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Abstract—The ongoing trend towards distributed develop-
ment activities causes a growing need for specification activities
and techniques. Each component leads to a large number
of specification documents being exchanged, change managed
and committed. The quality of the specifications influences the
timing, costs and success of the development task. However,
the quality of such specifications is often far from optimal,
exhibiting gaps, inconsistencies, redundancies, and unbalanced
structures. At every release or delivery milestone, acceptance
and integration testing take place. Therefore, test-cases have
to be created from the requirements exchanged. This paper
presents a model-based approach for improving the quality of
comprehensive requirements sets. The presented solution is based
on a combination of a graphical notation and natural language
and can be used to drive model-based testing. The approach
has been implemented using state-of-the-art tools. We present
experience from field application in the automotive industry.

I. INTRODUCTION

The ongoing trend towards distributed development activ-
ities amongst world-wide teams and the integration of the
respective results causes a growing need for specification
activities and techniques. Each component leads to a large
number of specifications being exchanged, change managed as
well as integration and tests committed between the leading
and the supplying development teams.

While distributed development projects are not the topic
of this paper, our experience with them motivated the work
described. The quality of specifications has a significant im-
pact on the efficiency and risks of distributed development
activities [1] such as the quality of development results, change
management, coordination activities, and testing. Furthermore,
the development of dependable software demands traceable
processes and provably complete and correct results.

This paper aims at reducing risks of distributed development
activities, presenting a method to create and maintain product
specifications that are precise, formally structured, and that
product engineers find equally easy to understand and to use.

Despite their potential benefits, formal languages (FL) are
not widely used because the required expertise is often not
present. Instead, natural language (NL) in combination with
graphical notations (GN) is a familiar choice for the engineer,
with the use of GN helping reduce the size of the NL
specification and providing the potential to automate analysis,
transformation and testing. An additional benefit is that often
there is domain specific technical NL and GN that is common
to all groups. Thus a combination of NL and GN is practically
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the de facto standard specification language in distributed
development scenarios, although significant drawbacks exist:

1) NL can leave much room for interpretation;

2) NL is local, e.g. a specification written in German is
only useful for German speaking groups (this can also
affect models);

3) It is difficult to maintain NL and keep it precise, con-
sistent and free of redundancies;

4) Automated processing of NL is difficult;

5) Over time and changes, NL and embedded or referred
GN tend to diverge in meaning;

6) GN alone may contribute precise, but only partial in-
formation, which demand NL requirements to tell the
reader how to interpret it.

Our experience in industrial projects indicates that structure
has a significant impact on requirements quality. An unclear
structure may contribute to redundancy and so to overly long
specifications. Additionally, inconsistencies may be created, if
additional requirements deviate from those already in the set.

In the context of this paper a specification is a set of state-
ments (requirements) describing aspects of the product under
development. Such statements may possess a type, for instance
to denote priority or use of certain information, e.g. differen-
tiate requirements from heading or secondary information. A
specification targets a stage of the development process, e.g.
product definition, analysis, design, implementation, testing,
integration, delivery. Furthermore, specifications may have a
certain scope, describing the product as a whole or only parts.

The proposed approach aims to create a model-integrated
specification that closes the gap between NL and GN through
formalising the structure of the GN specification, while pre-
serving the benefits of NL. We have found that a major benefit
is that the resulting specifications provide almost optimal
cohesion. In addition, it is possible to apply formal analysis
and test generation techniques to the resultant specifications.
This paper extends previous work [6] by providing additional
information about the formalisation used and by describing a
semi-automatic approach to test generation along with associ-
ated coverage criteria.

This paper is structured as follows. Section II gives the run-
ning example and Section III describes the proposed approach.
Section IV explains how the resultant combination of GN and
NL can drive testing. Section V describes our experiences of
using the proposed approach and associated tool. Section VI
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Fig. 1. Block diagram belt-warner example

then describes related work and Section VII summarises the
work.

