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Abstract—App store mining has proven to be a promising
technique for requirements elicitation as companies can gain
valuable knowledge to maintain and evolve existing apps.
However, despite first advancements in using mining techniques
for requirements elicitation, little is yet known how to distill
requirements for new apps based on existing (similar) solutions
and how exactly practitioners would benefit from such a
technique. In the proposed work, we focus on exploring
information (e.g. app store data) provided by the crowd about
existing solutions to identify key features of applications in a
particular domain. We argue that these discovered features
and other related influential aspects (e.g. ratings) can help
practitioners(e.g. software developer) to identify potential key
features for new applications. To support this argument, we first
conducted an interview study with practitioners to understand
the extent to which such an approach would find champions
in practice. In this paper, we present the first results of our
ongoing research in the context of a larger road-map. Our
interview study confirms that practitioners see the need for
our envisioned approach. Furthermore, we present an early
conceptual solution to discuss the feasibility of our approach.
However, this manuscript is also intended to foster discussions
on the extent to which machine learning can and should be
applied to elicit automated requirements on crowd generated
data on different forums and to identify further collaborations
in this endeavor.

Index Terms—Requirement elicitation, app store mining, soft-
ware feature mapping, crowd data, machine learning

I. INTRODUCTION

Requirement Engineering (RE) is crucial for successful
product development [14]. Requirement elicitation, in partic-
ular, is one of the major activities in RE. Often, requirements
elicitation tends to be limited to face-to-face meetings, or
interviews, prototyping [29], [36].
Crowd based approaches are becoming more prominent [4],
[11], [20]. For example, social and mobile systems are reach-
ing out to a vast number of highly distributed and heteroge-
neous stakeholders [16]. Such systems often provide different
means that allow their users to communicate their option
about the app (e.g. feedback in app stores). Conventional
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requirements elicitation methods [29], [36] do not address
how this nowadays widely available data can be used to
elicit requirements. However, the data generated by the crowd
of users open the door for developing novel requirements
approaches and is becoming a prominent source for eliciting
and prioritizing requirements as well as for planning releases.
This fits into a recent trend in requirement engineering re-
search focusing on the application of data-driven approaches.
Researchers [18], [19], [30] have already demonstrated how
to use the information provided by the crowd to support
developers.

It is important to note that the focus of recent research in
this domain is on software evolution and not on developing
new applications. For developing a new app, it is important
to have knowledge about applications existing in a particular
domain, including their key features and end-user responses
about those features. This information can, for example, be
found in app stores. There could be many existing apps
[23] having similarities to the intended app to be developed.
This information provided by the crowd e.g. app descriptions,
screenshots, and user feedback can provide important input
for requirement elicitation. We envision that the requirement
elicitation processes for new apps can be stimulated by map-
ping existing similar features from other apps to the new app
based on different parameters such as ratings and user reviews.
We foresee that such an approach can help to reduce known
elicitation problems such as time and scoping issues [1].

In this paper, we present early research results and outline a
research roadmap to generate requirements out of the various
data sources for the development of new apps. Section II,
defines the overall goal of our work and discusses key research
questions. In Section III, we present our interview study.
Section IV lists key findings, whereas the next steps of our
research and the initial proposed solution are discussed in
Section V. In Section VI, we discuss related work before
concluding our paper in section VII.

II. GOAL AND RESEARCH QUESTIONS

The goal of our research is to support requirement elicitation
for new apps in particular domains. To achieve this goal, we
investigate how existing data from similar apps can be used to
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identify key features. In particular, our idea is to perform an
identification of relevant features based on a product vision and
available response from the crowd on online forum e.g. social
media, app store. This will allow us to provide a list of features
from existing apps relevant to the new application. Additional
selection criteria could be the popularity of features.

