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Abstract— Protocols that solve agreement problems are essen-
tial building blocks for fault tolerant distributed systems. While
many protocols have been published, little has been done to
analyze their performance, especially the performance of their
fault tolerance mechanisms. In this paper, we compare two well-
known asynchronous consensus algorithms. In both algorithms,
a leader process tries to impose a decision, and another leader
retries if the leader fails doing so. The algorithms elect leaders
differently: the Chandra-Toueg algorithm has a rotating leader,
whereas processes in the Paxos algorithm elect leaders directly.
We investigate the performance implications of this difference.

In the system under study, processes send atomic broadcasts
to each other. Consensus is used to decide the delivery order
of messages. We evaluate the steady state latency in (1) runs
with neither crashes nor suspicions, (2) runs with crashes and
(3) runs with no crashes in which correct processes are wrongly
suspected to have crashed, as well as the transient latency after (4)
one crash and (5) multiple correlated crashes. The results show
that the Paxos algorithm tolerates frequent wrong suspicions
(3) and correlated crashes (5) better, while the performance is
comparable in all other scenarios.
Keywords: simulation, consensus, atomic broadcast, rotating
coordinator, leader, asynchronous, failure detector

I. I NTRODUCTION

Agreement problems — such as consensus, atomic broad-
cast or atomic commitment — are essential building blocks for
fault tolerant distributed applications, including transactional
and time critical applications. These agreement problems have
been extensively studied in various system models, and many
protocols solving these problems have been published [1],
[2], offering different levels of guarantees. However, these
protocols have mostly been analyzed from the point of view
of their safety and liveness properties, and very little has been
done to analyze theirperformance. Also, most papers focus
on analyzing failure free runs, thus neglecting the perfor-
mance aspects of failure handling. In our view, the limited
understanding of performance aspects, in both failure free
scenarios and scenarios with failure handling, is an obstacle
for adopting such protocols in practice. This paper presents a
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performance study focusing on consensus, a problem related to
most other agreement problems [3], in scenarios that involve
failure handling.

1) The two algorithms:We present a study comparing the
performance of two consensus algorithms: the Chandra-Toueg
[4] and Paxos [5], [6] algorithms. We have chosen these
algorithms because they are well-known, and because there
is an ongoing informal debate in the community about their
relative performance. We hope that our comparison will bring
some objective arguments to this debate.

The algorithms share a number of characteristics: they are
designed for the asynchronous system model with minimal
extensions needed to solve consensus, they need that a major-
ity of processes is correct, and they have a similar structure:
they execute a sequence of rounds whereby each round has
a leader1 that tries to impose a decision. They differ in how
they tolerate (suspected) failures of the leader: processes in
the Chandra-Toueg algorithm rotate the leader role among all
processes, whereas processes in the Paxos algorithm elect lead-
ers directly in an uncoordinated manner (the two approaches
are sometimes called rotating coordinator paradigm and leader
based paradigm). In this paper, we investigate the performance
implications of this difference.

2) Elements of the performance study:The two consensus
algorithms are analyzed in a system in which processes send
atomic broadcasts to each other. Since the atomic broadcast
algorithm that we use [4] leads to the execution of a sequence
of consensus to decide the delivery order of messages, eval-
uating the performance of atomic broadcast is a good way
of evaluating the performance of the underlying consensus
algorithm in a realistic usage scenario. In our study, the
atomic broadcast algorithm uses either of the two consensus
algorithms. We study the system using simulation, which
allows us to compare the algorithms in a variety of different
environments. We model message exchange by taking into
account contention on the network and the hosts, using the

1Ref. [4] uses the termcoordinator. We stick to leader throughout the
paper.



metrics described in [7], [8]. We model failure detectors in
an abstract way, using the quality of service (QoS) metrics
proposed by Chen et al. [9]. We compare the algorithms using
the benchmarks proposed in [8], [10] (which are stated in
terms of the system under study, i.e., atomic broadcast). Our
main performance metric for atomic broadcast isearly latency,
the time that elapses between the sending of a messagem
and the earliest delivery ofm. We use symmetric workloads.
We evaluate the steady state latency in (1) runs with neither
crashes nor suspicions, (2) runs with crashes and (3) runs with
no crashes in which correct processes are wrongly suspected
to have crashed, as well as the transient latency after (4) one
crash and (5) multiple correlated crashes.

3) The results:Our main finding is that, although the two
algorithms have comparable performance in scenarios (1), (2)
and (4), the Paxos algorithm performs significantly better
in scenarios 3 and 5. With multiple correlated crashes, the
reason is that the Paxos algorithm elects a correct leader
immediately after detecting the crashes. We found the largest
difference when wrong failure suspicions were frequent and/or
long lasting wrong failure suspicions. The reason is that the
Paxos algorithm generates less contention: its leader election
mechanism makes sure that only a small subset of all processes
start concurrent rounds, whereas the rotating leader scheme in
the Chandra-Toueg algorithm results in nearly all processes
starting concurrent rounds. Therefore the leader based ap-
proach seems more suited to environments in which the failure
detection service makes mistakes often.