II. BELT-WARNER EXAMPLE

The belt-warner example is a simplified extract of the
specification of a real driver assistance function that warns the
driver at critical speeds that the safety belt is not tightened.
The architecture of the system is described using a subset of
Block Diagrams [2] [3]. The system behaviour is specified
using a sub-set of statecharts [4].

A. Architecture of the belt-warner example

In the belt-warner example a block diagram specifies the
system architecture. Block diagrams are graphical structures
consisting of hierarchical blocks, signal flows, signal entry
points and signal exit points. A block, represented as a rectan-
gle, may contain a behaviour. Hierarchical blocks may possess
architecture and behaviour. Signal flows, represented as edges
in the block diagram, specify message routing between blocks.
Signal sources and sinks, represented as wedged rectangles,
are special blocks used to define system interfaces.

The example architecture of a simple belt-warner in Figure
1 contains a single block, 4 signal sources and 4 signal
sinks. The sources define the input interface, which consists of
signals Belt Status, Ignition Status, Vehicle Speed, and System
Time. The sinks define the output interface, which consists of
signals Start Warning, Stop Warning, Activity, and Stand-by.

B. Behaviour of the belt-warner example

Statecharts is a graphical notation for extended, hierarchical
finite state-machines that is applicable to the specification of
state-based system behaviour. In the context of the presented
approach, a sub-set of statecharts has proved to be useful and
will be explained in this section. A complete and detailed
description of statecharts is provided in [4].

The nodes of a statechart represent a finite set of system
states, while the edges represent transitions between these
states. A statechart may process a finite set of inputs and
produces a finite set of outputs. A statechart may be extended
with data of arbitrary number and types.

A state may contain a finite set of sub-states, one being the
initial state, i.e. when changing into the state the initial sub-
state is entered. A transition into a hierarchical state (a state
containing sub-states) ends either implicitly in the initial or
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explicitly in one of the sub-states. An atomic state does not
contain sub-states. A state-invariant specifies conditions that
must hold when the system is in the corresponding state.

A state transition has an initial and a final state. A group
transition starts from a hierarchical state S}, ; it can be triggered
from any sub-state of S;,. The trigger of transition ¢ specifies
conditions on inputs and data under which ¢ executes. Further-
more, in a transition it is possible to specify data operations
and outputs. We use predicate logic to specify the above.

The statechart in Figure 2 contains 4 atomic states, 2
hierarchical states and 9 transitions, of which 3 are initial
transitions and 4 are group transitions. It describes the system
behaviour in use, when turning it on/of, activating, deactivating
the function and situations in which the belt warning is started
or stopped.

III. MODEL-INTEGRATED REQUIREMENTS SPECIFICATION

As previously discussed, the proposed approach is based
on integrating GN and NL, which is achieved by mapping
each ‘basic model element’ of the graphical model to a
corresponding textual section (called a chapter).

This process is applicable to a variety of modeling notations,
if these can be mapped into finite structures, such as graphs.
Given an NL specification of a system (for the ease of
explanation initially without GN parts), we create a model-
integrated specification as follows.

1) Break down the specification into atomic statements.
2) Give each atomic statement a type of either information
or requirement.
3) Create a GN of the system’s high-level architecture.
4) Create a NL chapter structure based on the architecture:
« each node in the GN relates to a chapter,
« cach edge in the GN relates to a chapter.
5) Relocate atomic statements into the chapter structure.
6) Analyse residual atomic statements and either discard or
redesign GN and go back to 3.
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- Chapter 2 Transitions

Chapter 2.1 Transition t0
Chapter 2.2 Transition t1
Chapter 2.3 Transition t2
Chapter 2.4 Transition t3
Chapter 2.5 Transition t4
Chapter 2.6 Transition t5

7) Review each chapter and eliminate incompleteness, in-
consistencies and redundancies.

8) Optionally, complement NL specification with condi-
tional statements defining feasible paths and further
system properties, e.g. state invariants.

This results in a semi-formal specification in the form of a
chapter structure; specification statements remain in NL. For
instance, if the GN is a finite state machine, then the model
elements are states and transitions, and a chapter is created for
each of these. Figure 3 presents the example of an FSM and
the NL structure generated.