The long-term vision of our overall research is to develop an
automated solution supporting the mobile application develop-
ment industry. Our approach could help companies to reduce
requirement elicitation problems for new apps such as scoping,
understanding, and volatility [33]. In particular, we envision
that companies applying our approach would gain valuable
knowledge in the early stages of app development, reduce
time, and effort for requirement elicitation [1]. We argue that
they will already have a better understanding of existing apps
by analyzing the users’ opinions at the feature level and by
knowing the risks associated with them, e.g., possible bugs,
user likeness, and acceptability.

To achieve this long-term goal, we are following a Design
Science research approach [34] where we iteratively develop
and constantly revise technical solution proposals based on
an increased understanding of the problems. This research is
steered by the following research questions:

• RQ 1: What are contemporary practices and challenges
in requirements elicitation for developing new apps?

• RQ 2: Do practitioners already analyze crowd-generated
data or information provided by the crowd e.g. app store
data and if so, how?

• RQ 3: How can we link user feedback from the crowd to
individual features extracted from app descriptions using
machine learning?

• RQ 4: What are the possible influential factors for sug-
gesting features for the new app?

• RQ 5: How can we systematically map features from
existing apps to the new app?

RQ 1 aims at understanding the current requirement elicita-
tion practices applied in industry for new app development.
Under RQ 2, we aim at investigating the processes and
associated problem with crowd provided data e.g. app store
mining processes and their associated problems. Answering
these two research questions will help us to understand the
needs of practitioners and the availability and acceptability of
potential solutions. In RQ 3, we aim at developing an approach
which allows us to identify and analyze user feedback given
for a particular feature e.g. features mentioned in the app
description in app stores. However, feedback from the crowd
is significantly large in size, and it is hard to identify what,
when, and where a user is mentioning a particular feature.
RQ 4 aims at identifying different factors that can influence a
feature suggestion process for a new app such as app ratings
and user sentiments. Based on the factors identified in RQ 4,
features have to be selected from existing apps. RQ 5 focuses
on this mechanism of selecting features for the new app.

The first two research questions aim at framing the problem,
and the latter ones aim at designing and evaluating a specific
solution which depends on the outcomes of RQs 1 and 2. This

paper presents our ongoing research and discuss preliminary
results for RQ1 and RQ2. To answers RQs 3-5 explanations
and ideas are provided in the scope of future work.

III. INTERVIEW STUDY

To understand the current state of practice of requirement
elicitation for new apps (RQ 1 and RQ 2), we conducted
an exploratory study with eleven practitioners from different
companies. To this end, we conducted semi-structured inter-
views to get in-depth insights into the interviewees’ worlds,
opinions, experiences, and feelings [10]. The detailed analysis
of the study results is still ongoing, but for this paper we have
identified first key findings.

A. Instrument

After designing a first prototype of our instrument, we con-
ducted mock interviews with three people; one from industry
and two from our research group. These interviews were not
included in the analysis. From these interviews, we estimated
the duration of an interview, and identified ambiguities in
our questions. We identified possible misunderstandings and
ambiguities by explaining each question to the interviewee
and discuss their relevance to different scenarios. The final
iteration to our questionnaire was performed on the basis of
inputs from mock interviews. The interview questionnaire is
online available [32]1

Each interview was designed in three folds; the first part
dealt with participant’s profile related information, the second
part was about their current practices for app development
and associated challenges, and the last part focused on the
identification of feature mapping mechanism from existing
application to new application. For our study, we tried to
follow the practice and design principle discussed in [10].

B. Selection of Participants and Demographics

For the interview, we started contacting app developers
from our personal network via email. We shared the brief
concept and details for our study in this email. During that
email exchange, we further narrowed down the list of potential
candidates base on their experience and profiles. The partici-
pants required for our study should have an overview of the
requirement engineering process and experience in the mobile
application development industry. For our study, we restricted
ourselves to requirement engineers, business architects, project
managers, consultants, and software engineers who know
about the requirements engineering activities and application
development process of their companies.

