$"ii {
O Il Il 0 Il Il
1 10 100 1000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]
n = 3, throughput = 300 1/s, TMR = 100 ms, lambda = 1 n = 7, throughput = 300 1/s, TMR = 1000 ms, lambda = 1
100 100 -
80 e 80 { e
£E E }
z 60 B 3 60 B
< 5] .
2 2 3
S 40 1 £ g
= E
(o} (]
20 B 20 B
0 Il Il 0 Il Il
1 10 100 1000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]
Fig. 10. Latency vsTj; with the suspicion-steady faultload, withy,r fixed (A = 1).
VIIl. DISCUSSION the failure detection service makes mistakes often.

We have compared the performance of the Chandra-To eWe have chosen consensus algorithms with a centralized
v P P Y munication scheme, with one process coordinating the

and Paxos consensus algorithms. These algorithms are Hers. In the future, we would like to investigate algorithms

signed for the same system model: an asynchronous SVS(F/R% a decentralized communication scheme (e.g., [20]) as

(V:”tgl ammlnlnn;al extenzslorr\ to aIIovx; us;}to s:)rl]ver:iheh cogﬁetnsv\;e”. We would also like to investigate how results change in
problem) andf < n/2 process crashes (the highesttha a load balanced configuration, e.g., in a configuration in which

gtL:r (S:t)/Srtee.nthZOd:|:c||OtV(\elsz)j{ :LSO';EseagfoghTjshaﬁ?egmgﬁg@ first leader of subsequent consensus executions rotates
ucture- y execu qu u w y €a ong all processes that are alive. The coordinated fashion

round has a leader that tries to impose a decision. Th : . :
differ in how they tolerate (suspected) failures of the Ieadeg'y electing the next leader in the Chandra-Toueg algorithm

processes in the Chandra-Toueg algorithm rotate the Ieaﬁ‘e‘%’ht provide performance benefits in such a configuration.
role among all processes, whereas processes in the Paxos ACKNOWLEDGMENTS
algorithm elect leaders directly in an uncoordinated manner.

We found that the two algorithms have the same steadl}(ﬁ
state performance if neither crashes nor wrong suspicionsp
occur, or if crashes occur but wrong suspicions do not. As REFERENCES
fqr the transient performance after Or.]e crash, the performan@i M. Barborak, M. Malek, and A. Dahbura, “The consensus problem in
differences are small, and the relative performance depends gistributed computing’ACM Computing Surveysrol. 25, no. 2, pp.
on the relative speed of the network and the hosts, as well 171-220, June 1993.
as on the number of processes. The Paxos algorithm hig X- Défago, A. Schiper, and P. Uab, “Total order broadcast and

. . multicast algorithms: Taxonomy and survey,” Japan Advanced Institute

better transient performance after multiple correlated crashes, of science and Technology, Ishikawa, Japan, Research Report 1S-RR-
because its leader oracle elects a correct leader immediately 2003-009, Sept. 2003.

after detecting the crashes. We found the largest differendd R. Guerraoui and A. Schiper, “The generic consensus seriE&E
9 9 Trans. on Software Engineeringol. 27, no. 1, pp. 29-41, Jan. 2001.

in scenarios with frequent or long lasting wrong failure [onjine]. Available: http:/isrwww.epfl.ch/Publications/Byld/282.html
suspicions. In such scenarios, the Paxos algorithm perforni§ T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
better. The reason is that it generates less contention: it distributed systemsJournal of ACM vol. 43, no. 2, pp. 225-267, 1996.

f:{ﬁﬁ R. D. Prisco, B Lampson, _ and N. Lynch, _ “Revisiting
leader oracle makes sure that only a small subset of the PAXOS algorithm,” Theoretical Computer Science vol.
processes start concurrent rounds, whereas the rotating leader243, no. 1-2, pp. 35-91, July 2000. [Online]. Avail-
scheme in the Chandra-Toueg aIgorithm results in near|y all able: http://www.elsevier.nl/gej-ng/10/41/16/177/21/22/abstract.html;

. http://www.elsevier.nl/gej-ng/10/41/16/177/21/22/article.pdf

processes starting concurrent rounds. Therefore the Ieang:

) : - 161 L. Lamport, “The part-time parliament,ACM Trans. on Computer
based approach seems more suited to environments in which Systemsvol. 16, no. 2, pp. 133-169, 1998.

We would like to thank Pierre Metrailler for his help in
lementing the algorithms and performing the simulations.