In this paper we outline how GN in the form of labelled
directed graphs (LDGs) can be used. The GN part may have
a specific (separate) semantics associated with the language
originally used. We need to retain this information to cor-
rectly interpret different languages such as statecharts and
block diagrams. We have developed a set of semantics for
automotive controller functions but anticipate that different
semantics might be used in other domains. In practice, we have
found LDGs to cover a large and useful variety of modelling
notations. However, there might be notations, e.g. sequence
diagrams and use-case diagrams, where there is no natural
mapping to LDGs. In such cases we suggest that different
GN-notations are used, e.g. multi-graphs.

In practical software and systems development, the variety
of GN used often depends on the domain (e.g. statecharts,
activity diagrams, Petri nets, block diagrams, or fault trees). To
make the model-integration approach applicable to a maximum
number of GNs, it splits a GN into an abstract graphical
structure, whose elements will be given semantics via NL, and
a semantics that comes from the original graphical modelling
language used. For the example in Figure 3, the semantics
includes the information that the graph represents a finite state
machine: nodes represent states; edges represent transitions.
The graph of a GN thus represents the topology. Mapping a
GN to abstract graphs provides the benefit that we can have a
common approach and toolset for a range of GNs.

Conditional statements form an important part of many
modelling notations. For example, statecharts has state in-
variants and trigger conditions on edges. In the presented
approach, predicate logic may be used to specify conditional
structures in the NL part of the model-integrated specification;

we will see that this facilitates semi-automated test generation.
It is possible to structure this NL to form logical trees, where
leaves are atomic logical statements in NL and the other nodes
represent the logical operators OR, AND and XOR.

A. An abstract model

A labelled directed graph G is defined by a tuple
(L,V, Vo, E, fy) in which L is the set of labels; V' is the finite
set of nodes; Vy C V is the set of initial nodes; & C VX LxV
is the finite set of edges (edge (v,l,v’) has source node v,
destination node v’ and label 1); and fi, : V — L is the node
label function that maps each node to a corresponding label.

The nodes and edges of graph G provide the structure of
the model. The labels allow us to add semantics to these.

L can be any suitably large set since the individual labels
can be separately mapped to the required information (such
as invariants). In practice, we have found it simplest to use
strings, with a label denoting, for example, the name of a state
or a function. Information regarding the semantics associated
with a label is supplied in a separate table. Tables I and II
give such information for the belt-warner system.

TABLE I
LDG OF BELT-WARNER BLOCK DIAGRAM

(

{ (no, Belt Status, source),
(n1, Ignition Status, source),
(
(

na, Vehicle Speed, source)

ng, System T'ime, source),
(na4, Simple Belt Warner node),
(ns, Start Warning, sink),
(ne, Stop Warning, sink),
(n7, Belt Warner Activity, sink),
(ng, Belt Warner Stand — By, sink)},
(no,na),comfort),
(n1,n4), engine),
(n2,n4), chassis),
(ns3,na), combi),
(na4,ns), sbwoutl),
(n4,ne), sbwout2),
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(n4,ng), sbwoutd)})
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TABLE II
LDG OF BELT-WARNER STATECHART

s =(
={ (no,IGNITION_OFF,node),
n1, IGNITION_ON, hierarchical node),
na, STAN D_BY, node),
ns, ACTIV E, hierarchical node),
ng, WARNING_OFF,node),
ns, WARNING_ON, node)},
(=, n0), Initial SBW),
(no,n1), turning_on),
(n1,n0), turning_of f),
(=, n2), Initial IGNITION_ON),
(n2,n3), activating),
(=,mna), Initial ACTIVE),
(na4,ns), start_warning),
(ns,n4), stop_warning)})
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B. Semantics

The process of mapping a graphical model into LDGs
can lead to some loss of information that corresponds to
elements of the semantics of the GN used. For example, if
we map a statechart into an LDG then the resultant graph
does not contain information such as the fact that a node
represents a state and an edge represents a transition from
one state to another. This additional semantic information
must be retained; in the proposed approach the identity of the
original GN is retained so that it is possible to apply analysis
techniques that depend on this semantics. Furthermore, it is
possible to attach specific properties po, ..., p, for each model
element type. For instance, properties may be used to define a
specific chapter structure for each model element type, e.g.
a state chapter must contain an invariant definition and a
transition chapter must contain a trigger definition.

