Token-based Atomic Broadcast
using Unreliable Failure Detectors*

Richard Ekwall '
nilsrichard. ekwall@epfl. ch

André Schiperf
andre.schiper@epfi.ch

Péter Urban?
urban@jaist.ac.jp

t Ecole Polytechnique Fédérale de Lausanne (EPFL), LSR-IIF-16C, 1015 Lausanne, Switzerland
t Japan Advanced Institute of Science and Technology (JAIST), Ishikawa 923-1292, Japan

Abstract

Many atomic broadcast algorithms have been published
in the last twenty years. Token-based algorithms repre-
sent a large class of these algorithms. Interestingly, all
the token-based atomic broadcast algorithms rely on a
group membership service, i.e., none of them uses un-
reliable failure detectors directly. The paper presents the
first token-based atomic broadcast algorithm that uses an
unreliable failure detector — the new failure detector de-
noted by R — instead of a group membership service. The
failure detector R is compared with P and $S. In or-
der to make it easier to understand the atomic broadcast
algorithm, the paper derives the atomic broadcast algo-
rithm from a token-based consensus algorithm that also
uses the failure detector R.

1. Introduction
1.1. Context

Atomic broadcast (or total order broadcast)
is an important abstraction in fault-tolerant dis-
tributed computing. Atomic broadcast ensures that
messages broadcast by different processes are deliv-
ered by all destination processes in the same order [12].
Many atomic broadcast algorithms have been pub-
lished in the last twenty years. These algorithms can
be classified according to the mechanism used for mes-
sage ordering [8]. Token circulation is one important
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ordering mechanism. In these algorithms, a token cir-
culates among the processes, and the token holder has
the privilege to order messages that have been broad-
cast. Additionally, sometimes only the token holder
is allowed to broadcast messages. However, the or-
dering mechanism is not the only key mechanism
of an atomic broadcast algorithm. The mecha-
nism used to tolerate failures is another important
characteristic of these algorithms. If we consider asyn-
chronous systems with crash failures, the two most
widely used mechanisms to tolerate failures in the con-
text of atomic broadcast algorithms are (i) unreli-
able failure detectors [3] and (ii) group membership [5].
For example, the atomic broadcast algorithm in [3] (to-
gether with a consensus algorithm using the failure de-
tector QS [3]) falls into the first category; the atomic
broadcast algorithm in [2] falls into the second cate-

gory.

1.2. Group membership mechanism wvs.
failure detector mechanism.

A group membership service provides a consis-
tent membership information to all the members of a
group [5]. Its main feature is to remove processes that
are suspected to have crashed.! In contrast, an un-
reliable failure detector, e.g., {S, does not provide
consistent information about the failure status of pro-
cesses. For example, it can tell to process p that r
has crashed, while telling at the same time to pro-
cess ¢ that r is alive.

Both mechanisms can make mistakes, e.g., by incor-
rectly suspecting correct processes. However, the cost
of a wrong failure suspicion is higher when using a
group membership service than when using failure de-

1 The comment applies to the so-called primary-partition mem-
bership [5].



tectors. This is because the group membership service
removes suspected processes from the group, a costly
operation. This removal is absolutely necessary for the
atomic broadcast that relies on the membership service:
the notification of the removal allows the atomic broad-
cast algorithm to avoid being blocked. There is no such
removal of suspected processes with a failure detector.
Moreover, with a group membership service, the re-
moval of a process is usually followed by the addition
of another (or the same) process, in order to keep the
same replication degree. So, with a group membership
service, a wrong suspicion leads to two costly member-
ship operations: remowval of a process followed by the
addition of another process.

In an environment where wrong failure suspicions
are frequent,? algorithms based on failure detectors
thus have advantages over algorithms based on a group
membership service. The cost difference has been ex-
perimentally evaluated in [20] in the context of two spe-
cific (not token-based) atomic broadcast algorithm.

Atomic broadcasts algorithms based on a failure de-
tector have another important advantage over algo-
rithms based on group membership: they can be used to
implement the group membership service! Indeed, since
a (primary partition) group membership service orders
views, it seems intuitive to solve group membership us-
ing atomic broadcast: this leads to a much simpler pro-
tocol stack than implementing atomic broadcast using
group membership [15]. However, this is not possible if
atomic broadcast relies on group membership.

1.3. Why token-based algorithms?

According to [21, 1, 14], token-based atomic broad-
cast algorithms are extremely efficient in terms of
throughput, i.e., the number of messages that can be
delivered per time unit. The reason is that these al-
gorithms manage to reduce network contention by us-
ing the token (1) to avoid the ack explosion problem
(which happens if each broadcast message generates
one acknowledgement per receiving process), and/or
(2) to perform flow control (e.g., a process is allowed
to broadcast a message only when holding the token).
However, none of the token-based algorithms use fail-
ure detectors: they all rely on a group membership ser-
vice.3 It is therefore interesting to try to design token-
based atomic broadcast algorithms that rely on fail-

2 This typically happens if the timeouts used to suspect pro-
cesses have been set to small values (i.e., in the order of the av-
erage message transmission delay), in order to reduce the time
needed to detect the crash of processes.

3 The group membership mechanism does not necessarily ap-
pear explicitly in the algorithm, e.g., in [14]. It can be imple-
mented in an ad-hoc way.

ure detectors, in order to combine the advantage of
failure detectors and of token-based algorithms: good
throughput (without sacrificing latency) in stable en-
vironments, but adapted to frequent wrong failure sus-
picions.