10

(7]

8]

(9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

P. Urban, X. Defago, and A. Schiper, “Contention-aware metrics fof18]
distributed algorithms: Comparison of atomic broadcast algorithms,”
in Proc. 9th IEEE Intl Conf. on Computer Communications and
Networks (IC3N 2000)Oct. 2000, pp. 582-589. [Online]. Available: [19]
http://lsrwww.epfl.ch/Publications/Byld/244.html

P. Urban, “Evaluating the performance of distributed agree-
ment algorithms: =~ Tools, methodology and case studies[20]
Ph.D. dissertation, Ecole Polytechnique #&terale de Lausanne,
Switzerland, Aug. 2003, number 2824. [Online]. Available:
http://lsrwww.epfl.ch/Publications/Byld/350.html

W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of servicqd21]
of failure detectors,”IEEE Trans. on Computerssol. 51, no. 2, pp.
561-580, May 2002.

P. Urkan, I. Shnayderman, and A. Schiper, “Comparison of failure
detectors and group membership: Performance study of two atonfit2]
broadcast algorithms,” iProc. Int'l Conf. on Dependable Systems and
Networks San Francisco, CA, USA, June 2003, pp. 645-654. [Online].
Available: http://Isrwww.epfl.ch/Publications/Byld/349.html

N. Sergent, X. Bfago, and A. Schiper, “Impact of a failure [23]
detection mechanism on the performance of consensus,Proct.

IEEE Pacific Rim Symp. on Dependable Computing (PRDC)
Seoul, Korea, Dec. 2001, pp. 137-145. [Online]. Availablef24]
http://lsrwww.epfl.ch/Publications/Byld/292.html

A. Coccoli, P. Urtan, A. Bondavalli, and A. Schiper, “Performance[25]
analysis of a consensus algorithm combining Stochastic Activity
Networks and measurements,” ifroc. Int'l Performance and
Dependability SympWashington, DC, USA, June 2002, pp. 551-560[26]
[Online]. Available: http://Isrwww.epfl.ch/Publications/Byld/294.html

L. Sampaio, F. V. Brasileiro, W. d. C. Cirne, and J. de Figueiredo,
“How bad are wrong suspicious: Towards adaptive distributed protocol$27]
in Proc. Int'l Conf. on Dependable Systems and Networks (DSkih
Francisco, CA, USA, June 2003.

N. Hayashibara, P. Uén, A. Schiper, and T. Katayama, “Performance
comparison between the Paxos and Chandra-Toueg consensus
algorithms,” inProc. Int'l Arab Conf. on Information Technology (ACIT [28]
2002) Doha, Qatar, Dec. 2002, pp. 526-533. [Online]. Available:
http://lsrwww.epfl.ch/Publications/Byld/346.html

P. Urkan, X. Defago, and A. Schiper, “Chasing the FLP impossibility
result in a LAN or how robust can a fault tolerant server be?[29]
in Proc. 20th IEEE Symp. on Reliable Distributed Systems (SRDS)
New Orleans, LA, USA, Oct. 2001, pp. 190-193. [Online]. Available:
http://lsrwww.epfl.ch/Publications/Byld/288.html [30]
H. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. Sanders, “Quan-
tifying the cost of providing intrusion tolerance in group communication
systems,” ifProc. 2002 Int'l Conf. on Dependable Systems and Networks
(DSN-2002) Washington, DC, USA, June 2002, pp. 229-238.

T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest
failure detector for solving consensusJournal of the ACM

vol. 43, no. 4, pp. 685-722, July 1996. [Online]. Available:
http://lwww.acm.org/pubs/toc/Abstracts/jacm/234549.html

11

C. Fetzer, M. Raynal, and F. Tronel, “An adaptive failure detection pro-
tocol,” in Proc. 8th IEEE Pacific Rim Symp. on Dependable Computing
(PRDC-8) Seoul, Korea, Dec. 2001.

V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Dept. of Computer Science, Cornell
University, Ithaca, NY, USA, TR 94-1425, May 1994.

A. Mostéfaoui and M. Raynal, “Solving consensus using Chandra-
Toueg’s unreliable failure detectors: A general quorum-based approach,”
in Proc. 13th Int'l Symp. on Distributed Computing (DIS®@p. 1693,
Bratislava, Slovak Republic, Sept. 1999, pp. 49-63.

S. Frolund and F. Pedone, “Revisiting reliable broadcast,” HP Labora-
tories, Palo Alto, CA, USA, Tech. Rep. HPL-2001-192, Aug. 2001.
[Online]. Available: http://www.hpl.hp.com/techreports/2001/HPL-
2001-192.html

X. Défago and A. Schiper, “Specification of replication techniques,
semi-passive replication, and lazy consensus,” Japan Advanced Institute
of Science and Technology, Ishikawa, Japan, Research Report KS-RR-
2002-001, Feb. 2002.

E. Anceaume, “A lightweight solution to uniform atomic broadcast for
asynchronous systems,” iRroc. 27th Int'l Symp. on Fault-Tolerant
Computing (FTCS-27)Seattle, WA, USA, June 1997, pp. 292-301.