Tuples are used to define the semantics associated with
elements of the LDG; a tuple relates a graph element to a GN
element type and additional information, e.g. a template for
the chapter title. Chapter title templates are string expression,
possibly with placeholders, e.g. for a system name or a model
element name. An example of a modeling notation semantics
for block diagrams is presented in Table III. The graph of the
modeling notation consists of the modeling elements hierarchi-
cal node, node, edge, source, and sink. Each modeling element
is mapped to the appropriate element of block diagrams, e.g.
a node is a block, an edge is a signal flow.

TABLE III
SEMANTICS OF BLOCK DIAGRAM
Spa ={  (hierarchical node,” Requirements [sys name]”),
(node,” Requirements [sys name]”.
? Functional Requirements [sys name]”),
(edge,” Requirements [sys name]”.
? Signal Flows”.” Signal Flow [name]”),
(source,” Requirements [sys name]”.
? Inter face”.” Inputs”.” Input [name]”),
(sink,” Requirements [sys name]”.
? Inter face”.” Outputs”.” Output [name]”)}

An example of a modeling notation semantics for state
charts is presented in Table IV. The graph of the modeling
notation consists of the modeling elements hierarchical node,
node, and edge. Compared to block diagrams there is no
need to consider sinks and sources. Each of these modeling
elements is mapped to the appropriate element of statecharts,
e.g. a node is a state, an edge is an transition.

TABLE IV
SEMANTICS OF STATECHART

(node,” Requirements [sys name]”.
” Functional Requirements”.
” States”.” State [name]”),
(hierarchical node,” Requirements [sys name]”.
” Functional Requirements”.
” States”.” Hierarchical State [name]”),
(edge,” Requirements [sys name]”.
” Functional Requirements”.
"Transitions”.” Transition [name]”)}

C. Generating Specification Structures

A specification structure consists of hierarchically struc-
tured chapters, where each chapter provides semantics for
an element of the GN. The title of a chapter is created
from information regarding a graph element and its semantics
properties. Identifiers label graph elements; these provide a
one-to-one mapping between chapters and graph elements. For
example, it is possible to create a specification structure for
the belt-warner through two steps: generate chapters from the
Block Diagram (bold chapters); generate chapters from the
Statechart. Figure 4 gives the resulting structure.

Chapter X Requirements Belt Warner
Chapter X.1 Interface
Chapter X.1.1 Inputs
Chapter X.1.1.1 Input Belt Status
Chapter X.1.1.2 Input Ignition Status
Chapter X.1.1.3 Input Vehicle Speed
Chapter X.1.1.4 Input System State
Chapter X.1.2 Outputs
Chapter X.1.2.1 Output Start Warning
Chapter X.1.2.2 Output Stop Warning
Chapter X.1.2.3 Output Activity
Chapter X.1.2.4 Output Stand-By

Chapter X.2 Functional Requirements
Chapter X.2.1 States
Chapter X.2.1.1 Hierarchical State IGNITION_ON
Chapter X.2.1.2 Hierarchical State ACTIVE
Chapter X.2.1.3 State IGNITION OFF
Chapter X.2.1.4 State STAND BY
Chapter X.2.1.5 State NOT _WARNING
Chapter X.2.1.6 State WARNING

Chapter X.2.2 Transitions

Chapter X.2.2.1 Transition Initial SBW
Chapter X.2.2.2 Transition Initial IGNITION ON
Chapter X.2.2.3 Transition Initial ACTIVE
Chapter X.2.2.4 Transition turning_on
Chapter X.2.2.5 Transition turning_off
Chapter X.2.2.6 Transition activating
Chapter X.2.2.7 Transition deactivating
Chapter X.2.2.8 Transition start warning
Chapter X.2.2.9 Transition stop_warning

Fig. 4. Model-integrated structure of belt-warner specification

D. Specification Chapters

A specification chapter has a title and a set of specification
entries. Each specification entry can have a specific type, e.g.
requirement, information, data type, physical constraint.