4) Structure:The rest of the paper is structured as follows.
Section II presents related work. Section III defines the system
model and the agreement problems used in this paper. We
introduce the algorithms in Section IV. Section V describes
the benchmarks we used, followed by our simulation model
for the network and the failure detectors in Section VI. Our
results are presented in Section VII, and the paper concludes
with a discussion in Section VIII.

II. RELATED WORK

Most of the time, consensus algorithms are evaluated using
simple metrics like time complexity (number of communica-
tion steps) and message complexity (number of messages).
This gives, however, little information on the real performance
of those algorithms. A few papers provide a more detailed
performance analysis. Ref. [11] compares the impact of dif-
ferent implementations of failure detectors on the Chandra-
Toueg consensus algorithm; Ref. [12] and [13] analyze the
latency of the same algorithm, concentrating mostly on the
effect of wrong failure suspicions; All these papers consider
only isolated consensus executions, which are a special case
of our workloads, corresponding to a very low setting for
the throughput. Other papers [10], [15] consider a consensus
algorithm embedded in an atomic broadcast algorithm, but
they do not aim at comparing consensus algorithms. Note
also that the performance of atomic broadcast algorithms is
studied more extensively in the literature than the performance
of consensus algorithms (see [8] for a summary).

Most papers on the performance of agreement algorithms
only consider failure free executions (our normal-steady fault-
load), which only gives a partial and incomplete understanding
of the behavior of the algorithms. We only note a few interest-
ing exceptions here. The transient effects of a crash are studied
in [10], [11], [16], but the faultload in [11], [16] is different
from our crash-transient faultload. Ref. [11] assumes that the
crash occurs at the worst possible moment during execution,
leading to the worst case latency. In contrast to our faultload,
this faultload requires a detailed knowledge of the execution,
which is only available if one considers very simple workloads
(isolated executions of consensus in [11]) in an analytical or
simulation model. The other paper [16] measures the latency
of the group membership service used by the algorithm to
tolerate crash failures.2 This way of considering the transient
effects of a crash is less general compared to our faultload, as it
is stated in terms of an implementation detail of the algorithm
under study.

The assumptions and/or the algorithms used in all the
studies listed are too different to allow a meaningful com-
parison of the results with those in this paper. Our previous
work [14] would be an exception: it compares the same
algorithms using measurements rather than simulation, and
with fewer faultloads. However, bugs discovered and fixed
since its publication invalidate the results presented there.

III. D EFINITIONS

A. System model

We consider a widely accepted system model. It consists
of n processesp1, . . . , pn that communicate only by message
passing. The system is asynchronous, i.e., we make no as-
sumptions on its timing behavior: there are no bounds on
the message transmission delays and the relative processing
speeds of processes. The network is quasi-reliable: it does
not lose, alter nor duplicate messages (messages whose sender
or recipient crashes might be lost). In practice, this is easily
achieved by retransmitting lost messages. We consider that
processes only fail by crashing. Crashed processes do not send
any further messages. Process crashes are rare, processes fail
independently, and process recovery is slow: both the time
between crashes and time to repair are much greater than the
latency of the algorithms investigated.

The consensus algorithms used in this paper useoraclesto
tolerate process crashes: the Chandra-Toueg algorithm (CT)
usesfailure detector oraclesand the Paxos algorithm (Paxos)
usesleader oracles. A failure detector oracle outputs a list of
processes it suspects to have crashed. It might make mistakes:
it might suspect correct processes and it might not suspect
crashed processes immediately. A leader oracle outputs a
single leader process that it trusts to be alive. All leader oracles
in the system strive to output the same leader process. This
oracle might make mistakes as well: it might elect crashed
processes as leader, and different oracles might elect different
leaders. To make sure that the consensus algorithms terminate,

2Certain kinds of Byzantine failures are also injected.
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we need some assumptions on the behavior of the oracles:♦S
for CT [4] andΩ for Paxos [17]. These assumptions are rather
weak: they can usually be fulfilled in real systems by tuning
implementation parameters of the oracles [15], [18]. Also, they
are equivalent: one can solve the same set of problems when
using the asynchronous model with oracles fulfilling either of
♦S andΩ [17].

B. Agreement problems

We next give informal definitions of the agreement problems
needed for understanding this paper; see [4], [19] for more
formal definitions.

In the consensus problem, each process proposes an initial
value. Uniform consensus (considered here) ensures that all
processes decide the same value, which is one (any one) of
the proposals.

Atomic broadcast is defined in terms of two primitives
called A-broadcast(m) and A-deliver(m), wherem is some
message. Uniform atomic broadcast (considered here) guaran-
tees that (1) if a message is A-broadcast by a process, then all
correct processes eventually A-deliver it, and (2) all processes
A-deliver messages in the same order.

The algorithms in this study use (non-uniform) reliable
broadcast, which guarantees that if a message is broadcast by
a correct process, then all correct processes eventually deliver
it (even if the sender crashes).

IV. A LGORITHMS

This section sketches the two consensus algorithms, con-
centrating on their common points and their differences. We
then introduce the atomic broadcast algorithm built on top of
consensus.

A. The consensus algorithms

For solving consensus, we use the Chandra-Toueg♦S
algorithm [4] and the single-decree Synod algorithm from
the Paxos paper [5], [6]. Henceforth, we shall refer to the
algorithms asCT algorithmandPaxos algorithm, respectively.
We also use these names to refer to the atomic broadcast
algorithm used with the corresponding consensus algorithm
if no confusion arises from doing so.