R. Boichat, P. Dutta, S. Frlund, and R. Guerraoui, “Deconstructing
Paxos,”SIGACT Newsvol. 34, no. 1, pp. 47-67, 2003.

R. Friedman and R. van Renesse, “Packing messages as a tool for
boosting the performance of total ordering protocols,” Dept. of Computer
Science, Cornell University, Ilthaca, NY, USA, TR 95-1527, July 1995.
F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorialACM Computing Surveysol. 22, no. 4,

pp. 299-319, Dec. 1990.

H. Madeira, K. Kanoun, J. Arlat, Y. Crouzet, A. Johansson,
R. Lindstbm, et al, “Preliminarily dependability benchmark
framework,” Dependability Benchmarking project (DBench), EC IST-
2000-25425, Project deliverable CF2, Aug. 2001. [Online]. Available:
http://www.laas.fr/DBench/

P. Urkan, X. Defago, and A. Schiper, “Neko: A single environment to
simulate and prototype distributed algorithmdgurnal of Information
Science and Engineeringsol. 18, no. 6, pp. 981-997, Nov. 2002.
[Online]. Available: http://lsrwww.epfl.ch/Publications/Byld/307.html

K. Tindell, A. Burns, and A. J. Wellings, “Analysis of hard real-time
communications,Real-Time Systemsol. 9, no. 2, pp. 147-171, Sept.
1995.

J. Gray, “Why do computers stop and what can be done about it ?”
in Proc. 5th Symp. on Reliablity in Distributed Software and Database
systemsJan. 1986.

APPENDIX |
FULL SET OF RESULTS FOR THE NORMAESTEADY FAULTLOAD

Graphs showing the early latency

lambda = 0.1 lambda =1 lambda = 10
700 T T T
n=3 —— -

L n=5

]] n=7
@ ‘@ @
£ 1 & 1 &
> > >
o o o
< e c
L b 2 b 2
K K} K
> > >
5 b @ b 5
L o L

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]

Fig. 11. Latency vs. throughput with the normal-steady faultload.

Graphs showing the late latency

lambda = 0.1 lambda = 1 lambda = 10
700 T T T
n=3
B i L n=5 -
n=7
z 1 = 1 @
£ 4 E £
> > - >
o o o
c = c c
2 2 2
Kl K} 7 Kl
2 7 £ 2
= k] 1 =
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]

Fig. 12. Latency vs. throughput with the normal-steady faultload.

12

Graphs showing the early latency

n =3, lambda = 0.1

APPENDIXII

n =5, lambda = 0.1

FULL SET OF RESULTS FOR THE CRASHSTEADY FAULTLOAD

n=7,lambda = 0.1

60 T T T T T 80 T T T T T T 80 T T T T T T
no crash —— no crash —— no crash ——
1crash -------- 70 1crash -------- 1 70 | 1 crash 1
50 - T 2 crashes ——-- } 2 crashes
'g] E‘ . g 60 3 crashes -~ 1
N T = 1 5 50 1
o o o
5 1 8 1 5 .
K K} K
> > 1 > 30 1
5 1 % 5
L o 4 L 20 4
) g 10 g
0 L L L L L L L
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 13. Latency vs. throughput with the crash-steady faultloae-(0.1).
n =3, lambda = 1 n=>5, lambda =1 n =7, lambda = 1
80 T T T T T 80 T T T T T 90 T T T T T
no crash —— no crash —— no crash ——
70 | 1crash - E 70 + tcrash - } E 80 1crash b
1 2 crashes ———- 70k 2 crashes T
- 60 b @ . = 3 crashes - { ;
£ T E |l E 60f i
c [=4 < ;
2 T 2 T L S
= ks = h
> B > B B
] 5] = b
Q 4 o 4 @
0 L L L L L L L 0 L L L L L L L 0 L L L L L L L
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 14. Latency vs. throughput with the crash-steady faultloae:(1).
n =3, lambda = 10 n =5, lambda = 10 n=7,lambda = 10
600 T T T T T 600 T T T T T T 800 T T T T T
no crash —— no crash —— no crash ——
1 crash -------- 1crash - - 700 - 1 crash - - 1
500 |-] 500 2 crashes ———- T 2 crashes ———-
g g % / g 600 - 3crashes -------- 11
Fan :
3 s 1 & 400 1
K] K K
= > > 300 B
I T b IS
(] @ L] 200 .
) 100 R
0 L L L L L L L 0 L L L L L L L 0 L L L L L L L
0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 15. Latency vs. throughput with the crash-steady faultloae: (10).