Each GN element type can have a specific specification
chapter structure, e.g. a state chapter may contain an invariant
while a transition chapter may contain initial state, final state,
and trigger. As a result, for each modelling notation we
use specification chapter templates that define a hierarchical
structure of specification entries for each model element type.
Common attributes for specification entries are types, owner,
date of creation and last edit, or a history record. For model-
integration a specification type attribute is defined (Table V).

Logical expressions may be used to define conditions that
complement GN, e.g. triggers and invariants. These conditions



TABLE V
SPECIFICATION OBJECT TYPES
Type Description
heading a structure element
information | explanations and comments
requirement | the specification of a single required product property

may be specified using NL. Naturally, complex conditions can
be split into atomic expressions, these being structured into a
tree. An example from the belt-warner is given in Table VI.

TABLE VI
CONDITION SPECIFICATION TYPES
Type description
condition | atomic condition
XOR exclusive disjunctive composition of conditions

OR disjunctive composition of conditions
AND conjunctive composition of conditions

Since the atomic conditional expressions remain in NL, the
graph traversal produces concatenated NL expressions, which
only a human reader may check for validity. However, the
ability to automatically generate traces from conditional GN
was found to be very beneficial.

Returning to the running example, Table VII presents a
specification chapter template for states (‘tbd’ denotes infor-
mation to be added by the user). Likewise, a chapter template
for transitions is presented in Table VIII.

TABLE VII
SPECIFICATION CHAPTER TEMPLATE BELT-WARNER STATE
Type Short Text
heading - Chapter X.2.1.3 State IGNITION_OFF
information | Context tbd
AND Invariant | tbd

TABLE VIII

SPECIFICATION CHAPTER TEMPLATE BELT-WARNER TRANSITION
Type Short Text

heading - Chapter X.2.2.4 Transition turning_on
information | Context tbd

requirement | Initial State | tbd

requirement | Final State tbd

AND Trigger tbd

Finally, the specification chapters are complemented man-
vally with details in NL. As an example for the use of
specification types, Table IX presents requirements for the
activation hysteresis of the simple belt-warner.

Logical conditions like the activation hysteresis are often
found in specification documents. The model-integrated spec-
ification can be extended with formalised conditional specifi-
cations resulting in an extended model-integrated specification;
graph operations are still applicable. Again, the formalisation
applies only to the structure of the conditional specifications,
the conditional statements remain NL.

TABLE IX
BELT-WARNER HYSTERESIS SPECIFICATION

Text
The driver must not be distracted through
unnecessary belt-warnings at low speeds.

Type

information

The belt-warner shall be activated,
if vehicle speed exceeds 15 mph.

requirement

requirement | The belt-warner shall be deactivated,
if vehicle speed drops below 12 mph.
requirement | The belt-warner shall be deactivated,

if a relevant malfunction occurs.

TABLE X
BELT-WARNER IGNITION OFF INVARIANT SPECIFICATION

Type Text (e — tcvell, o — level2, x — level3)
AND System resides in IGNITION_OFF, if
condition | e Belt-warner ECU not powered.

TABLE XI
BELT-WARNER WARNING OFF INVARIANT SPECIFICATION
Type Text (o — levell, o — level2, x — Level3)
AND System resides in WARNING_OFF, if
condition | e No warning sound emitted.
condition | e Seat-belts fastened.

Examples of specifications of state invariants of the belt-
warner are presented in Tables X and XI; others are similar.

Examples of specifications of the triggering conditions of
the belt-warner example are presented in Tables XII and XIII.

TABLE XII
BELT-WARNER INITIAL CONDITION SPECIFICATION
Type Text (e — lcvell, o — level2, x — level3)
AND Seat-belt warner turns on, if
condition | e System precondition is TRUE.