1) Common points:The algorithms share a lot of assump-
tions and characteristics, which makes them ideal candidates
for a performance comparison. In particular, both algorithms
are designed for the asynchronous model with equally strong
oracles:♦S failure detectors (CT algorithm; see Section III-
A) and Ω leader oracles (Paxos algorithm). Both tolerate
f < n/2 crash failures. In both algorithms, processes execute
a sequence of asynchronous rounds (i.e., not all processes
necessarily execute the same round at a given timet). Each
round has aleader (called coordinator in [4]), whose role
is to try to impose a decision value on all processes. If it
succeeds, the consensus algorithm terminates; if it fails, some
additional rounds are executed with possibly a different leader.

Moreover, leaders execute a very similar protocol in each
round,3 discussed in detail in Section IV-A.3.

2) Electing a leader: The main difference between the
algorithms is how the leaders are chosen. A new leader is
necessary whenever the current round is not successful. A
round may not be successful if one or more processes want a
different leader, usually because they suspect the current leader
to have crashed.

The CT algorithm is based on the rotating coordinator
paradigm. Whenever the current leader is suspected, the leader
is chosen to be the next process, in a round-robin fashion.
In other words, each process executes a sequence of rounds
1, 2, . . ., and there isa priori agreementon the identity of the
leader: processpi is leader for roundskn + i.

There is no such a priori agreement in the Paxos algorithm.
A processpi considers itself leader (and starts a new round)
when its leader oracle outputspi. Other processes only start
participating in this round when they receive a message from
the leader. Leaders always choose unique increasing round
numbers: processpi is leader for roundskn + i, just like in
the CT algorithm. However, unlike in the CT algorithm, a
given process hardly ever executes all of the rounds1, 2, . . .:
there are usually gaps in the sequence of rounds.

3) Execution of a round:We now sketch the execution
of one round in each of the two algorithms, illustrated in
Fig. 1. Further details of the execution are not necessary for
understanding the rest of the paper.

a) Read phase:Throughout the execution, processes
maintain their currentestimateof the decision value. Both
algorithms start the round with aread phasewhose purpose
is to update the leader’s estimate with a recent estimate. In
the Paxos algorithm, the leader sends aread message to all
processes, and all processes reply with their estimate (estimate
messages). In the CT algorithm, the read message is not
necessary, as all processes execute every round. In each of
the two algorithms, the leader only waits for an estimate from
a majority of all processes, and then updates its own estimate.

b) Write phase:In this phase, the leader sends its esti-
mate to all, proposing its acceptance (proposalmessages). A
process accepts this estimate if it has not seen messages from
a later round (in the case of the Paxos algorithm) or if it does
not suspect the leader (CT algorithm).

When a process accepts a proposal, it updates its own
estimate and sends back anack message; otherwise, it sends
back anackmessage (not shown in Fig. 1). In the case of the
CT algorithm, the nack message is sentbefore receiving the
proposal.

The leader waits for messages from a majority of all
processes, and decides if it has received a majority of ack
messages. In this case, it also sends adecisionmessage to
all using reliable broadcast. Upon receiving this message, the
other processes decide as well. If the leader receives one nack
message before deciding (this is not shown in Fig. 1) it finishes
executing the round without deciding.

3This is why we chose the CT algorithm over other algorithms written for
the same system model (e.g., [20]).
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Fig. 1. Example of a round in the CT and Paxos algorithms (CT does not
send theread message)

B. Optimizations to the consensus algorithms

The consensus algorithms implemented contain several op-
timizations with respect to the published versions [4]–[6]. The
goal of the optimizations is to reduce the number of messages
in the most common scenario: when no process is suspected
(CT algorithm) or when the leader is the same process (p1)
throughout the execution (Paxos algorithm).

• The read phase is not necessary in the first round, in either
of the two algorithms. This is why its messages are gray
in Fig. 1.

• In the original CT algorithm, the non-leader processes
start the next round immediately after sending theack
message. This generatesestimatemessages which are not
needed in the most common scenario. These messages de-
grade performance. To prevent this, non-leader processes
wait for anabort message before starting the new round.4

Theabort message is sent by the leader if it receivesnack
messages.

• In the write phase, the leader stops the current round after
receiving the firstnack message, because it is known at
this point already that the round has failed. The original
algorithms always wait for (ackandnack) messages from
a majority of processes.

• In both algorithms, the decision message must be sent
using reliable broadcast (see Section III-B). We use an
efficient algorithm inspired by [21] that requires only one
broadcast message if the sender is not suspected.

• The CT algorithm always starts with the same leader
p1. If p1 crashes, this affects steady-state performance
negatively. We fix this problem by having the consensus
decide on the first leader of the next consensus (beside
the order of messages) [22]. Processes propose the first
process that their failure detector trusts as first leader.
This choice makes sure that, eventually, crashed processes
do not ever become first leaders.

C. The Chandra-Toueg atomic broadcast algorithm

In the Chandra-Toueg atomic broadcast algorithm [4], a
process executes A-broadcast by sending a message to all
processes.5 When a process receives such a message, it buffers

4The non-leader processes also start a new round if they start suspecting
the leader.