The study is based on 11 participants from central Europe.
In the first half of the interview, we collected profile infor-
mation of the interviewee e.g. information related to their
application, experience in RE and application development
experience, application related.

Out of 11 participants, only 1 had 2-4 years of experience,
5 reported 4-6 years of experience, 3 participants had 7-10
years of experience, and 2 said that they had more than 10

1See also https://tinyurl.com/yxegurs6.
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years of experience. We did not include anyone with less than
2 years of experience, and the average experience was almost
6 years.

We focus on the essential demographic characteristics and
omit those we consider irrelevant to our study, such as age,
gender, or nationality. Interviewee profile-related information
is summarised in Table I.

For privacy reasons, particpant’s name, company name, and
the names of the applications are omitted. The majority has
experienced developing mobile applications on both of the
most wide-spread platforms iOS and Android. For a better
understanding, we have provided the domain of application,
the number of downloads and whether the app is customer or
product based.

C. Data collection and analysis

The interviews were conducted over Skype with a duration
of 35-55 minutes with an average of almost 45 minutes.
Interviews were recorded if permission was granted from the
interviewee. In all cases, the interviewees agreed on audio
recording without hesitation.

For the data analysis, the first author transcribed interviews
and then structured information with help of notes that were
taken during interviews. In the next step, techniques for
transcribed interviews analysis and extracting key findings
were discussed. The potential patterns, key observations and
interesting aspects related to our questions were initially
analyzed and allowed us to identify the key findings presented
in this paper. We are currently conducting a more detailed and
thorough analysis.

IV. KEY FINDINGS

This section lists the major key findings.
1) Traditional elicitation approaches and prototyping

are the most popular requirements elicitation meth-
ods for mobile app development.
The interviewees discussed that mostly various tradi-
tional approaches like interviews, workshops, and analy-
sis of existing solutions are used in addition to prototyp-
ing for requirement elicitation for mobile app develop-
ment. One of the interviewees also stated that challenges
in these approaches are usually user involvement in the
project. The interviewee who mentioned this issue was
developing an application for a village and conducted
workshops for requirement elicitation. However, only
seniors citizen attended the workshops. This caused a
lack of involvement of young people in the requirement
elicitation activities.

2) A large number of interviewees rely on information
provided by the crowd. They use data from app
stores for analyzing existing applications for their
own requirement elicitation process. In addition,
some of them also consider social media for this
purpose.
The majority of the interviewees (8 out of 11) use
app stores for requirement elicitation. Three of them

(3 out of 8) also use social media in addition to app
stores. However, the rest (5 out of 8) do not mine
social media because of the required time and effort to
mine additional resources in comparison to information
obtained from these sources.
Our result identified that 3 out of 11 interviewees
do not consider existing applications for requirement
elicitation. They stated that it is not beneficial to mine
app store because of the type and domain of application.
For example, one interviewee stated: “Many factors play
a role not to explore app store because we are living in
financial factors, we have primary restrictions and rules
from legal perspectives and clients perspectives.”

3) We identified four key elements for manual app
mining: app descriptions, user feedback, screenshots,
and the app itself.

These four key elements are available for each appli-
cation and can extract some information related to the
app. Our study results suggest that app descriptions
are usually not enough to gather information about an
app. In addition, user reviews and screenshots are used
as well. Also, applications are typically downloaded
and tried for a better understanding. Another interesting
parameter is watching tutorial videos about the app, but
it is least used for information extraction.

4) A large number of interviewees stated that user
feedback plays a key role in the app mining process.
The majority (8 out of 11) of the interviewees think that
user feedback is a primary source to understand users of
a specific feature better. The remaining ones indicated
that crowd feedback is not reliable because of many fake
and automatically generated reviews written for ratings
and marketing purposes. They also mentioned that users
cannot convey their feedback properly.