13

Graphs showing the late latency

late latency [ms]

late latency [ms]

late latency [ms]

n =3, lambda = 0.1

n =5, lambda = 0.1

n=7,lambda = 0.1

60 T T T T T 90 T T T T T T 90 T T T T T T
no crash —— no crash —— no crash ——
1crash -] 80 1crash - } b 80 I 1 crash { b
50 | ; 70 | 2crashes —--- L] 70 | 2crashes i
— — 3 crashes --------
40 1 2 1 E TESA
> >
2 1 8)
30 [7 k) 4 e B
K o
20 o B g B % B
e - m
10 7“+_,+.,-+—>'+"+ -))
0 L L L L L L L 0 L L L L L L L L L L L L L
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 16. Latency vs. throughput with the crash-steady faultloae-(0.1).
n =3, lambda = 1 n =5, lambda = 1 n=7,lambda =1
90 T T T T T 90 T T T T T 100 T T T T
no crash —— no crash —— 2 no crash ——
80 - 1crash - q 80 - tcrash -------- } b I tcrash - 7
70 2 crashes ——-- P 80 | 2crashes - .
— — 3 crashes - -
)) 70 b
E 1 &
> i ~ i
2 2 i
2 , 2
K] Kl m
2 g 2
K] K] 1
0 L L L L L L L 0 L L L L L L L 0 L L L L L L L
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 17. Latency vs. throughput with the crash-steady faultloag-(1).
n =3, lambda = 10 n =5, lambda = 10 n=7,lambda = 10
700 T T T T T 700 T T T T T 800 T T T T T
no crash —— no crash —— no crash ——
600 | 1crash -------- E 600 1crash ------- N 700 1 crash - - B
2 crashes ——-- 2 crashes -
500 K & { A1 = 600 - 3crashes - b
E A £ 500 i
400 g 3 g 3
g S 400 i
300 4 B 4 B
o © 300 B
4 © 4 ©
200 = T o200 1
100 1 1 100 7 g
0 L L L L L L L 0 L L L L L L L 0 L L L L L L L
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 18. Latency vs. throughput with the crash-steady faultloae- (10).

APPENDIXIII

FULL SET OF RESULTS FOR THE CRASHTRANSIENT FAULTLOAD

14

A. Graphs showing the early latency overhead

early latency - TD [ms] early latency - TD [ms]

early latency - TD [ms]

early latency - TD [ms]

early latency - TD [ms]

35

after crash of p1; n = 3; lambda = 0.1

" CT,TD=100ms

30 | Paxos, TD=100ms ---—---—

140

120

100

0 ! !
0 100 200 300 400 500 600 700

throughput [1/s]

after crash of p1; n = 5; lambda = 0.1

800

' CT,TD=100ms ——
Paxos, TD = 100 ms -------

0
0 100 200 300 400 500 600 700

throughput [1/s]

after crash of p1; n = 7; lambda = 0.1

920

80

'CT, TD'= 100 ms
Paxos, TD =100 ms --

90

0
0 100 200 300 400 500 600
throughput [1/s]

Fig. 19.

after 1 and 2 crashes; n = 5; lambda = 0.1

700

dT, 2 créshes, TD=100ms "

80 Paxos, 2 crashes, TD = 100 ms --—-----

70
60
50
40 -
30

20

,{»—{———P’i"*"?%"} o

10F o

120

100

0
0 100 200 300 400 500 600 700

throughput [1/s]

after 1, 2 and 3 crashes; n = 7; lambda = 0.1

T T T T
CT, 2 crashes, TD = 100 ms
CT, 3 crashes, TD = 100 ms -

Paxos, 2 crashes, TD =100 ms -

Paxos, 3 crashes, TD = 100 ms

0
0 100 200 300 400 500 600
throughput [1/s]

Fig. 20. Latency overhead vs. throughput with the crash-transient faultload. Multiple processes crash.

700

early latency - TD [ms] early latency - TD [ms]

early latency - TD [ms]

early latency - TD [ms]

early latency - TD [ms]

50

after crash of p1; n = 3; lambda = 1

45 -

" CT,TD=100ms

Paxos, TD =100 ms -------

0

180
160
140
120
100

0
0

!
100 2

00

through

300 400 500 600 700

put [1/s]

after crash of p1; n = 5; lambda = 1

800

" CT, 7D =100 ms
Paxos, TD = 100 ms

100 200 300 400 500 600 700
throughput [1/s]

after crash of p1; n = 7; lambda = 1

90

80

10 |

"CT, TD'= 100 ms
Paxos, TD =100 ms --

0
0

160
‘ dT, 2 cr‘ashes,‘TD —100ms
140 | Paxos, 2 crashes, TD = 100 ms ------- =
120 B
100 i
80 il
60 | B
or /F4h$-—£»<#»-¢—'$”f“*”* b
20 -1 B
0 I I I I I I I
0 100 200 300 400 500 600 700
throughput [1/s]
after 1, 2 and 3 crashes; n = 7; lambda = 1
120 T T T T T T
CT, 2 crashes, TD = 100 ms
CT, 3 crashes, TD = 100 ms -
100 Paxos, 2 crashes, TD = 100 ms - 7
Paxos, 3 crashes, TD = 100 ms
80 | B
60 i -
40 $§¥$§§§; i i
20 E
0 | | | | | |
0 100 200 300 400 500 600