5This message is sent using reliable broadcast. We use the efficient
algorithm mentioned Section IV-B.

it until the delivery order is decided. The delivery order is
decided by a sequence of consensus numbered 1, 2, etc. The
value proposed initially and the decision value of each con-
sensus aresets of message identifiers. Let msg(k) be the set of
message IDs decided by consensus#k. The messages denoted
by msg(k) are A-delivered before the messages denoted by
msg(k + 1), and the messages denoted bymsg(k) are A-
delivered according to a deterministic function, e.g., according
to an order relation defined on their IDs.

The algorithm inherits the system model and any fault
tolerance guarantees from the underlying consensus algorithm.
We use this atomic broadcast algorithm with both the CT and
Paxos consensus algorithms.

The performance of the algorithms can be improved by
packing messages from subsequent consensus executions into
one message. For the sake of simplicity, we did not perform
such optimizations [23]–[25]. This decision affects the two
algorithms in the same way, hence we introduce no bias in
the performance study.

V. BENCHMARKS

This section describes our benchmarks, consisting of per-
formance metrics, workloads and faultloads. In order to get
meaningful results, we state the benchmarks in terms of the
system under study (processes sending atomic broadcasts)
rather than in terms of the component under study (consensus).
Previous versions of the benchmarks are published in [8], [10].

A. Performance metrics and workloads

Our main performance metric is theearly latencyof atomic
broadcast. Early latencyL is defined for a single atomic
broadcast as follows. LetA-broadcast(m) occur at timet0,
andA-deliver(m) on pi at timeti, for eachi = 1, . . . , n. Then
latency is defined as the time that elapses until the first A-
delivery of m, i.e., L

def= (mini=1,...,n ti) − t0. In our study,
we compute the mean forL over a lot of messages and several
executions.

This performance metric makes sense in practice. Consider
a service replicated for fault tolerance using active replica-
tion [26]. Clients of this service send their requests to the
server replicas using Atomic Broadcast. Once a request is
delivered, the server replica processes the client request, and
sends back a reply. The client waits for the first reply, and
discards the other ones (identical to the first one). If we assume
that the time to service a request is the same on all replicas,
and the time to send the response from a server to the client
is the same for all servers, then the first response received
by the client is the response sent by the server to which the
request was delivered first. Thus there is a direct link between
the response time of the replicated server and the latencyL.

Beside the early latency, we also compute thelate latency,
the time that elapses until the last A-delivery of a messagem:
Llate

def= (maxi=1,...,n ti)− t0.
Latency is always measured under a certain workload. We

chose simple workloads: (1) all destination processes send
atomic broadcast messages at the same constant rate, and
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(2) the A-broadcast events come from a Poisson stochastic
process. We call the overall rate of atomic broadcast messages
throughput, denoted byT . In general, we determine how the
latencyL depends on the throughputT .

The system can only reach a steady state if the throughput is
under some maximal throughputTmax . Beyond this through-
put, some processes are left behind. We detect if the system
reaches steady state by observing if the late latency stabilizes
over time.

B. Faultloads

The faultload is the part of the workload that describes
failure-related events that occur during an experiment [27].
We concentrate on (1) crash failures of processes, and (2)
the behavior of unreliable failure detectors. We evaluate the
performance of the algorithms with four different faultloads.
We now describe each of them in detail, mentioning which
parameters influence latency with each faultload.

1) Normal-steady faultload:With this faultload, we have
neither crashes nor wrong suspicions in the experiment. We
measure latency after the system reaches its steady state (a
sufficiently long time after startup). Parameters that influence
latency under this faultload are the algorithm (A), the number
of processes (n) and the throughput (T ).

2) Crash-steady faultload:One or more crashes occur
before the experiment. We measure latency after the system
reaches its steady state: a sufficiently long time after startup
and any crashes. BesideA, n andT , an additional parameter
is the set of crashed processes. In the steady state of the
system, all failure detectors in the system permanently suspect
all crashed processes at this point, and all leader oracles have
elected the same correct process. No wrong suspicions occur,
and the leader no longer changes.

3) Crash-transient faultload:With this faultload, we inject
one or more crashes at some point in time after the system
reached a steady state. Multiple crashes represent correlated
failures. After the crashes, we can expect a halt or a significant
slowdown of the system for a short period. We would like to
capture how the latency changes in atomic broadcasts directly
affected by the crashes. Our faultload definition represents
the simplest possible choice: we determine the latency of an
atomic broadcast sent at the moment of the crashes (by a
process that does not crash). Of course, the latency of this
atomic broadcast may depend on the choice for the sender
and the crashing processes. In order to reduce the number
of parameters, we consider the worst case, i.e., the case that
increases latency the most.

The precise definition for the faultload is the following.
Consider that a set ofc processesC crashes at timet (no
other crashes nor wrong suspicions occur). Let processp
(p 6∈ C) executeA-broadcast(m) at t. Let L(p, C) be the
mean latency ofm, averaged over a lot of executions. Then
Lcrash

def= maxp,C L(p, C), i.e., we choose the sender and the
crashing processes such that latency increases the most.