1.4. Contribution of the paper

The paper gives the first token-based atomic broadcast
algorithm that uses unreliable failure detectors instead
of group membership. This result is obtained in several
steps. The paper first gives a new and more general def-
inition for token-based algorithms (Sect. 2) and intro-
duces a new failure detector, denoted by R, adapted to
token-based algorithms (Sect. 3). The failure detector
R is shown to be strictly weaker than OP, and strictly
stronger than (S. Although (S is strong enough to
solve consensus and atomic broadcast, R has an inter-
esting feature: the failure detector module of a process
p; only needs to give information about the (estimated)
state of p;_1. For p;_1, this can be done by sending [
am alive messages to p; only, which is extremely cheap
compared to failure detectors where each process mon-
itors all other processes. Moreover, in the case of three
processes (a frequent case in practice, tolerating one
crash), our token-based algorithm works with ¢S.

Section 4 concentrates on the consensus problem.
First we define two classes of token-based algorithms:
token-accumulation algorithms and token-coordinated
algorithms. We then focus on the token-accumulation
approach and give a consensus algorithm based on the
failure detector R.

An algorithm that solves atomic broadcast is pre-
sented in Section 5. The algorithm is inspired from
the token-based consensus algorithm of Section 4. Note
that a standard solution consists in solving atomic
broadcast by reduction to consensus [3]. However, this
solution is not adequate here, because the resulting al-
gorithm is highly inefficient. Our atomic broadcast al-
gorithm is derived from our consensus algorithm in a
more complex manner. Note that we could have pre-
sented only the token-based atomic broadcast algo-
rithm. However, the detour through the consensus al-
gorithm makes the explanation easier to understand.
Section 6 compares the performance of our new atomic
broadcast algorithm with the Chandra-Toueg atomic
broadcast algorithm. Related work is presented in Sec-
tion 7 and Section 8 concludes the paper.

2. System model and definitions

We assume an asynchronous system composed of n
processes taken from the set I = {pg,...,pn—_1}, with



an implicit order on the processes. The k" successor
of a process p; iS P(i+k)modn, Which is, from now on,
simply noted p;+x for the sake of clarity. Similarly the
k" predecessor of p; is simply denoted by p;_i. The
processes communicate by message passing over reli-
able channels. Processes can only fail by crashing (no
Byzantine failures). A process that never crashes is said
to be correct, otherwise it is faulty. At most f pro-
cesses are faulty. The system is augmented with unre-
liable failure detectors [3] (see below).

2.1. The consensus problem

As in [3], we specify the (uniform) consensus prob-
lem by four properties: (1) Termination: Every correct
process eventually decides some value, (2) Uniform in-
tegrity: Every process decides at most once, (3) Uni-
form agreement: No two processes (correct or not) de-
cide a different value, and (4) Uniform validity: If a
process decides v, then v was proposed by some pro-
cess in II.

2.2. The atomic broadcast problem

In the atomic broadcast problem, defined by the
primitives abroadcast and adeliver, processes have to
agree on a common total order delivery of a set of mes-
sages. Formally, we define (uniform) atomic broadcast
by four properties [12]: (1) Validity: If a correct pro-
cess p abroadcasts a message m, then it eventually ade-
livers m, (2) Uniform Agreement: If a process adeliv-
ers m, then all correct processes eventually adeliver m,
(3) Uniform Integrity: For any message m, every pro-
cess p adelivers m at most once and only if m was
previously abroadcast, and (4) Uniform Total Order: If
some process, correct or faulty, adelivers m before m/,
then every process adelivers m’' only after it has ade-
livered m.

2.3. Token-based algorithm

In a traditional token-based algorithm, processes are
organized in a logical ring and, for token transmission,
communicate only with their immediate predecessor
and successor (except during changes in the compo-
sition of the ring). This definition is too restrictive for
failure detector-based algorithms. We define an algo-
rithm to be token-based if (1) processes are organized
in a logical ring, (2) each process p; has a failure detec-
tor module F'D; that provides information only about
its immediate predecessor p;—1 and (3) each process
communicates only with its f+ 1 predecessors and suc-
cessors, where f is the number of tolerated failures.

2.4. Failure detectors

We refer below to two failure detectors introduced
in [3]: OP and OS. The eventual perfect failure detec-
tor QP is defined by the following properties: (i) Strong
Completeness: Eventually every process that crashes is
permanently suspected by every correct process, and
(ii) Fventual Strong Accuracy: There is a time after
which correct processes are not suspected by any cor-
rect process. The OS failure detector is defined by (i)
Strong Completeness and (ii) Fventual Weak Accuracy:
There is a time after which some correct process is
never suspected by any correct process.

3. Failure detector R

For token-based algorithms we define a new failure
detector denoted by R (stands for Ring). Given pro-
cess p;, the failure detector attached to p; only gives in-
formation about the immediate predecessor p;_1.* For
every process p;, R ensures the following properties:

(i) Completeness: If p;—1 crashes and p; is correct,
then p;_1 is eventually permanently suspected by
pi, and

(ii) Accuracy: If p;_1 and p; are correct, there is a time
t after which p;_1 is never suspected by p;.

The relation weaker/stronger between failure detectors
has been defined in [3]. We show that (a) QP is strictly
stronger than R (denoted 0P = R), and (b) R is
strictly stronger than S ifn > f(f+1)+1 (R > 0S).

Lemma 1: OP is strictly stronger than R.