TABLE XIII
BELT-WARNER START WARNING CONDITION SPECIFICATION

Type Text (o — tevell, o — level2, x — level3)
XOR Seat-belt warning must start, if
condition | e The driver seat-belt is unfastened.
AND e passenger seat

condition o Passenger seat is occupied.
condition * Passenger seat-belt is unfastened.

The conditional specifications complement the belt-warner
model in Figure 2, resulting in a non-deterministic model-
integrated specification. This model-integrated specification
can be input to further automate analysis and testing steps.

IV. MODEL-BASED TEST-CASE SPECIFICATION
In this section, we present an approach to apply model-
based test-case generation to model-integrated specifications.
A. Creating Test-Cases

The presented test-case creation approach combines auto-
mated test-case generation with experienced based testing. We
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outline this for statecharts. Initially, the statechart is flattened
and some modeling elements are substituted. Conditional
trigger specifications are transformed into disjunctive normal-
form; for each conjunct a corresponding transition is added to
the model. The resulting model is a graph to which one can
apply common traversal and coverage analysis algorithms.

We have found that it is not always sensible to directly apply
graph-traversal algorithms since the GN might not capture all
of the relevant information. For example, a specification might
contain a cycle that must be repeated a given number of times
before it can be left; we could encode this information in the
graph by unfolding the cycle but this might lead to a significant
increase in the size of the graph. In addition, the GN might
not capture important domain knowledge and may contain
non-determinism that results from abstraction. Nevertheless,
automation remains a key technology to efficiently handle
large specifications and reduce the potential for error in
carrying out routine tasks. As a result, we have developed an
interactive test case generation process that allows the user’s
domain knowledge to be utilised. After each step, the tool
reports the coverage achieved to allow the user to reason
about test-case quality. Based on this, the user either decides
to terminate or chooses the next transition to take.

The testing process presented in Figure 5 is divided in
two phases: automated test-model construction, i.e. flattening
and substitution, and semi-automatic test-case generation. A
software tool uses flattening and substitution operations to gen-
erate a testing model from the model-integrated specification.
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The resulting testing model for the belt-warner example is

TABLE XIV
TEST-CASE EXAMPLE

No. | Input Output

0 [Initial SBW]
System precondition is TRUE.

[Invariant IGNITION_OFF]
Belt-warner ECU not powered.

[Invariant IGNITION_ON]
Belt-warner ECU powered.
[Invariant STAND_BY]
Belt-warner signals stand-by.

1 [Trigger turning_on]

Ignition key turned ON.

Error memory is empty.
[Trigger Initial IGNITION_ON]
Set power status bit = 1.

[Invariant IGNITION_ON]
Belt-warner ECU powered.
Error memory is void.
[Invariant ACTIVE]

Belt warner signals activity.
Vehicle speed > 25 km/h.
[Invariant WARNING_OFF]
No warning sound emitted.
Seat belts fastened.

2 [Trigger activating]
Vehicle speed > 25 km/h.
[Trigger Initial ACTIVE]
Set activity bit = 1.

[Invariant IGNITION_ON]
Belt-warner ECU powered.
Error memory is void.
[Invariant ACTIVE]

Belt warner signals activity.
Vehicle speed > 25 km/h.
[Invariant WARNING_ON]

A warning sound emitted.
Passenger seat-belt unfastened.

3 [Trigger start_warning]
Passenger seat occupied.
Passenger seat-belt unfastened.

[Invariant IGNITION_ON]
Belt-warner ECU powered.
Error memory is void.
[Invariant ACTIVE]

Belt warner signals activity.
Vehicle speed > 25 km/h.
[Invariant WARNING_OFF]
No warning sound emitted.
Seat-belts fastened.

4 [Trigger stop_warning]
Warning emitted.

Driver seat-belt fastened.
Passenger seat occupied.
Passenger seat-belt fastened.

presented in Figure 6. The testing model is used by another
software tool to support the test-case specification process by
advising the test engineer. Test-case creation starts with an
empty sequence in the initial state (the initial transition may
add text to the test-case too, but for now we will ignore this).
The software tool supports the test-engineer by offering the
current state’s outgoing transitions and its textual contents,
which may be chosen to extend the test-case. When the test-
engineer selects a transition its textual content is appended to
the test-case and the current state is changed.