BesideA, n, T andc, an additional parameter describes how
fast failure detectors and leader oracles detect the crashes. This

parameter is discussed in Section VI-B.
4) Suspicion-steady faultload:No crashes occur, but failure

detectors generate wrong suspicions, and leader oracles change
their mind about the leader. This causes the algorithms to
take extra steps and thus increase latency. BesideA, n and
T , additional parameters include how often wrong suspicions
occur and how long they last. These parameters are discussed
in Section VI-B.

VI. SIMULATION MODELS

Our approach to performance evaluation is simulation,
which allowed for more general results as would have been
feasible to obtain with measurements in a real system (we can
use a parameter in our network model to simulate a variety
of different environments). We used the Neko prototyping and
simulation framework [28] to conduct our experiments. We
used the same models for our previous work [8], [10].

A. Modeling the execution environment

We now describe how we modeled the transmission of
messages. We use a model inspired from simple models of
Ethernet networks [29], and validated in [8]. The key point
in the model is that it accounts forresource contention. This
point is important as resource contention is often a limiting
factor for the performance of distributed algorithms. Both a
host and the network itself can be a bottleneck. These two
kinds of resources appear in the model (see Fig. 2): the
network resource (shared among all processes) represents the
transmission medium, and the CPU resources (one per process)
represent the processing performed by the network controllers
and the layers of the networking stack, during the emission and
the reception of a message (the cost of running the algorithm is
negligible). A messagem transmitted for processpi to process
pj uses the resources (1)CPUi, (2) network, and (3)CPUj , in
this order. Messagem is put in a waiting queue before each
stage if the corresponding resource is busy. The time spent
on the network resource is one time unit. The time spent on
each CPU resource isλ time units; the underlying assumption
is that sending and receiving a message has a roughly equal
cost.

se
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ho
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m

receive

re
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iv
in

g 
ho

st

Network (1 time unit)

7

6

5

CPU
(λ time units)
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Process p jsend

4
3

2

1

CPU
(λ time units)

i

Process p i

Fig. 2. Transmission of a message in our network model.

The λ parameter (0 ≤ λ) shows the relative speed of
processing a message on a host compared to transmitting it
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over the network. Different values model different networking
environments. We conducted experiments with a variety of
settings forλ.

We model network-level multicasts: a message sent to
several destinations is only processed once on the sending CPU
resource and on the network resource.

Crashes are modeled as follows. If a processpi crashes
at time t, no messages can pass betweenpi and CPUi

after t; however, the messages onCPUi and the content
of the attached queues are still sent, even after timet. In
real systems, this corresponds to a (software) crash of the
application process (operating system process), rather than a
(hardware) crash of the host or a kernel panic. We chose to
model software crashes because they are more frequent in most
systems [30].

B. Modeling failure detectors

One approach to examine the behavior of a failure detector
is implementing it and using the implementation in the experi-
ments. However, this approach would restrict the generality of
our performance study: another choice for the algorithm would
likely give different results. Also, it is not justified to model
the failure detector in so much detail, as other components
of the system, like the execution environment, are modeled
much more coarsely. We built a more abstract model instead,
using the notion of quality of service (QoS) of failure detectors
introduced in [9]. The authors consider the failure detector at
a processq that monitors another processp, and identify the
following three primary QoS metrics:

• Detection timeTD: The time that elapses fromp’s crash
to the time whenq starts suspectingp permanently. The
definition is illustrated in Fig. 3.

• Mistake recurrence timeTMR: The time between two
consecutive mistakes (q wrongly suspectingp), given that
p did not crash; see Fig. 4.

• Mistake durationTM : The time it takes a failure detector
component to correct a mistake, i.e., to trustp again
(given thatp did not crash); see Fig. 4.

Not all of these metrics are equally important in each of our
faultloads (see Section V-B). In thenormal-steadyfaultload,
the metrics are not relevant. The same holds in thecrash-
steadyfaultload, because we observe the system a sufficiently
long time after all crashes, long enough to have all failure
detectors to suspect the crashed processes permanently. In the
suspicion-steadyfaultload no crash occurs, hence the latency
of atomic broadcast only depends onTMR andTM (shown in
Fig. 4). In thecrash-transientfaultload no wrong suspicions
occur, henceTD is the relevant metric (shown in Fig. 3).

In [9], the QoS metrics are random variables, defined on a
pair of processes. In our system, wheren processes monitor
each other, we have thusn(n − 1) failure detectors in the
sense of [9], each characterized with three random variables
(TD, TMR, TM ). In order to have an executable model for the
failure detectors, we have to define (1) how these random
variables depend on each other, and (2) how the distribution
of each random variable can be characterized. To keep our

trust

suspect suspect

trust

FD at q

TD

t

detection time

up
p

t
down

Fig. 3. Quality of service metric expressing the speed of failure detection.
Processq monitors processp.

trust

suspect suspect

trust

FD at q

TM

TMR

t
mistake duration

mistake recurrence time

up
p t

Fig. 4. Quality of service metrics describing wrong suspicions made by
failure detectors. Processq monitors processp.

model simple, we assume that all failure detector modules
are independent and the tuples of their random variables are
identically distributed. Moreover, note that we do not need
to model how TMR and TM depend onTD, as the two
former are only relevant in the suspicion-steady faultload,
whereasTD is only relevant in the crash-transient faultload.
As for the distributions of the metrics, we took the simplest
possible choices:TD is a constant, and bothTMR andTM are
exponentially distributed with (different) constant parameters.
This choice only represents a starting point, as we are not
aware of any previous work we could build on (apart from [9]
that makes similar assumptions). We will refine our models as
we gain more experience.