300
through

400 500 600
put [1/s]

after 1 and 2 crashes; n = 5; lambda = 1

700

throughput [1/s]

15

700

early latency - TD [ms] early latency - TD [ms]

early latency - TD [ms]

early latency - TD [ms]

early latency - TD [ms]

300

250

200

150

100

50

150

700

600 -

450
400
350
300
250
200
150
100

50

600

500

400

300

200

100

after crash of p1; n = 3; lambda = 10

"CT, TD = 1000 ms

Paxos, TD = 1000 ms -------

10 20 30 40 50 60 70
throughput [1/s]
after crash of p1; n = 5; lambda = 10
"CT, TD = 1000 ms —
Paxos, TD = 1000 ms ------- +
I I I I I I
10 20 30 40 50 60 70
throughput [1/s]
after crash of p1; n = 7; lambda = 10
"CT, TD = 1000 ms — ‘ ‘
Paxos, TD = 1000 ms ------- 4
| | | | | |
10 20 30 40 50 60 70

throughput [1/s]

Latency overhead vs. throughput with the crash-transient faultioad. One process crashes.

after 1 and 2 crashes; n = 5; lambda = 10

CT‘, 2 crashes, TD = 1000 ms
Paxos, 2 crashes, TD = 1000 ms

10

20

30 40
throughput [1/s]

50

60

after 1, 2 and 3 crashes; n = 7; lambda = 10

T T T T
CT, 2 crashes, TD = 1000 ms
CT, 3 crashes, TD = 1000 ms

Paxos, 2 crashes, TD = 1000 ms.

Paxos, 3 crashes, TD = 1000 m:

30 40
throughput [1/s]

50

60

70

B. Graphs showing the late latency overhead

late latency - TD [ms] late latency - TD [ms]

late latency - TD [ms]

late latency - TD [ms]

late latency - TD [ms]

after crash of p1; n = 3; lambda = 0.1

after crash of p1; n = 3; lambda = 1

after crash of p1; n = 3; lambda = 10

35 T T T T T 50 T T T T T 350 T T T T
CT,TD =100 ms 4 CT,TD = 100 ms CT, TD = 1000 ms
30 Paxos, TD=100ms ------- 4 5T Paxos, TD = 100 ms ------- T 300 | Paxos, TD = 1000 ms ------- 3
@ N @
b E 4 E 250
o o
i [b 200
3 1z
b 3 i § 150
K] K]
| ° E © 100
S i S
4 sl] 50 F 4
0 I I I I I I I 0 I I I I I I I 0 I I I I I I
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]
after crash of p1; n = 5; lambda = 0.1 after crash of p1; n = 5; lambda = 1 after crash of p1; n = 5; lambda = 10
140 T T T T T 200 T T T T T 600 T T T T
CT,TD =100 ms CT,TD =100 ms CT, TD = 1000 ms
120 Paxos, TD = 100 ms ------- J 180 | Paxos, TD = 100 ms ------- T 500 Paxos, TD = 1000 ms ------- i
& 160 E -
100 - b E a0 . £ |
1l B oot 14 °
3 100 i1 5 E
4 2 2
2 T 2
k] = 4
- o h o
k] | k]
I I I I I I I 0 I I I I I I I 0 I I I I I I
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]
after crash of p1; n = 7; lambda = 0.1 after crash of p1; n = 7; lambda = 1 after crash of p1; n = 7; lambda = 10
EY T T T T T T 100 T T T T T T 700 T T T T T T
CT,TD =100 ms CT,TD =100 ms CT, TD = 1000 ms
80 - Paxos, TD=100ms -- b 90 [paxos, TD = 100 ms b 600 | Paxos, TD = 1000 ms ------- i
E T 7 T
£ i £ i
7] o a
| =4 B = 4
g 7 g
4 e 2 4
o - o
i = =
2 T 2 7
B K] 4 K]
0 | | | | | | 0 | | | | | | 0 | | | | | |
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]
Fig. 21. Latency overhead vs. throughput with the crash-transient faultload. One process crashes.
after 1 and 2 crashes; n = 5; lambda = 0.1 after 1 and 2 crashes; n = 5; lambda = 1 after 1 and 2 crashes; n = 5; lambda = 10
90 T T T T T 160 T T T T T T 450 T T T T T
CT, 2 crashes, TD = 100 ms CT, 2 crashes, TD = 100 ms CT, 2 crashes, TD = 1000 ms
80 [Paxos, 2 crashes, TD = 100 ms ------- 7 140 | Paxos, 2 crashes, TD = 100 ms ------- — 400 Paxos, 2 crashes, TD = 1000 ms ---7-- T
il |z SR *
i A e 100 /A g i
50 /14 i = 250 4
/ oy 7 > \
40 | B c c 200 B
2 4 2
30 | s E e =150 B
20 T {1 = 1 & 10 :
_E-E-
10 bo=F B 1 50 i
0 I I I I I I I 0 I I I I I I I 0 I I I I I I
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60 70
throughput [1/s] throughput [1/s] throughput [1/s]
after 1, 2 and 3 crashes; n = 7; lambda = 0.1 after 1, 2 and 3 crashes; n = 7; lambda = 1 after 1, 2 and 3 crashes; n = 7; lambda = 10
120 T T T T T T 140 T T T T T T 600 T T T T T T
CT, 2 crashes, TD = 100 ms CT, 2 crashes, TD = 100 ms CT, 2 crashes, TD = 1000 ms
CT, 3 crashes, TD =100 ms - 120 k- CT, 3 crashes, TD = 100 ms - 4 CT, 3 crashes, TD = 1000 ms.
100 - Paxos, 2 crashes, TD = 100 ms - -- b — Paxos, 2 crashes, TD = 100 ms - —_ 500 - Paxos, 2 crashes, TD = 1000 ms. 7
Paxos, 3 crashes, TD = 100 ms / 2 100 Paxos, 3 crashes, TD = 100 ms i 2 Paxos, 3 crashes, TD = 100
B o o 400 B
T oe0 g i
g > Z 300 g
s &0 3
4 © S B
- | S 20
K] K]
1 20 4 100 4
0 | | | | | | 0 | | | | | | 0 | | | | | |
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 10 20 30 40 50 60 70