Once a test-case is finished, it is added to a test-set (a
collection of test-cases). The tool applies coverage metrics to
a test-set so that the test engineer can decide whether further
test-cases should be added. Table XIV gives a test-case created
using the tool from the belt-warner model. The test-case covers
the edges marked bold in the model presented in Figure 6.

B. Test coverage criteria

Let us suppose that S is a model-integrated specification,
Gg is an LDG generated from S, and G is a test-model
derived from S. Further, suppose that ¢g is a test suite. We
have several possible coverage metrics.

Edge coverage C¢ is the fraction of edges of Gg that are
covered when executing tg. Condition coverage Cyg is the
fraction of conditional statements (within structured logical



expressions) of S covered when executing tg. Trigger cover-
age Cr, is the fraction of edges of the test-model T that are
covered when executing tg. For effort estimation, an upper
bound on the number of edges in 7" is provided by taking the
sum, over the edges of Gg, of the number of conditions in the
DNF form of the triggers. The test-case presented in Table
XIV results in the coverage rates presented in Table XV.

TABLE XV
BELT-WARNER TEST COVERAGE EXAMPLE

Transition Ca Cg Cr
Initial ACTIVE 100% | 100% | 100%
Initial IGNITION_ON | 100% | 100% | 100%
Initial SBW 100% | 100% | 100%
activating 100% | 100% | 100%
deactivating 0% 0% 0%
start_warning 100% | 50% 50%
stop_warning 100% | 50% 100%
turning_off 0% 0% 0%
turning_on 100% | 100% | 100%

V. CASE STUDIES

The model-integration approach and tool have been used
in a number of development projects in industry: system
specification of various parking assistance systems using block
diagrams and statecharts; functional specification of emer-
gency braking systems using statecharts; system specification
of camera-based surround view systems; system, function and
test-case specifications of the control of an automated manual
gearbox; architecture, function and user interface specifica-
tions of a database management tool; and architecture and
function of a software-controlled medical device.

Among the specified driver assistance systems are 4 park-
ing systems, 2 brake-assistance systems, and a camera-based
traffic information system, for which it was found that a
major benefit lies in the clear structure and transparency of
the model-integrated specification. The largest specification
included 5 functional variants of a parking system containing
more than 2000 requirements, which were structured using 8
statechart models, of which the largest contained 40 states and
69 transitions. Frequently it was seen that the specifications
would increase in size. Even though redundancies can be
eliminated completely, the model-based approach enforces
completeness and the additional, missing, requirements caused
the specification to grow.

Functional specifications of an automated gear-box were
created using the model-integration tool; experience data is
presented in Table XVI. Two requirements engineers took four
months to create model-integrated specifications from high-
level functional specification. Since the functional specifica-
tions were found to be incomplete and inconsistent, workshops
were held with the system developers to elicit missing require-
ments and to remove specification faults. The model-integrated
specifications were complemented with testing information, so
that the same specifications could be used to generate test-
cases for manual and automatic execution.

TABLE XVI

AUTOMATIC GEARBOX APPLICATION STATISTICS
Component Requirements | Nodes | Edges
Coasting 315 18 36
Creeping 275 15 34
Garage Shift 268 12 34
Launch 262 16 32
Shift Quality 293 14 21
Stalling 144 11 20
Startup&Shutdown | 117 17 26

The model-integration has also been used to specify a
medical system consisting of 7 major components. Experience
data is presented in Table XVII.

TABLE XVII

MEDICAL DEVICE APPLICATION STATISTICS
Component Requirements | Nodes | Edges
ECU 91 6 8
Sensors 98 8 15
Actuators 92 8 14
Radio Arch. 17 2 2
Radio Func. 83 5 15
Radio Master | 92 11 15
Radio Client 71 8 13

The model-integrated specification approach is in use. To
specify graphical user interfaces, a specific graphical notation
and semantics have been developed that represents the graph-
ical widgets and their placement on the screen. Functional
behaviour, in the form of a statechart, can be attached to
widgets. The project, including the specification approach, has
been assessed and certified for SPICE level 1 [5].