Proof : This result is easy to establish. From the def-
inition it follows directly that QP is stronger or equiv-
alent to R, denoted by ¢P = R. Moreover, when p;
is faulty, then R provides no information about p;_;:°
so OP 2 R (OP not equivalent to R). Together with
QP = R we have that OP > R. O

The relationship between R and ¢S is more diffi-
cult to establish. We first introduce a new failure de-
tector OS2 (Sect. 3.1), then show that 0S2 > QS (Sect.
3.2) and R = OS2 if n > f(f + 1) + 1 (Sect. 3.3). By
transitivity, we have R = ¢S if n > f(f +1) + 1.

4 Remember the meaning of the notation p;_j or p;y intro-
duced at the beginning of Section 2.

5 Inthespecial case of f = 1, the information about p;_1 can be
obtained indirectly, i.e., if f = 1, the relation between $P and
R is not strict: P = R.



3.1. Failure detector {S2

For the purpose of establishing the relation between
R and S we introduce the failure detector ¢S2 de-
fined as follows:

(i) Strong Completeness: FEventually every pro-
cess that crashes is permanently suspected by
every correct process and

(ii) Ewventual “Double” Accuracy: There is a time after
which two correct processes are never suspected
by any correct process.

3.2. OS82 strictly stronger than (S

OS and OS2 differ in the accuracy property only:
while ¢S requires eventually one correct process to be
no longer suspected by all correct processes, $S2 re-
quires the same to hold for two correct processes. From
the definition, it follows directly that 0S2 = OS.

3.3. R stronger than 0S2ifn> f(f+1)+1

We show that R is stronger than ¢S2 if n > f(f +
1) + 1 by giving a transformation of R into the failure
detector (S2.

Transformation of R into $S2: Each process p;
maintains a set correct; of processes that p; believes
are correct.

(i) This set is updated as follows. Each time some pro-
cess p; changes its mind about p;_; (based on R), p;
broadcasts (using a FIFO reliable broadcast communi-
cation primitive [12]) the message (p;—1, faulty), respec-
tively (pi—1, correct). Whenever p; receives (p;, faulty),
then p; removes p; from correct;; whenever p; receives
(pi, correct), then p; adds p; to correct,;.

(iia) For process p;, if correct; is equal to II (no sus-
pected process), the output of the transformation (the
two non-suspected processes) is pg and p;. All other
processes are suspected.

(iib) For process p;, if correct; is not equal to II (at
least one suspected process), the output of the trans-
formation (the two non-suspected processes) is py and
pr+1 such that k is the smallest index satisfying the fol-
lowing conditions: (a) pr_1 is not in correct;, and (b)
the f — 1 immediate successors py41,...,Pr+f—1 are in
correct;. Apart from p, and pg41, all other processes
are suspected.

For example, for n = 7, f = 2, and
correct; = {po,p2,P3,Ps5}, the non-suspected pro-
cesses for p; are ps and p3. All other processes
are suspected. If correct; = {po,p1,p2,ps,ps}, the

non-suspected processes for p; are py and p; (the pre-
decessor of pg is pg, not in correct;). All other pro-
cesses are suspected.

Lemma 2: Consider a system withn > f(f+1)+1
processes and the failure detector R. The above transfor-
mation guarantees that eventually all correct processes do
not suspect the same two correct processes.

The proof of this lemma can be found in [10]. The trans-
formation of R into {S2 ensures the Fventual Dou-
ble Accuracy property if n > f(f + 1) + 1. Since all
processes except two correct processes are suspected,
the Strong Completeness property also holds. Conse-
quently, if n > f(f +1) + 1 we have R = (S2.

4. Token-based consensus
4.1. Two classes of algorithms

We identify two classes of token-based consensus
algorithms: token-accumulation algorithms and token-
coordinated algorithms. In the token-accumulation al-
gorithms, each token holder votes for the proposal
transported in the token. Votes are accumulated as
the token circulates and once enough votes have been
collected, the token holder can decide. In this class
of algorithms, the only communication is related to
the circulation of the token. This is not the case of
token-coordinated algorithms. In these algorithms the
token holds a proposal, but, in order to decide, the
token holder can communicate with all other pro-
cesses. Algorithms based on the rotating-coordinator
paradigm (such as the Chandra-Toueg (S consensus
algorithm [3]) can easily be adapted to this class ([16]
describes such a transformation). Token-accumulation
algorithms are more genuine token-based algorithms,
and the paper concentrates on this class of algorithms.
Henceforth, token-accumulation algorithms will simply
be referred to as token-based algorithms.

4.2. Token circulation

The token circulation is as follows. To avoid the
loss of the token due to crashes, process p; sends
the token to its f + 1 successors in the ring, i.e., to
Pit1,- - Pitf+1.0 Furthermore, when awaiting the to-
ken, process p; waits to get the token from p;_1, unless
it suspects p;_1. If p; suspects p;_1, it accepts the to-
ken from any of its predecessors (see Procedure 1).

6  The token should be seen as a logical token. Multiple backup
copies circulate in the ring, but they are discarded by the algo-
rithm if no suspicion occurs. Henceforth, the logical token will
simply be referred to as ”the token”.