throughput [1/s]

Fig. 22.

throughput [1/s]

16

throughput [1/s]

Latency overhead vs. throughput with the crash-transient faultioad. Multiple processes crash.

APPENDIX IV
FULL SET OF RESULTS FOR THE SUSPICIOISTEADY FAULTLOAD

A. Graphs showing the early latency

n = 3, throughput = 10 1/s, lambda = 0.1 n =7, throughput = 10 1/s, lambda = 0.1
100 T T T 100 T T T
CT|—— CT ——
PaxosT-------- Paxos --------
80 B 80 B
‘@ ‘@
E E
3> 60 1 > 60 1
< e
2 2
© ©
> 40r b > 40r b
5 ©
o o
20 | B 20 B
s T E PR .
* D 004 M s s vy i 0 - -H.‘T e |
1 10 100 1000 1 10 100 1000
mistake recurrence time TMR [ms] mistake recurrence time TMR [ms]
n = 3, throughput = 300 1/s, lambda = 0.1 n =7, throughput = 300 1/s, lambda = 0.1
100 T T 100 T T T
CT
Paxos
80 B
‘@ g ‘@
E E
g O 12
2 2
< <
> 4of 1 =
:
20 | Fx
%""ﬁ»-v-w T
0 1 1 1 0 1 1 1
1 10 100 1000 1 10 100 1000
mistake recurrence time TMR [ms] mistake recurrence time TMR [ms]
Fig. 23. Latency vsT)/r with the suspicion-steady faultload, wiffi; = 0 (A = 0.1).
n = 3, throughput = 10 1/s, lambda = 1 n =7, throughput = 10 1/s, lambda = 1
100 T T T 100 T T T
80 80
iy ‘@
E E
> 60 [> 60 [
2 2
2 2
© ©
> 40r > 40r
5 © .
o o = =
20 | 20
0 1 1 1 0 1 1 1
1 10 100 1000 1 10 100 1000
mistake recurrence time TMR [ms] mistake recurrence time TMR [ms]
n = 3, throughput = 300 1/s, lambda = 1 n =7, throughput = 300 1/s, lambda = 1
100 T T T 100 T T
80 |- 80 .
E E
? 60 ? 60
2 2
© ©
> 40 £ > 40
20 20 B
0 1 1 1 0 1 1 1
1 10 100 1000 1 10 100 1000
mistake recurrence time TMR [ms] mistake recurrence time TMR [ms]

Fig. 24. Latency vsT)/r with the suspicion-steady faultload, witfi,; = 0 (A = 1).