TABLE XVIII
COMPARISON OF APPLICATION STATISTICS IN DEVELOPMENT PROJECTS

System Comp. | Models | Nodes | Edges | Effort[h]
Parking 1 4 8 40 69 500
Parking 2 4 5 19 38 650
Brake 1 1 2 6 8 700
Brake 2 1 2 15 18 800
Gearbox 7 7 103 203 1100
SW Tool 3 26 133 235 900
Medical Device | 4 7 48 82 400

Table XVIII presents statistics regarding specifications cre-
ated using the approach presented. The rows refer to the
specified systems. The columns contain counts of components,
models, states and transitions included in the specifications.

Table XVIII shows very different efficiencies (efforts per
node, edge, model, or component), where effort is a rough ap-
proximation of the number of person hours required to create
and maintain the specification during the project. The parking
and brake assist system projects were the first applications
of the approach and were involved in the development of the
method and tool. Thus the comparably low efficiency is caused
by less automation and a less mature approach. Furthermore,
we found that the number of components and models are
individual decisions made during the early phases of each



project. The influence of such decisions on the efficiency of
development activities is hard to determine. However, as a rule
of thumb, we found during the further projects that specifying
and maintaining a chapter takes approximately up to two days.

VI. RELATED WORK

The basic approach described in this paper has previously
been presented [6]. This paper provides additional details and
formalisation as well as an extended example and experience
data. An additional extension is the inclusion of a semi-
automatic model-based testing approach and associated cover-
age criteria. The model-integration approach contributes to the
RE reference model presented in [7] as it provides a method
to systematically integrate and relate artefacts (as domain
knowledge) into artefacts of requirements and specifications.

The presented approach contributes to the concept of view-
points resolution presented in [8] through abstraction and
unification of document structures that significantly eases the
comparison and gap analysis of different viewpoints. The
extension of the presented approach to methods for the identifi-
cation of missing and wrong facts over a set of comprehensive
model-integrated specifications is a topic of ongoing work and
inspired by the viewpoints analysis presented in [8].

In [6] we noted that structure has a significant impact on the
quality of requirements sets. Previous work has used clustering
to automatically restructure comprehensive requirements sets
[9]. In contrast, model-integration takes advantage of the
knowledge and experience of the human reader, who is sup-
ported by an improved document structure. Similar approaches
have been presented on the integration of textual and graphical
modeling languages, e.g. [10], [11], although these do not
consider natural language as a textual language.

There are many approaches to model-based testing. How-
ever, they typically require the existence of a model in a
formal language such as a finite state machine [12] or labelled
transition system [13], possibly enriched by aspects such as
time [14] or probabilities [15], [16]. While NL explanations
can complement a model in such a language, the NL is not
normally integrated with the model.

VII. CONCLUSIONS

The model-integrated approach has been presented, with this
making it possible to seemlessly integrate textual specifications
and models, resulting in a semi-formal specification. The
level of formalisation of the resulting specifications makes it
possible to use formal analyses and graph operations, e.g. test-
case generation. The benefits include the following:

1) formal definition of requirements completeness;

2) efficiency through automation;

3) fewer manual faults through automation;

4) improved clarity through use of the model as a document
structure;

5) fewer redundancies and inconsistencies through formal
soundness criteria and checking capabilities;

6) no divergence of the GN and NL parts of a specification;

7) eased and accelerated maintenance and change.

The approach has been implemented in a tool. It has been
applied in several projects in industry over a period of 6 years.

Future work will aim at the reimplementation of the tool
independent of specific commercial requirements management
systems and that utilises the model-integration approach. Fur-
thermore, an extended approach is under development that
allows for bidirectional changing of models, i.e. to transfer
changes of the model from NL into GN and vice versa.
Currently, it is only possible to change the model through
manually changing the GN-part and transferring these changes
automatically to the NL-part. There may also be scope to
automatically derive some structure from NL.
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