Finally, note that this abstract model for failure detectors
neglects that failure detectors and their messages put a load on
system components. This simplification is justified in a variety
of systems, in which a rather good QoS can be achieved with
failure detectors that send messages infrequently.

C. Modeling leader oracles

Our leader oracles for the Paxos algorithm rely on failure
detectors: at any point in time, the leader is the process
with the smallest index of all processes trusted by the failure
detector. We implemented leader oracles with failure detectors
because a leader oracle must detect the failures of the desired
leader, and it seems logical to use a service dedicated to failure
detection to implement this aspect of the leader oracle.6

The failure detectors underlying the leader oracles are
modeled with their quality of service parameters as described
in the previous section.

6The leader oracle has other potential uses, e.g., it can be used to implement
load balancing among all correct processes (see Section VIII). We intend to
investigate this aspect in the future.
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VII. R ESULTS

We now present our results for all four faultloads and a
variety of network models. We obtained results at a variety
of representative settings forλ: 0.1, 1 and 10. The settings
λ = 0.1 and10 correspond to systems where communication
generates contention mostly on the network (atλ = 0.1)
and the hosts (atλ = 10), respectively, whileλ = 1 is an
intermediate setting. For example, in current LANs, the time
spent on the hosts is much higher than the time spent on the
wire, and thusλ = 10 is probably the setting that corresponds
best to such an environment.

Most graphs show the early latency vs. the throughput.
Graphs showing the late latency are presented in the appendix
only. Values of the late latency are slightly higher, but all other
characteristics of the corresponding graphs are very similar.
The reason is that if one process reaches a decision in either of
the consensus algorithms, all other processes will soon follow,
thanks to the decision message (see Section IV-A.3). The max-
imal throughput is approximately the highest throughput value,
that is, thex coordinate of the rightmost point, in all graphs
showing the steady-state latency; beyond this throughput, the
late latency did not stabilize (see Section V-A). We set the time
unit of the network simulation model to 1 ms, to make sure
that the reader is not distracted by an unfamiliar presentation
of time/frequency values (one that refers to time units). Any
other value could have been used. The 95% confidence interval
is shown for each point in the graphs.

The two algorithms were always run with an odd number
of processes. The reason is that the same number of crash
failuresk (k = 1, 2, . . .) is tolerated if the algorithms are run
with 2k + 1 and 2k + 2 processes; thus adding a process to
a system with an odd number of processes does not increase
the resiliency of the system.

A. Normal-steady and crash-steady faultloads Figures 5 and
6, Appendixes I and II)

With these faultloads, the two algorithms have the same
performance. Each curve thus shows the latency ofboth algo-
rithms. For the sake of readability, we only present a subset
of the results in Fig. 5 (normal-steady faultload) and Fig. 6
(crash-steady faultload). The full set of results is presented in
Appendixes I and II. The latency increases with the throughput
and with the number of processes. Somewhat surprisingly, the
latencydecreaseswith the number of crashes. The reason is
that the crashed processes no longer load the network with
messages.

The fact that the two algorithms have the same performance
is not surprising. Their only important difference is the way
of electing a new leader, and no new leader is elected with
these faultloads (such that this influences the steady-state
performance). In fact, we have deliberately chosen similar
algorithms for this study, so that we can concentrate on the
performance differences observed with the other faultloads.
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B. Crash-transient faultload (Figures 7 and 8, Appendix III)

With this faultload andc crashes, we only present the
latency after crashing the firstc processes (p1, . . . , pc), as
this is the case resulting in the highest transient latency (and
the most interesting comparison). The crash of any additional
processes affects the two algorithms in the same way (slightly
decreased latency; cf. Fig. 6).

We set the failure detection timeoutTD to 100 ms at
λ = 0.1 or 1, and to 1000 ms atλ = 10. This choice models
a reasonable trade-off for the failure detector. On the one
hand, the detection timeTD is low enough (comparable to
the latency overhead) to make sure that the failure detector
does not degrade performance catastrophically when a crash
occurs. On the other hand, the detection time is high enough
(it is a high multiple of the roundtrip time at low loads:2+4λ)
to avoid that failure detectors suspect correct processes.7

Both figures show thelatency overhead, i.e., the latency
minus the detection timeTD, rather than the latency. Graphs
showing the latency overhead are more illustrative; note that
the latency is always greater than the detection timeTD with
this faultload, as no atomic broadcast can finish until the
crash of the first leader is detected. We start by discussing
the results for the case of one crash, shown in Fig. 7. The

7As we use an abstract model for the failure detectors for the sake of
generality, this does not appear directly in our simulations. The argumentation
is about a hypothetical implementation. Given that this implementation can
afford spending a high multiple of the roundtrip time before generating a
suspicion, wrong suspicions will be rare.
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Fig. 7. Latency overhead vs. throughput with the crash-transient faultload. One process crashes.
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latency overhead of both algorithms is shown atn = 3 (top)
andn = 7 (bottom) and a variety of values forλ (0.1, 1 and
10 from left to right).