17

early latency [ms]

early latency [ms]

early latency [ms]

early latency [ms]

n = 3, throughput = 1 1/s, lambda = 10

1000 T T T
CT ——
Paxos --------
800
600 [
400 | '%}
200 - g
0 L ! A
1 10 100 1000
mistake recurrence time TMR [ms]
n = 3, throughput = 30 1/s, lambda = 10
1000 T T T
CT ——
Paxos --------
800 T
600 1
400 T
oEEEEEam T
%=
200 Fea E
0 L L L
1 10 100 1000

mistake recurrence time TMR [ms]

early latency [ms]

early latency [ms]

n =7, throughput = 1 1/s, lambda = 10

1000 T T T
CT ——
Paxos --------
800
600 |
400
200 F FEEELE
S
0 L L L
1 10 100 1000
mistake recurrence time TMR [ms]
n =7, throughput = 30 1/s, lambda = 10
1000 T T T
0 L L L
1 10 100 1000

mistake recurrence time TMR [ms]

Fig. 25. Latency vsT'/r with the suspicion-steady faultload, wiffi,; = 0 (A = 10).

100

80

60

40

20

100

80

60

40

20

n = 3, throughput = 10 1/s, TMR = 50 ms, lambda = 0.1

mistake duration TM [ms]
n = 3, throughput = 300 1/s, TMR = 50 ms, lambda = 0.

' i
1 10 100 1000

1

i

mistake duration TM [ms]

1
1 10 100 1000

early latency [ms]

early latency [ms]

18

n =7, throughput = 10 1/s, TMR = 500 ms, lambda = 0.1
100 T

80

60

40

20

S e EE
0 | I

1 10 100 1000
mistake duration TM [ms]

>

=7, throughput = 300 1/s, TMR = 500 ms, lambda = 0.1

1 10 100 1000
mistake duration TM [ms]

Latency vsT’, with the suspicion-steady faultload, withy,r fixed (A = 0.1).

early latency [ms]

early latency [ms]

early latency [ms]

early latency [ms]

n = 3, throughput = 10 1/s, TMR = 100 ms, lambda = 1 n =7, throughput = 10 1/s, TMR = 1000 ms, lambda = 1

100 T T 100 T T
; cT ——
"""" ; Paxos --------
80 : B 80 B
‘@
E
60 1 § 60 *
& ;
40 1 I wf I
20 R 20 E{ ' R
,,,,,,,,,,,,,, TeesexE
0 L L 0 L L
1 10 100 1000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]
n = 3, throughput = 300 1/s, TMR = 100 ms, lambda = 1 n = 7, throughput = 300 1/s, TMR = 1000 ms, lambda = 1
100 T 7 100 T T T
80 R 80 { R
; -
I z]
60 g 5 & g
I g
40 i T 40]
@
[s
20 B 20 B
0 L L 0 L L
1 10 100 1000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]

Fig. 27. Latency vsT, with the suspicion-steady faultload, witfy,r fixed (A = 1).

n = 3, throughput = 1 1/s, TMR = 500 ms, lambda = 10 n =7, throughput = 1 1/s, TMR = 5000 ms, lambda = 10
1000 T 1000 T T T
! CT ——
Paxos --------
800 B 800 B
@
E
600 B > 600 - B
c
L
400 i 2 400 -
5] ;
3 ;
200 B 200 f{
| ¥ ozv T
0 | 1 1 0 1 1 1
1 10 100 1000 10000 1 10 100 1000 10000
mistake duration TM [ms] mistake duration TM [ms]
n = 3, throughput = 30 1/s, TMR = 500 ms, lambda = 10 n =7, throughput = 30 1/s, TMR = 5000 ms, lambda = 10
1000 — 1000 T T T
: CT ——
800 B
iy
E
600 B >
c
Qo
400 i 2
©
o
200 B
0 1 1 1 0 1 1 1
1 10 100 1000 10000 1 10 100 1000 10000
mistake duration TM [ms] mistake duration TM [ms]

Fig. 28. Latency vsT, with the suspicion-steady faultload, witfy,r fixed (A\ = 10).

19

B. Graphs showing the late latency

late latency [ms]

late latency [ms]

late latency [ms]

late latency [ms]

100

80

60

40

20

100

80

60

40

20

n = 3, throughput = 10 1/s, lambda = 0.1

10 100 1000
mistake recurrence time TMR [ms]

n = 3, throughput = 300 1/s, lambda = 0.1

Paxos -1+

1
1 10 100 1000

mistake recurrence time TMR [ms]

n =7, throughput = 10 1/s, lambda = 0.1

o
S

N @ ©
o S S

late latency [ms]

n
o

0 1 1 1
1 10 100 1000

mistake recurrence time TMR [ms]

n = 7, throughput = 300 1/s, lambda = 0.1

o
S

®
S
T

@
S
T

N

o
T
#*

late latency [ms]

n
(=]
T

L

0 1 1 1
1 10 100 1000

mistake recurrence time TMR [ms]

Fig. 29. Latency vsTj,r with the suspicion-steady faultload, wiffy,; = 0 (A = 0.1).