Procedure 1 Receive token (code of process p;)

1: wait until received token from p;_; or
suspected(p;—1)
2: if token not received then
3:  wait until received
{piffq,--wpi&}
4: end if

{accept from anyone}
token from p €

4.3. Token-based consensus algorithm

4.3.1. Basic idea Consensus is achieved by pass-
ing a token between the different processes. The to-
ken contains information regarding the current pro-
posal (or the decision once it has been taken). The to-
ken is passed between the processes on a logical ring
Do, P1,- - - sPn_1. BEach token holder “votes” for the pro-
posal in the token and then sends it to its neighbors.
As soon as a sufficient number of token holders have
voted for some proposal v, then v is decided. The de-
cision is then propagated as the token circulates along
the ring.

4.3.2. Naive algorithm We start by presenting a
naive algorithm that illustrates both the basic idea be-
hind our algorithm and its difficulty. Let the token
carry an estimate value (denoted by token.estimate)
and the number of votes for this estimate (denoted
token.votes). Let each process p;, upon receiving the
token, blindly add its vote to the proposal (see Proce-
dure 2). Obviously, this naive algorithm does not work:
it would solve consensus in an asynchronous system, in
contradiction with the FLP impossibility result [11].

Procedure 2 Token handling by p; (option 1)

p;.estimate «— token.estimate

token.votes < token.votes + 1

if token.votes > f 4+ 1 then
decide(token.estimate)

end if

send token to {pi+17 ‘e 7pi+f+1}

4.3.3. Overview of the token-based consensus
algorithm As just shown, a token-based algorithm
cannot blindly increase the votes accumulated. We
slightly change the above behavior. The processes need
one additional information: the gap in the circulation
of the token. When a process p; receives the token from
process sender = pj, the gap is i — j — 1, denoted by
gap(sender — p;). We have gap(sender — p;) = 0
only if the token is received from the immediate pre-
decessor. Upon receiving the token, a process does the
following (see Procedure 3):

As long as there is no gap in the token circulation
token.votes is incremented by the receiver p;. If at that
point token.votes is greater than the vote threshold
f+1, p; decides on the estimate of the token. The de-
cision is then propagated with the token.

Procedure 3 Token handling by p; (option 2)

if (gap(sender — p;) # 0) then
token.votes «— 0

end if

p;.estimate «— token.estimate

token.votes < token.votes + 1

if token.votes > f + 1 then
decide(token.estimate)

end if

send token to {p;11,...

{reset token}

7pz‘+f+1}

4.3.4. Conditions for agreement vs. termina-
tion In the above algorithm, where votes are reset
as soon as a gap in the token circulation is detected,
Agreement holds if the vote threshold is greater or
equal than f + 1. Termination additionally requires
the failure detector R and that there be at least n >
(f+1)f + 1 processes in the system.

Remark: The condition gap(sender — p;) = 0 is
not a necessary condition for Agreement in a token-
based consensus algorithm. In [9], we present such
an algorithm, parametrized with gapThreshold (the
number of gaps in the token circulation before reset-
ting the vote counter) and voteThreshold (the num-
ber of votes required to decide). Agreement holds if
voteThreshold > (gapThreshold + 1) f + 1. However
Termination still requires gapThreshold = 0 (in addi-
tionton > (f+1)f +1and R).

4.3.5. Details of the algorithm The token con-
tains the following fields: round (round number),
estimate, votes (accumulated votes for the estimate
value) and decision (a boolean indicating if estimate
is the decision).

Procedure 4 Consensus: Initialization

1: Vp;, 1 € [0,n—1]:

2: estimate; «— v;; decided; «— false; round; «— 0
3: po: {send token}

4:  send(0,vo,1,false) to {p1,...,pry1}

5: Vpi, 1 € [n— f,n—1]: {send “dummy” token}
6:  send(-1,1,0,false) to {p1,...,Pits+1}

The initialization code is given by Procedure 4. Lines
5-6 show the dummy token sent to prevent blocking in



Procedure 5 Token-accumulation consensus: token
handling by p;

1: loop

2:  token « receive-token(round;) {see Proc. 1}

3:  if token.estimate =L then {use initial value}
4: token.estimate < estimate;
5. end if

6 if not decided; then

7: estimate; < token.estimate

8 if (gap(sender — p;) = 0) then
9

votes; < token.votes + 1 {add vote}
10: else
11: votes; — 1; {reset votes}
12: end if
13: if (votes; > f + 1) or token.decision then
14: decide(estimate;); decided; «— true
15: end if
16:  end if

17:  token « (round;, estimate;, votes;, decided;)
18:  send token to {pit1,. .. .Ditft1}

19:  round; < round; + 1

20: end loop

21: upon reception of token s.t.
token.round < round; do
22:  if token.decision and (not decided;) then

23: estimate; < token.estimate
24: decide(estimate;); decided; «— true
25:  end if

26: end upon

the case processes po,...,pf—1 are initially crashed. A
dummy token has round = —1, estimate = 1 and
votes = 0, and is sent only to processes {p1,...,ps}.
The token handling code is given by Procedure 5. At
line 2, process p; starts by receiving the token (see Pro-
cedure 1) for the expected round;.” If no value is trans-
ported by the token (dummy initialization token), p;
replaces token.estimate by its own estimate (lines 3-5).
If p; has not yet decided, then p; starts by updating its
estimate (line 7). If there was no gap in the token cir-
culation, then the votes are incremented (line 9). Oth-
erwise, the votes are reset to 1 (line 11), which starts
a new sequence of vote accumulation. At line 13, pro-
cess p; checks whether there are enough votes for a de-
cision to be taken. If so, p; decides (line 14). Finally,
the token with the updated fields is sent to the f + 1

7 To avoid complicated notation, we implicitly assume that, for
process p;, waiting a token for round; means either (1) wait-
ing a token from p;, j < i, with token.round = round;, or (2)
waiting a token from p;, j > 4, with token.round = round; —1.

successors (line 18), and process p; increments round;
(line 19).