The results show that (1) both algorithms perform rather
well (the latency overhead of both algorithms is only a few
times higher than the latency with the normal-steady faultload;
see Fig. 5) and that (2) the algorithms perform roughly the
same. The CT algorithm performs slightly better atn = 3, λ ≥
1 and n = 7, λ = 10, i.e., with a small number of processes
and a highλ meaning a relatively fast network. The Paxos
algorithm performs slightly better atn = 7, λ ≤ 1, i.e., with
a lot of processes and a smallλ meaning a relatively slow
network.

The differences can be explained by differences in the
execution of the algorithms once the crash of the first leader
is detected. In the CT algorithm, all processes send anack
message to the first leader. In the Paxos algorithm, the new
leader sends aread message. The rest of the execution (from
theestimatemessage of the second round) is the same. The CT
algorithm thus uses fewer communication steps, but generates
more contention on the network; moreover, the increase in

network contention is proportional to the number of processes.
This explains why the CT algorithm is favored by a fast
network and a small number of processes.

The results in the case of multiple crashes are shown in
Fig. 8. The latency overhead of both algorithms is shown at
n = 7, for 2 and 3 crashes (the algorithms do not tolerate
more than 3 crashes) and a variety of values forλ (0.1, 1 and
10 from left to right).

The results are different from those obtained with one
crash only: the Paxos algorithm always outperforms the CT
algorithm. The reason is that the CT algorithm takes more
rounds: it rotates over all crashed processes first, whereas the
Paxos algorithm elects a correct leader after the first round.

The fact that the CT algorithm rotates over the crashed
processes also explains why its latency increases with the
number of crashes. The latency of the Paxos algorithm,
however, decreases with the number of crashes. The reason
is that fewer correct processes load the system with messages
to a smaller extent (cf. Fig. 6).
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Fig. 9. Latency vs.TMR with the suspicion-steady faultload, withTM = 0 (λ = 1).

C. Suspicion-steady faultload (Figures 9 and 10, Appendix IV)

The occurrence of wrong suspicions are quantified with the
TMR and TM QoS metrics of the failure detectors. As this
faultload does not involve crashes, we expect that the mistake
duration TM is short. In our first set of results (Fig. 9 for
λ = 1; the results forλ = 0.1 and 10 are similar and are
omitted here for better readability; see Appendix IV for the
full set of results) we hence setTM to 0, and latency is
shown as a function ofTMR. In each figure, we have four
graphs: the left column shows results with 3 processes, the
right column those with 7; the top row shows results at a
low load (10 s−1; 1 s−1 if λ = 10) and the bottom row at a
moderate load (300 s−1; 30 s−1 if λ = 10); the algorithms can
take a throughput of about 700 s−1 (70 s−1 if λ = 10) in the
absence of suspicions (i.e., with the normal-steady faultload;
see Fig. 5 and Appendix I).

The results show that the CT algorithm is much more
sensitive to wrong suspicions if these occur frequently.We
illustrate this on Fig. 9: atn = 3 and T = 10 s−1, that
is, the settings at which the CT algorithm tolerates wrong
suspicions most, the CT algorithm only works ifTMR ≥ 5
ms, whereas the FD algorithm still works at the smallestTMR

value considered (1 ms); the latency of the two algorithms is
only equal atTMR ≥ 100 ms. The CT algorithm breaks down
at higher values ofTMR for all other settings, whereas the
Paxos algorithm continues to work even with 1 ms.

The results can be explained by the difference in the
mechanisms that the algorithms use to elect the next leader.
The CT algorithm always chooses the next process (in a
round-robin manner) as the next leader. Moreover, suspicions
are likely to abort the current round. Therefore, if wrong

suspicions occur frequently, a lot of rounds are needed to
finish a consensus execution, and all processes become leaders,
executing rounds that overlap. In contrast, the Paxos algorithm
is run with a leader oracle that elects the process with the
smallest index among all suspected processes. If suspicions
are short (TM = 0), the leader oracle will only ever electp1

and p2 as leader. Only these two processes start overlapping
rounds. Moreover, suspicions, even if they lead to a change in
the output of the leader oracle, do not abort the current round
directly; their only effect is to start other rounds in parallel
that might conflict with the current round. Because of these
differences, the CT algorithm generates much more contention
on the hosts and the network: it is likely thatn processes run
rounds in parallel, whereas the Paxos algorithm only has two
processes that run rounds in parallel. The increased contention
of CT is the reason why the Paxos algorithm performs better
with this faultload.

In the second set of results (Fig. 10 forλ = 1; the results
for λ = 0.1 and10 are similar and are omitted here for better
readability; see Appendix IV for the full set of results)TMR

is fixed andTM is on the x axis. We choseTMR such that the
latency of the two algorithms is close to equal atTM = 0. For
example, withλ = 1 (Fig. 10), (i) TMR = 100 ms for n = 3
and (ii) TMR = 1000 ms for n = 7.

The results show that the CT algorithm is sensitive to the
mistake durationTM as well, not just the mistake recurrence
time TMR. Once again, the difference can be attributed to
the fact that the Paxos algorithm generates less contention: its
leader oracle usually outputs only a small subset of all pro-
cesses, hence only a few processes start rounds concurrently,
whereas all processes are likely to do so in the CT algorithm.
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Fig. 10. Latency vs.TM with the suspicion-steady faultload, withTMR fixed (λ = 1).