5) Negative reviews from the crowd are also helpful and
influence the feature selection processes.
The practitioners are not only interested in positive
feedback. They also search for negative reviews because
it helps them to identify the market gap. They mentioned
that negative reviews are helpful to build a successful
application by providing a better solution to compete
with similar applications.

6) No interviewee stated to be using yet an automated
tool for feature extraction from app descriptions.
None of our interviewees are using any automated tool
for feature extractions from app descriptions yet. As they
perceived that app description is short and structured, it
is not difficult and time-consuming to extract features
manually. On the other hand, they mentioned the need
for an automated tool for user feedback analysis due
to the large size in order to save time and effort. They
are not aware of any automated tool for user feedback
analysis.

7) The most targeted NFRs in the app mining process
are usability, user experiences and performance.



No. Role Year of Ex-
perience

Development Type No. of App
Downloads

App Domain

1 Designer, Requirements
Engineer

4-6 Customer
Development

1.3M Banking and Finance

2 Requirements Engineer 4-6 Customer
Development

1K Social

3 Software Developer 7-10 Customer
Development

3K Game, Productivity

4 Project Manager, Devel-
oper

7-10 Product Development 20K Productivity

5 Team Leader 7-10 Customer
Development and
Product Development

1M Banking and Finance

6 Requirements Engineer,
Project Manager

4-6 Customer
Development

20K Health and Fitness

7 Software Developer 4-6 Customer
Development and
Product Development

1M Business, Finance

8 Project Manager,
Requirements Engineer

>10 Customer
Development and
Product Development

40K Productivity, Educa-
tion, Lifestyle

9 Software Developer 2-4 Product Development - Maps & Navigation
10 CEO >10 Customer

Development and
Product Development

- Multiple

11 Project Manager, Soft-
ware Developer

4-6 Customer
Development and
Product Development

- Lifestyle (energy)

TABLE I
INTERVIEWEE PROFILE OVERVIEW

Our results showed that practitioners also target NFRs
during the analysis of existing apps. For this purpose,
app descriptions are not helpful because it usually does
not provide information about NFRs. The information
is usually obtained from screenshots, user reviews, and
application testing.

8) Key influential factors for particular feature selec-
tions from app stores are the number of app down-
loads, the number of app reviews, estimated feature
implementation cost, and customer/user acceptance.
We further asked what factors influence the decision for
choosing a feature from existing applications. Mostly,
features are shortlisted from existing applications based
on the number of app downloads and its reviews. For
the final decision, feature implementation cost and cus-
tomer/user acceptance are estimated.

9) A majority of interviewees showed the need for a
holistic tool for features suggestion for new apps.
When we mentioned our proposed tool idea to extract
features from app description and suggest features based
on user feedback about those features (explained in
detail in V), the majority showed a positive response and
need for this tool. Our interviewees showed curiosity to
search for feature related user responses from different
sources. Most interviewees thought that such a tool
would be more suitable for product based and long term
projects. The main reservations related to the use of our
proposed tool were completeness and correctness of the
results. We also received some suggestions related to
the implementation. For example, keeping the original

feature list and tool generated feature list separate for
keeping the originality of new applications. Another
suggestion is to provide both positive and negative user
reviews for features separately.

From our key findings, we conclude that there is a need to
filter user feedback according to the features of existing apps.
To achieve this, practitioners are doing app store mining but
currently rely on manual efforts. Our interviews corroborated
that there is a need for an automated tool that suggests features
for new application development using feature-wise feedback
from existing apps.

V. EARLY CONCEPTUAL SOLUTION

Our empirically study preliminary results show that prac-
titioners are interested to have an automated tool that can
help them to obtain initial requirements from existing similar
applications for new applications. We depict our early vision
of our proposed solution approach in Fig. 1 and explain it
further in the following.
In principle, we envision the following steps:

1) The proposed system takes user input in the form of
the desired application category. Optionally, a user may
provide the desired feature list.

2) Based on user input app store searches similar applica-
tions in the particular domain.