Lines 1-20 ensure that at least one correct process
eventually decides. However, if f > 1, this does not en-
sure that all correct processes eventually decide. Con-
sider the following example: p; is the first process to
decide, p;y1 is faulty. In this case, p;12 may always
receive the token from p;_;, a token that does not
carry a decision; p; might be the only process to ever
decide. Lines 21-26 ensure that every correct process
eventually decides. The token received at line 2, for
round,;, follows Procedure 1. Other tokens are received
at line 21: if the token carries a decision, process p; de-
cides. Note that the stopping of the algorithm is not
discussed here. It can easily be added.

4.3.6. Proof of the token-based algorithm The
proofs of the uniform validity and uniform integrity
properties are easy and omitted. A sketch of the proof
of the uniform agreement and termination properties
of the token-accumulation consensus algorithm are pre-
sented in the following paragraphs.

Uniform Agreement Let p; be the first process to
decide (say at time t), and let v be the decision value.
By line 13 of Procedure 5, we have votes; > f + 1.
Votes are reset for each gap. So, votes; > f+ 1 ensures
that at time ¢, all processes p; € {pi—1,...,pi—s}, have
pj.estimate = v. Any process py, successor of p; in
the ring, receives the token from one of the processes
Di,- .-, Pi—f. Since all these processes have their esti-
mate equal to v, the token received by p necessarily
carries the estimate v. So after ¢, the only value car-
ried by the token is v, i.e., any process that decides will
decide v. O

Termination Assume at most f faulty processes
and the failure detector R. We show that, if n >
f(f+1)+1, then every correct process eventually de-
cides.

First it is easy to see that the token circulation never
stops: if p; is a correct process that does not have the
token at time ¢, then there exists some time t' > ¢
such that p; receives the token at time t'. This fol-
lows from (1) the fact that the token is sent by a pro-
cess to its f + 1 successors, (2) the receive token pro-
cedure (Procedure 1), and (3) the completeness prop-
erty of R (which ensures that if p; waits for the token
from p;_1 and p;_1 has crashed, then p; eventually sus-
pects p;—1 and accepts the token from any of its f + 1
predecessors).

The second step is to show that at least one correct
process eventually decides. Assume the failure detec-
tor R, and let ¢ be such that after ¢ no correct process
p; is suspected by its immediate correct successor p; .



Since we have n > f(f 4+ 1) + 1 there is a sequence of
f+1 correct processes in the ring. Let p; . .. piy ¢ be this
sequence. After ¢, processes piti1...p;+s only accept
the token from their immediate predecessor. Thus, af-
ter t, the token sent by p; is received by p;11, the token
sent by p;y1 is received by p;2, and so forth until the
token sent by p;4s—1 is received by p;4 . Once p;4 s has
executed line 9 of Procedure 5, we have votes; > f+ 1.
Consequently, p;1 s decides.

Finally, if one correct process py decides, and sends
the token with the decision to its f + 1 successors, the
first correct successor of pg, by line 21 or line 2, even-
tually receives the token with the decision and decides
(if it has not yet done so). By a simple induction, ev-
ery correct process eventually also decides. (I

5. Token-based atomic broadcast algo-
rithms

In this section we show how to transform the token-
based consensus algorithm into an atomic broadcast al-
gorithm. Note that we could have presented the atomic
broadcast algorithm directly. However, since the con-
sensus algorithm is simpler than the atomic broad-
cast algorithm, we believe that a two-step presentation
makes it easier to understand the atomic broadcast al-
gorithm.

Note also that it is well known how to solve atomic
broadcast by reduction to consensus [3]. However, the
reduction, which transforms atomic broadcast into a
sequence of consensus, yields an inefficient algorithm
here. The reduction would lead to multiple instances
of consensus, with one token per consensus instance.
We want a single token to “glue” the various instances
of consensus.

To be correct, the atomic broadcast algorithm re-
quires the failure detector R, a number of processes
n> f(f+1) 41, and a vote threshold at f + 1 in or-
der to decide, as was the case in the consensus algo-
rithm above.

5.1. Overview

In the token-based atomic broadcast algorithm, the
token transports (i) sets of messages and (ii) sequences
of messages. More precisely, the token carries the fol-
lowing information: (round, proposalSeq, votes, adeliv,
nextSet). Messages in the sequence proposalSeq are de-
livered as soon as a sufficient number of consecutive
“votes” have been collected. The field adeliv is the
sequence of all messages adelivered that the token is
aware of (in the delivery order). When a process re-

ceives the token, it can therefore, if needed, catch up
with the message deliveries performed by other pro-
cesses.

Finally, while the token accumulates votes for pro-
posalSeq, it simultaneously collects in nextSet the mes-
sages broadcast atomically (messages m such that
abroadcast(m) has been executed). The set nextSet
grows as the token circulates. Whenever messages in
proposalSeq can be delivered, nextSet is used as the
“proposals” for the next decision.