100

80

60

40

20

100

80

60

40

20

Fig. 30.

n = 3, throughput = 10 1/s, lambda = 1

CT
Paxos --{-----

Nz'****-#»s; =

1
1 10 100 1000
mistake recurrence time TMR [ms]

n = 3, throughput = 300 1/s, lambda = 1

1
1 10 100 1000
mistake recurrence time TMR [ms]

n =7, throughput = 10 1/s, lambda = 1

100
CT ——
Paxos --------
80 1
‘@
E
. 60 b
2
2
S 40F. B
2 *
K E,
E=3
20 | T
0 1 1 1
1 10 100 1000
mistake recurrence time TMR [ms]
n =7, throughput = 300 1/s, lambda = 1
100 T T
CT ——
Paxos -------
80 ‘1\{
E T
= 60 *
3 N
5 %_z
© L E.
£ 40 P
kS
20 1
0 1 1 1
1 10 100 1000

mistake recurrence time TMR [ms]

Latency vsT),r with the suspicion-steady faultload, wiffy; = 0 (A = 1).

20

late latency [ms]

late latency [ms]

late latency [ms]

late latency [ms]

n = 3, throughput = 1 1/s, lambda = 10

1000

800 +

600

1000

©
=3
S

@
o
S

N
o
]

n
=3
]

Fig. 31.

100

80

60

40

20

100

80

60

40

20

L L L
1 10 100 1000
mistake recurrence time TMR [ms]

n = 3, throughput = 30 1/s, lambda = 10

1
1 10 100 1000
mistake recurrence time TMR [ms]

n = 3, throughput = 10 1/s, TMR = 50 ms, lambda = 0.1

mistake duration TM [ms]

n = 3, throughput = 300 1/s, TMR = 50 ms, lambda = 0.

1
1 10 100 1000

1

mistake duration TM [ms]

1
1 10 100 1000

late latency [ms]

late latency [ms]

late latency [ms]

late latency [ms]

n =7, throughput = 1 1/s, lambda = 10

1000 T T T
CT ——
Paxos --------
800
600 |
400
EEEEs
-
200 | EE
0 1 1 1
1 10 100 1000
mistake recurrence time TMR [ms]
n =7, throughput = 30 1/s, lambda = 10
1000 T T T
CT ——
Paxos --------
800
Nl
400 5.,,‘}“}‘
200 T
0
1 10 100 1000

mistake recurrence time TMR [ms]

Latency vsT'),r with the suspicion-steady faultload, witfh; = 0 (A = 10).

n =7, throughput = 10 1/s, TMR = 500 ms, lambda = 0.1

100

80

60

40

20

1 10 100 1000
mistake duration TM [ms]

=7, throughput = 300 1/s, TMR = 500 ms, lambda = 0.

>

1 10 100 1000
mistake duration TM [ms]

g. 32. Latency vsTys with the suspicion-steady faultload, witfy,r fixed (A = 0.1).

21

late latency [ms]

late latency [ms]

late latency [ms]

late latency [ms]

n = 3, throughput = 10 1/s, TMR = 100 ms, lambda = 1

n =7, throughput = 10 1/s, TMR

= 1000 ms, lambda = 1

10000

10000

100 T T 100 T T
CT —— CT ——
Paxos --------
i 80 4
D
S
b > 60 A
& ;
9 E
- o 40 | { i
2 I
& I
g 0F LT g
0 L L 0 L L
1 10 100 1000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]
n = 3, throughput = 300 1/s, TMR = 100 ms, lambda = 1 n = 7, throughput = 300 1/s, TMR = 1000 ms, lambda = 1
100 T 100 T T %
80 : 80 { :
-
£
60 g = 60 g
2
2
40 E < 40 E
Q E
R e e
20 B 20 B
0 L 0
1 10 100 1000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]
Fig. 33. Latency vsT,, with the suspicion-steady faultload, witfy,r fixed (A = 1).
n = 3, throughput = 1 1/s, TMR = 500 ms, lambda = 10 n =7, throughput = 1 1/s, TMR = 5000 ms, lambda = 10
1000 T 1000
/ CT ——
Paxos --------
800 B 800 B
iy
£
600 g = 600 [e
o
2
2 .
400 4 & 400 ;
k< §
200 R 200 3E L]
] F ozt T
0 L L L 0 L L L
1 10 100 1000 10000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]
n = 3, throughput = 30 1/s, TMR = 500 ms, lambda = 10 n =7, throughput = 30 1/s, TMR = 5000 ms, lambda = 10
1000 T T T 1000 T T T
T — 3 cT ——
Paxos -------- Paxos --------
800 B 800 B
‘@
E ;
600 B S 600 A
A
400 - 18 400 L
3 g ERS T
,éz
200 & e B 200 B
0 L L L 0 L L L
1 10 100 1000 10000 1 10 100 1000
mistake duration TM [ms] mistake duration TM [ms]
Fig. 34. Latency vsT, with the suspicion-steady faultload, witfy,r fixed (A\ = 10).

22