3) Basic information of all apps in that particular category
is extracted from app stores. Features for all apps(using
[15]) and user feedback are extracted from app stores.

4) Crowd feedback from other data forums e.g. twitter, in-
ternal wikis are extracted and connected to each feature.



Fig. 1. Simplified sketch of our envisioned solution.

User reviews not related to any of the extracted features
are discarded.

5) For each application, features are then scored on the
basis of various parameters such as user feedback,
sentiment analysis, ratings, and cohesiveness of features.

6) A list of features with a high score generated in step 5
for the desired application category are presented to the
user as potential features. If the user provides features in
step 1, candidate features are filtered further to provide
only similar features to the user provided features. It’s
then at the discretion of the user to select among those
features for app development.

The proposed solution aims at addressing all the five re-
search questions. RQs 1 and 2 are already addressed in this
paper. As a next step to our research, we aim at addressing
RQs 3-5. While we expect many challenges to arise along
with the implementations (which is why we deliberately opt
for Design Science research as a paradigm), we focus in the
following only on selected challenges and initial ideas related
to them.

The expected challenge to address RQ 3 is the classification
of user reviews manually, as practitioners stated it as a
challenging task (mentioned in key finding 6). The manual
classification of user feedback is tedious and difficult. To
overcome this problem, one possible solution is to apply
machine learning and classify user reviews into informative
and non-informative categories, further performing features-
wise classification of informative reviews based on the feature

extracted from the app description. As a next step, we will in-
vestigate which algorithm is more suited for this classification.
We will also experiment with semi-supervised algorithms to
reduce labeling effort and time.

For addressing RQ 4, we have already identified some
factors in our preliminary results that influence the feature
selection process, i.e. our key finding 4 and 5 lead us to employ
also mechanisms to conduct sentiment analyses. However,
there might be other factors which we do not know yet. As
the next step for RQ 4, we will, therefore, explore further
factors potentially useful for the feature selection process that
ultimately help to provide optimize feature list.

Our key finding 3 gave already a good starting point on
app store mining process for addressing RQ 5. For detecting
similar features from existing apps (RQ5), one possible solu-
tion is to use a clustering algorithm. We will investigate which
clustering or other possible machine learning algorithm might
work efficiently to map similar features.

Regardless of the specific research question, we are certainly
aware that there exists much work related to ours on which we
can build our holistic approach. The contributions by Harman
et al. [9] and by Johann et al. [15], for instance, extract features
from app description and the work by Guzman et al. [6] and
by Gu et al. [5] analyze feature feedback analysis. Further, the
study by Martin et al. [21] to categorize similar application
is similar to our envisioned steps. We will investigate to
what extent existing solutions could become part of our tool-
supported approach.



VI. RELATED WORK

The research work presented in this section is not extensive,
and only lists literature closely relevant to our research. An
overview on the automation of various tasks in the over-
all requirement engineering phase is presented in [12]. The
current research, benefits, and challenges in crowd based
requirement engineering are presented by Groen et al. [4].
The existing literature classifies user feedback either into bug
reports and new feature requests, or into functional and non-
functional requirements [2], [13], [17], [18]. There is also a
promising trend to mine social media forums, such as Twitter,
for extracting users requirements for software evolution [6],
[25], [26], [35]. The idea to reduce domain analysis efforts
for developing applications has been explored in [3], [28],and
[27].

A recommender system is proposed by Dumitru et al.
and Hariri et al. in [3] and [8] respectively. This recom-
mender system mines product descriptions from a publicly
available online repository, Softpedia. It initially takes product
description from the user, mines repositories on that basis,
and then provides recommended feature candidates to be
included in the user intended software system. Text mining
and incremental diffusive clustering algorithm are further used
for domain-specific feature identification. Afterward, kNN (k-
Nearest Neighbor) algorithms are applied for product-specific
feature recommendations.