Procedure 6 Atomic Broadcast: Initialization
1: Vpi, 1 € [0,7717 1} :
2:  abroadcast; «— 0; adeliv; +— e: round; — 0

w

. po : {send token}
4:  send(0, abroadcasty, 1, ¢, abroadcasty) to

{p17' .. 7pf+1}

ot

: Vpi, i € [n— f,n—1]: {send “dummy” token}
send(—1, 0,0, ¢, 0) to {p1,. .. ,pitfr1}

<@

Procedure 7 Atomic Broadcast: abroadcast and
adeliver (code of p;)

1: To execute abroadcast(m):
2:  abroadcast; — abroadcast; U{m}

: To execute delivery(seq):

adeliver messages in seq not in adeliv;
adeliv; «— adeliv; ® seq

abroadcast; «— abroadcast; \ adeliv;

A

5.2. Details

Each process p; manages the following data struc-
tures (see Procedure 6): round; (the current round
number), abroadcast; (the set of all messages that have
been abroadcast by p; or another process, and not yet
ordered), and adeliv; (the sequence of messages adeliv-
ered by p;). The algorithm is decomposed into several
procedures.

Procedure 6 is the initialization procedure (e denotes
the empty sequence).

Procedure 7 describes the abroadcast and adelivery
of messages: delivery(seq) is called by Procedure 8.
The operator & at line 5 of Procedure 7 is the sequence
concatenation operator (seq; @ seqq is the sequence of
elements in seq; concatenated with the sequence of el-
ements in seqo that are not in seqy).



Procedure 8 Atomic broadcast: token handling by p;

1: loop
2:  token « receive-token(round;) {see Procedure 1}

3:  abroadcast; «— abroadcast;U
token.proposalSeq U token.nextSet

4:  if |token.adeliv| < |adeliv;| then  { “old” token}

5: token.proposalSeq «— ()

6: else {token with new information}

7: delivery(token.adeliv)

8: if (token received from p;—;) and
(token.proposalSeq # () then

9: votes; < token.votes + 1

10: else

11: votes; +— 1

12: end if

13: if (votes; > f + 1) then

14: delivery(token.proposalSeq)

15: token.proposalSeq «— ()

16: end if

17:  end if

18:  if token.proposalSeq = () then

{new proposal}

19: token.proposalSeq «— abroadcast;
20: votes; = 1
21:  end if

22:  token « (round;,token.proposalSeq,votes;,
adeliv;, abroadcast;)

23:  send token to {piy1..Pitf+1}

24:  round; — round; + 1

25: end loop

26: upon reception of token s.t.
token.round < round; do
27: if |token.adeliv| > |adeliv;| then
28: delivery(token.adeliv)
29:  end if
30:  abroadcast; < abroadcast; U token.nextSet
31: end upon

Procedure 8 describes the token-handling. Lines 4 to
17 of Procedure 8 correspond to lines 6-16 of the con-
sensus algorithm (Procedure 5). Procedure delivery()
is called to deliver messages (line 14). When this hap-
pens, a new sequence of messages can be proposed for
delivery. This is done at lines 18 to 21. Finally, lines 26-
31 handle reception of other tokens. This is needed for
Uniform Agreement and Validity when f > 1. Lines
27-29 are for Uniform Agreement (they play the same
role as lines 22-25 of Procedure 5). Line 30 is for Valid-
ity (consider f = 2, p; correct and p; 1 faulty; without
line 30, process p;12 might, in all rounds, receive the

token only from p;_1; if this happens, messages abroad-
cast by p; would never be adelivered).

The proof of the algorithm can be derived from the
proof of the token-based consensus algorithm.

5.3. Optimization

In our algorithm, the token carries whole messages,
rather than only message identifiers. This solution is
certainly inefficient. The algorithm can be optimized
so that only the message identifiers are included in the
token. This can be addressed by adapting techniques
presented in other token-based atomic broadcast algo-
rithms, e.g., [4, 14], and is thus not discussed further.

The optimization above reduces the size of the token
but does not prevent it from growing indefinitely. This
can be handled as follows. Consider a process p that re-
ceives the token with the sequence s; in the field adeliv
and later, in a different round, receives the token with
a longer sequence sy in the same field (s; is a subse-
quence of s3). When p receives the token with the se-
quence So, the token containing sequence s; has been
received by at least f+ 1 processes, i.e., by at least one
correct process. The sequence s; can thus be removed
from the token. In nice runs (no failures, no suspicions),
this means that a process that delivers new messages in
round ¢ (thus increasing the size of the adeliv sequence
in the token) then removes those messages from the to-
ken in round ¢ + 1.

The circulation of the token can also be optimized.
If all processes are correct, each process actually only
needs to send the token to its immediate successor.
So, by default each process p; only sends the token
to p;+1. This approach requires that if process p; sus-
pects its predecessor p;_1, it must send a message to
its f 4+ 1 predecessors,® requesting the token. A pro-
cess, upon receiving such a message, sends the token
to p;. If all processes are correct, this optimization re-
quires only a single copy of the token to be sent by
each token-holder instead of f + 1 copies, thus reduc-
ing the network contention due to the token circulation
by a factor f + 1.

6. Simulation Results

In this section we compare the performance of our
new atomic broadcast algorithm with the Chandra-
Toueg algorithm, in which atomic broadcast is solved
by reduction to consensus [3]. The Chandra-Toueg al-
gorithm does not use failure detectors directly, but re-
lies solely on consensus (which in turn relies on fail-

8 Actually, the message does not need to be sent by p; to p;—1.



send() deliver()

.QT
o 2
% S
v Q
: :
E CPU; CPU; Q,
oo (A time units) (A time units) %o
e =
g Nt
A )

84

( Network (1 time unit) )

Figure 1. Sending a message over the Neko sim-
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ure detectors).” For consensus, we consider two differ-
ent algorithms: (1) the Chandra-Toueg consensus al-
gorithm (CT), based on a centralized communication
schema [3], and (2) the Mostéfaoui-Raynal consensus
algorithm (MR), based on a decentralized communica-
tion schema [17]. The two algorithms use the failure
detector ¢S and require f < n/2. The comparison is
done by simulation.