VIII. D ISCUSSION

We have compared the performance of the Chandra-Toueg
and Paxos consensus algorithms. These algorithms are de-
signed for the same system model: an asynchronous system
(with a minimal extension to allow us to solve the consensus
problem) andf < n/2 process crashes (the highestf that
our system model allows). Also, the algorithms have a similar
structure: they execute a sequence of rounds whereby each
round has a leader that tries to impose a decision. They
differ in how they tolerate (suspected) failures of the leader:
processes in the Chandra-Toueg algorithm rotate the leader
role among all processes, whereas processes in the Paxos
algorithm elect leaders directly in an uncoordinated manner.

We found that the two algorithms have the same steady-
state performance if neither crashes nor wrong suspicions
occur, or if crashes occur but wrong suspicions do not. As
for the transient performance after one crash, the performance
differences are small, and the relative performance depends
on the relative speed of the network and the hosts, as well
as on the number of processes. The Paxos algorithm has
better transient performance after multiple correlated crashes,
because its leader oracle elects a correct leader immediately
after detecting the crashes. We found the largest difference
in scenarios with frequent or long lasting wrong failure
suspicions. In such scenarios, the Paxos algorithm performs
better. The reason is that it generates less contention: its
leader oracle makes sure that only a small subset of all
processes start concurrent rounds, whereas the rotating leader
scheme in the Chandra-Toueg algorithm results in nearly all
processes starting concurrent rounds. Therefore the leader
based approach seems more suited to environments in which

the failure detection service makes mistakes often.
We have chosen consensus algorithms with a centralized

communication scheme, with one process coordinating the
others. In the future, we would like to investigate algorithms
with a decentralized communication scheme (e.g., [20]) as
well. We would also like to investigate how results change in
a load balanced configuration, e.g., in a configuration in which
the first leader of subsequent consensus executions rotates
among all processes that are alive. The coordinated fashion
of electing the next leader in the Chandra-Toueg algorithm
might provide performance benefits in such a configuration.
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APPENDIX I
FULL SET OF RESULTS FOR THE NORMAL-STEADY FAULTLOAD

A. Graphs showing the early latency
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Fig. 11. Latency vs. throughput with the normal-steady faultload.

B. Graphs showing the late latency
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Fig. 12. Latency vs. throughput with the normal-steady faultload.
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APPENDIX II
FULL SET OF RESULTS FOR THE CRASH-STEADY FAULTLOAD

A. Graphs showing the early latency
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Fig. 13. Latency vs. throughput with the crash-steady faultload (λ = 0.1).
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Fig. 14. Latency vs. throughput with the crash-steady faultload (λ = 1).
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Fig. 15. Latency vs. throughput with the crash-steady faultload (λ = 10).
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B. Graphs showing the late latency
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Fig. 16. Latency vs. throughput with the crash-steady faultload (λ = 0.1).
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Fig. 17. Latency vs. throughput with the crash-steady faultload (λ = 1).
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Fig. 18. Latency vs. throughput with the crash-steady faultload (λ = 10).
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A. Graphs showing the early latency overhead
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Fig. 19. Latency overhead vs. throughput with the crash-transient faultload. One process crashes.
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Fig. 20. Latency overhead vs. throughput with the crash-transient faultload. Multiple processes crash.
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B. Graphs showing the late latency overhead
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Fig. 21. Latency overhead vs. throughput with the crash-transient faultload. One process crashes.
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Fig. 22. Latency overhead vs. throughput with the crash-transient faultload. Multiple processes crash.
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APPENDIX IV
FULL SET OF RESULTS FOR THE SUSPICION-STEADY FAULTLOAD

A. Graphs showing the early latency
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Fig. 23. Latency vs.TMR with the suspicion-steady faultload, withTM = 0 (λ = 0.1).
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Fig. 24. Latency vs.TMR with the suspicion-steady faultload, withTM = 0 (λ = 1).
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Fig. 25. Latency vs.TMR with the suspicion-steady faultload, withTM = 0 (λ = 10).
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Fig. 26. Latency vs.TM with the suspicion-steady faultload, withTMR fixed (λ = 0.1).
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Fig. 27. Latency vs.TM with the suspicion-steady faultload, withTMR fixed (λ = 1).
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Fig. 28. Latency vs.TM with the suspicion-steady faultload, withTMR fixed (λ = 10).
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B. Graphs showing the late latency
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Fig. 29. Latency vs.TMR with the suspicion-steady faultload, withTM = 0 (λ = 0.1).
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Fig. 30. Latency vs.TMR with the suspicion-steady faultload, withTM = 0 (λ = 1).
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Fig. 31. Latency vs.TMR with the suspicion-steady faultload, withTM = 0 (λ = 10).
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Fig. 32. Latency vs.TM with the suspicion-steady faultload, withTMR fixed (λ = 0.1).
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Fig. 33. Latency vs.TM with the suspicion-steady faultload, withTMR fixed (λ = 1).
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Fig. 34. Latency vs.TM with the suspicion-steady faultload, withTMR fixed (λ = 10).
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