Nayebi et al. proposed an approach to mine existing appli-
cation descriptions from app stores and set their primary use
case for release planning [28]. It uses the algorithm mentioned
in [9] for feature extractions from app descriptions. Extracted
features are optimized on the basis of the estimated values
of features and cohesiveness between features. A new model
using bi-criterion integer programming is proposed to solve
this optimization problem.

Guzman et al. further proposed a method to identify user
preferences for specific features by mining user reviews [7].
It extracts features from the user feedback available on app
store based on the frequency of occurrence of words, and then
determines user preferences by analyzing the sentiments in
user reviews.

Another study by Nayebi et al. proposed a method named as
MAPFEAT, extracting user needs from Twitter and mapping
them to features of already existing apps [27]. This technique
particularly mines Twitter for event-based tweets, and extract
topics out of them. It then searches all the applications in
app stores for features based on these topics in conjunction
with crowdsourcing, identifying missing features in currently
existing apps.

In our opinion, these studies provide a great starting point
for our research and further strengthen our confidence in
the importance of work in this area. However, we consider
extending some approaches not only content-wise, but also
with respect to their field of application. For instance, in
[3] and [8], features are extracted from an online repository
with no crowd user feedback support. Due to the similarities

with our idea, we are considering to extend that work to
platforms allowing for user feedback. Although [28] used
app stores to perform feature extractions as we intend to
do, their solution does not consider user feedback and only
takes app descriptions. Guzman et al. [7] relies on app stores
and user feedback as well, but they do not suggest features
for similar new applications development; the features not
mentioned in the app description are not filtered out as well.
The idea of searching app stores for feature suggestions to
evolve existing apps is used in [27] as well, but app stores are
not searched on the basis of categories, resulting in generalized
features suggestions. Also, all such analysis solutions focus on
analyzing user reviews without linking them to descriptions of
the corresponding app.

Compared to the existing publication landscape, we are not
only relying on app description, and extend this potential
requirements source by further considering features related
feedback. Our solution intends to support the classification
of feedback based on the extracted features from the app
description. This shall help to analyze users feedback on
specific features. We will also be integrating feedback from the
other sources, i.e from social media or internal organizational
feedback. This integration brings a challenging task in order
to build up a general model to deal with different types of
data and their associated metadata. Finally, we will map and
suggest features from existing apps to support the development
of new apps and, thus, extend current focus areas of software
evolution to the design and implementation of new apps.

Similar to our interview study, empirical studies have been
conducted as well in [24] and [31]. These studies focus on re-
quirements engineering practices for software release planning
of existing applications. Another interview and questionnaire-
based approach discussed in [22] elaborates current software
engineering practices in application development. This study
covers practices for an overall software life cycle including re-
quirements, testing, and maintenance. One further delineation
from existing work is that we focus on current industry prac-
tices for new applications that have not yet been developed.
Our research goal is more narrowed and focused on that scope,
i.e. we intend to particularly support and improve requirement
engineering practices for developing new applications.

VII. CONCLUSION

The app store is full of information provided by the crowd,
and mining the app store has already shown promising results
to support software and requirements engineering, in particular
in the context of software evolution. This paper proposes a
tool-supported approach that analyzes apps and associated
feedback on the feature level. This information is used to
inspire the development of new apps and in particular to
suggest features for developing similar new apps. We de-
rived five research question for implementing this proposed
approach. To this end, we conducted an interview study for
addressing the first two research questions. We identified that
practitioners currently are mining the app store manually, and
showed the need for an automated tool solution. As future



work, we will address the remaining research questions on the
basis of our preliminary results and will develop the proposed
automated tool solution. As proposed in our early conceptual
solution, we will therefore apply machine learning to analyze
user feedback from multiple sources. We plan to build a
general model for automating requirements elicitation and
mining techniques considering different types of data and their
associated metadata. We cordially invite researchers to join
this endeavor to further increase the efficiency of requirements
elicitation practices in the future.
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