6.1. Simulation model and parameters:

The results have been obtained using the Neko sim-
ulation and prototyping framework [19]. Using this
framework, the same (Java) implementation of a pro-
tocol can be used in a simulated environment and on a
real network. The message transmission has been mod-
eled as in [20] and [18].

Both the network and the hosts can be a bottle-
neck. Each CPU (for sending and receiving messages)
and the network are modeled as resources that need
to be acquired, used, and finally released. A message
m transmitted from process p; to process p; (i) first
uses the CPU of p; (with a cost of A), (ii) then the net-
work (with a cost of 1), and (iii) finally the CPU of p;
(with a cost of A), as shown in Figure 1. The param-
eter A (A > 0) models the relative speed of process-
ing a message on a host compared to transmitting it
over the network: A = 1 indicates that CPU process-
ing and transmitting over the network have the same
cost, A > 1 indicate that CPU processing is expensive
compared to transmitting over the network, A < 1 in-
dicates that transmitting over the network is expensive
compared to CPU processing. We used three represen-

9 This allows us to compare two different atomic broadcast algo-
rithms, both using failure detectors (directly, as in the token-
based algorithm, or indirectly, as in the reduction to consensus
algorithm, where consensus uses failure detectors).

tative values {0.1,1,10} for A and simulated the algo-
rithms on a multicast network.

6.2. Performance Metric : Latency versus

Throughput

We evaluated the performance of the algorithms
with four types of faultloads, as in [20]: normal-steady
(no failures, no suspicions), crash-steady (one or two
failures occur before the start of the run, no wrong
suspicions), crash-transient (failures are injected dur-
ing the run and detected after a detection time Tp, the
performance is measured during the period of instabil-
ity that follows a crash) and suspicion-steady (no fail-
ures, but wrong suspicions of average duration T, with
an average recurrence time of Ty g).

All of these tests were run with two system settings:
(1) f = 1: one tolerated failure (n = 3 processes for
CT, MR and Token) and (2) f = 2: two tolerated fail-
ures (n = 5 processes for CT and MR, compared to
n = 7 processes for Token).' We use a simple sym-
metric workload: all processes send atomic broadcasts
at the same rate, and the overall rate is called through-
put. The performance metric for the algorithms is la-
tency, defined as the average (over all correct processes)
of the elapsed time between sending a message m and
the delivery of m.

A selection of the results are shown in Figures 2
to 9. The complete simulation results can be found
in [10]. The graphs give the latency as a function of
the overall throughput. We set the time unit of the net-
work simulation model to 1 ms, to make sure that the
reader is not distracted by an unfamiliar presentation
of time/frequency values (one that refers to time units).
Any other value could have been used. The 95% confi-
dence interval is shown for each point in the graphs.

6.3. One tolerated failure (f =1)

In the case f =1, all algorithms need a system with
n = 3 processes to guarantee liveness. In such a setting,
and with a normal-steady faultload (i.e. no failures, no
wrong suspicions), the token-based algorithm needs one
broadcast message and one point-to-point message (i.e.

10 The number of processes might seem small, but is adequate
to implement scalable atomic broadcast algorithms. Indeed,
in a system with a large amount of processes, there is typi-
cally a small kernel of “servers” that order the messages and
then broadcast them to all other processes. Thus, only the pro-
cesses in the kernel actually execute the ordering algorithm.
For the sake of efficiency, the set of processes included in the
kernel should be small. It is therefore reasonable to compare
the performance of atomic broadcast algorithms in such a set-
ting.
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Figure 3. Latency vs. throughput with a crash-steady faultload, one crashed process (n = 3 processes)

two communication steps) per decision. The CT con-
sensus algorithm needs n = 3 point-to-point messages
and 2 broadcast messages, for a total of 3 communi-
cation steps. Finally, the MR algorithm needs 2n = 6
broadcasts, for a total of 2 communication steps. Ac-
cording to this complexity analysis, the token-based al-
gorithm should perform better than the CT and MR
algorithms in a system with 3 processes. Figure 2 con-
firms this analysis in the case of a run without fail-
ures: the token-based algorithm achieves lower laten-
cies than both other algorithms for all loads but the
lowest.

In the case of one faulty process (crash-steady fault-
load), the performance gap between the token-based
algorithm is significantly smaller (Figure 3), probably
due to the decrease of the network contention (only
two processes try to access the network) which is fa-
vorable to the CT and MR algorithms.

In runs with a crash-transient faultload, if the detec-
tion is very fast (modelled as detection time Tp = 0),
the token-based algorithm performs better than both

other algorithms, as is shown in Figure 4. [10] shows
that with a detection time Tp = 100 ms, the token-
based algorithm still achieves a slightly lower latency
overhead than both other algorithms.

Finally, in runs with wrong suspicions (suspicion-
steady faultload), the token-based algorithm achieves
lower latencies than the other algorithms, both in the
case of frequent failure detector mistakes (small values
of Thr) as in the case of less frequent mistakes (Fig-
ure 5). The complete simulation results can be found
in [10].

6.4. Two tolerated failures (f = 2)

In the case f = 2, CT and MR need a system with
n = 5 processes, whereas the token-based algorithm
needs n = 7 processes to guarantee liveness. In such
a setting, and with a normal-steady faultload (i.e. no
wrong suspicions), the token-based algorithm needs one
broadcast message and between 2 and 3 point-to-point
messages (i.e. three to four communication steps). The
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results for the CT and MR consensus algorithms are as
before: n = 5 point-to-point messages and two broad-
casts for a total of 3 communication steps for CT,
2n = 10 broadcasts for a total of 2 communication
steps for MR.

So, roughly speaking, the token-based algorithm
appears better in terms of number of messages, but
slightly worse in terms of communication steps. Figures
6 and 7 show that the token-based algorithm performs
better than CT and MR in the case of fast processors
(A =0.1), except in the case of a very low load. In the
case of slower processors (A = 1,10) the token-based
algorithm preforms slightly worse than both other al-
gorithms for low throughputs but then achieves better
latencies as the throughput increases (when the num-
ber of messages, not the communication steps, becomes
the dominant factor for the performance of the algo-

rithms).

The performance graphs of the runs with a crash-
transient faultload (and with Tp = 0) show character-
istics that are similar to the runs in a failure free sys-
tem. With this faultload, however, the token-based al-
gorithm achieves lower latencies than the other algo-
rithms even at lower throughput levels, with A = 1 and
A = 10. In the case of very low loads, the token algo-
rithm still performs slightly worse than both other al-
gorithms.

Finally, in runs with a suspicion-steady faultload
(wrong suspicions), the token-based algorithm per-
forms better than CT and MR as the mistake recur-
rence time Ths g decreases (more frequent wrong suspi-
cions). The complete simulation results can be found
in [10].

To wrap up, the simulation results show that the
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token-based algorithm is a better alternative to other
failure detector based algorithms in various system set-
tings, especially in the case f = 1 (and except at the
lowest loads). In such a case, according to the simula-
tion results, the token-based algorithm achieves lower
latencies than both other algorithms, whilst reaching
higher throughput levels.

7. Related work

As was mentioned in Section 1, previous atomic
broadcast protocols based on tokens need group mem-
bership or an equivalent mechanism. In Chang and
Maxemchuk’s Reliable Broadcast Protocol [4], and its
newer variant [14], an ad-hoc reformation mechanism is
called whenever a host fails. Group membership is used
explicitly in other atomic broadcast protocols such as
Totem [1], the Reliable Multicast Protocol by Whet-

ten et al. [21] (derived from [4]), and in [7].

These atomic broadcast protocols also have different
approaches with respect to message broadcasting and
delivery. In [4, 21], the moving sequencer approach is
used : any process can broadcast a message at any time.
The token holder then orders the messages that have
been broadcast. Other protocols, such as Totem [1]
or On-Demand [7] on the other hand use the privi-
lege based approach, enabling only the token-holder to
broadcast (and simultaneously order) messages.

Finally, the different token-based atomic broadcast
protocols deliver messages in different ways. In [7], the
token holder issues an “update dissemination message”
which effectively contains messages and their global or-
der. A host can deliver a message as soon as it knows
that previously ordered messages have been delivered.
“Agreed delivery” in the Totem protocol (which corre-
sponds to adeliver in the protocol presented in this pa-
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per) is also done in a similar way. On the other hand, in
the Chang-Maxemchuk atomic broadcast protocol [4],
a message is only delivered once f + 1 sites have re-
ceived the message. Finally, the Train protocol pre-
sented in [6] transports the ordered messages in a token
that is passed among all processes (and is in this re-
spect related to the token-based protocols presented in
this paper).

Larrea et al. [13] also consider a logical ring of pro-
cesses, however with a different goal. They use a ring
for an efficient implementation of the failure detectors
OW, OS and QP in a partially synchronous system.

8. Conclusion

According to various authors, token-based atomic
broadcast algorithms are more efficient in terms of

throughput than other atomic broadcast algorithms.
The reason is that the token can be used to re-
duce network contention. However, all published token-
based algorithms rely on a group membership service,
i.e., none of them use unreliable failure detectors di-
rectly. The paper has given the first token-based atomic
broadcast algorithms that solely relies on a failure de-
tector, namely the new failure detector called R. Such
an algorithm has the advantage of tolerating failures di-
rectly (i.e., it also tolerates wrong failure suspicions).
Algorithms that do not tolerate failures directly, need
to rely on a membership service to exclude crashed pro-
cesses. As a side-effect, these algorithms also exclude
correct processes that have been incorrectly suspected.
Thus, failure detector based algorithms have advan-
tages over group membership based algorithms, in case
of wrong failure suspicions, and possibly also in case of



real crashes.

Finally, although token-based atomic broad-
cast algorithms are usually considered to be ef-
ficient only in terms of throughput, our perfor-
mance evaluation has shown that for small val-
ues of n, our algorithm compares favorably with
the Chandra-Toueg atomic broadcast algorithm (us-
ing the Chandra-Toueg or Mostéfaoui-Raynal con-
sensus algorithm) in terms of latency as well, at all
but the lowest loads. In the future we plan to com-
pare the performance of our new algorithm with
token-based algorithms that rely on a member-
ship service, both in nice runs (no crashes, no failure
suspicions) and in runs with crashes and wrong fail-
ure suspicions.
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