
Requirements Engineering for Machine Learning: A
Review and Reflection
Zhongyi Pei, Lin Liu, Chen Wang, Jianmin Wang

National Engineering Research Center for Big Data Software
School of Software, Tsinghua University

Beijing, China
{peizhyi, linliu, wang_chen, jimwang}@tsinghua.edu.cn

Abstract—Today, many industrial processes are undergoing
digital transformation, which often requires the integration of
well-understood domain models and state-of-the-art machine
learning technology in business processes. However, requirements
elicitation and design decision making about when, where and
how to embed various domain models and end-to-end machine
learning techniques properly into a given business workflow
requires further exploration. This paper aims to provide an
overview of the requirements engineering process for machine
learning applications in terms of cross domain collaborations.
We first review the literature on requirements engineering
for machine learning, and then go through the collaborative
requirements analysis process step-by-step. An example case of
industrial data-driven intelligence applications is also discussed
in relation to the aforementioned steps.

Index Terms—requirements engineering, machine learning,
domain model, industrial engineering, review

I. INTRODUCTION

TODAY, the world is witnessing many successful appli-
cations of machine learning techniques, including image

recognition, speech recognition, traffic prediction, self-driving
cars, virtual personal assistants, buyers’ preference prediction
and product recommendations [1]. In recent years, there are
many research efforts on understanding how the software
engineering processes should response to the needs of machine
learning applications, and what changes have data-intensive
intelligent systems brought to requirements engineering [2].

In requirements engineering, there are growing interests in
understanding various needs and aspects of machine learning
application systems. Research topics of interest include the
non-functional requirements elicitation and quality assurance
of machine learning models and applications, especially the
ones different from traditional information systems develop-
ments. For instance, performance metrics, such as precision
and recall, F-measure, ROC curve, are critical acceptance
criteria for the viability of specific machine learning algo-
rithms in specific contexts, which also direct the continuous
optimization of ML models. In addition, Berry discussed
requirements specifications for AI applications in terms of
performance measures acceptable in a given context, as a
value or criteria [3]. Other well-discussed topics include the
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explainability of machine learning models [4], the fairness
and unbiasness of predictive analysis results [5], the legal and
ethical compliance requirements of ML intensive systems, etc.

There are three sub-disciplines involved, namely software
requirements engineering, data and knoweldge engineering,
and artificial intelligence/machine learning involved. In re-
quirements engineering, various conceptual modeling ap-
proaches are used to elicit software system requirements and
specify the expected system structure and behaviour. For
instance, goal-oriented requirements modeling first represents
the high-level objectives of system users and designers, and
then elaborates on the success and acceptance criteria of re-
quired system by goal decomposition and refinement [6]. After
fully understanding the high-level objectives, system archtec-
ture and behavior are designed and represented as formal/semi-
formal modeling specifications. For example, automata and
state machine diagrams in UML and SysML diagrams [7] are
provn useful in analysing reactive systems requirements, speci-
fying domain object properties and business logics through hu-
man understandable patterns, and widely used in the domain of
industrial automation and control. Besides, quality assurance
to specified system behaviors and causal relationship can be
conducted by formalized verifications and validations [8].

On the other hand, in many science and engineering do-
mains, there are dominating physical or process models, such
as mechanical models in mechanical engineering, chemical
reaction models in chemical engineering, structural mechanics
models in building and construction etc. The mathematical
models are in the form of equations, directed causal networks,
3D simulations of structures or dyanmic behaviors [9], which
defines the nature of the learning problem, the structure, the
loss functions and hyperparameters of neural networks models
and algorithms, referred to as machine learning models.

The collaboration of people with different expertise is
considered a major challenge, as we need to bridging se-
mantical gaps between different knowledge areas, integrating
interdisciplinary methods and tools into a coherent process,
and generating evolvable learning systems.

This paper aims to provide an overview of the collabora-
tion among the different roles in requirements engineering
for machine learning systems. We first review the literature
on requirements engineering for machine learning, and then
dig into what each role concerns during the collaborative



requirement understanding and system development process.
We further summarize the typical patterns for collaborations,
and propose high-level guidelines for evaluation and selection
of viable patterns.

The rest of the paper are structured as follows: Section II
explains our research method, by which we select literature
papers; Section III gives our analysis result, a brief review
of related work and a summary of the general concerns
and challenges of collaboration; In Section IV we propose
a collaborative requirements analysis process and present one
example case and the lessons learnt from actual requirements
analysis; Section V concludes the paper.

II. RESEARCH METHOD

Research on RE4ML (requirements engineering for machine
learning) has attracted growing interest in recent years. In
this section, we first raise the research questions, and then
introduce our review method. The review protocol includes:
(i) how to select the document sources; (ii) what to use as the
search string; and (iii) the inclusion or exclusion criteria in this
review. Following this protocol, the researchers performed a
parallel search in order to identify studies that address the
research questions.

A. Research Quesions

The main research questions we aim to answer in this paper
are as follows:

RQ1: What are the roles involved in engineering data-driven
intelligence applications?

RQ2: What are the major areas for engineers playing different
role to collaborate during requirements stage?

RQ3: What kind of support a collaborative requirements en-
gineering for machine learning is needed?

RQ4: What are the important issues require more future study?
We use these quesions to direct the review of the literature.

We first examine the issues concerning different roles, and
summerize the scenarios when collaboration and mutual un-
derstanding is required. Then we give some example patterns
for cross-knowledge area collaboration. At last, we try to
propose a routine by which the patterns of collaboration are
evaluated and adapted for a given problem.

B. Search Strategy

Our search strategy was set out to find the conjunction of
requirements engineering, data science and machine learning.
We conduct a search string-based database search on two
specific digital libraries, IEEExplore and ACM Digital Library.
For preventing from missing related papers, we use as few as
words to filter the papers. We use requirements as a required
word in title, while requirements engineering and machine
learning are required as the author keywords of the search.
The search is conducted by AND-operators. The year range
from January 2016 to June 2022 is also adopted since we
focus on the research that follows the recent trend of machine
learning.

C. Inclusion and Exclusion Criteria

The above search strategy yield 83 papers, 42 from IEEEx-
plore and 41 from ACM Digital Library. We first executed
our exclusion criteria over these papers. By our exclusion
criteria, we filtered out the publications whose topic has less
association with software engineering. An efficient way to
do this is to filter out the papers whose title contains words
like teach, student, education and child. A large number of
the papers using machine learning to promote requirements
engineering steps (commonly known as ML for RE) should
also be filtered out because their motivations are not consistent
with our research goals. We found that some words in the
titles could help us locate them, like automatic elicitation,
automated identification, requirements classification and ma-
chine learning-driven requirements. In addition to the above
filtering methods, we had to complete the exclusion by reading
the abstracts and checking the motivations. After executing the
exclusion criteria, only 16 papers were left.

Then we conducted an iterative backward and forward
Snowballing method for refining our results based on the
remaining papers via Google Scholar. The scope was limited to
software engineering methods for machine learning, machine
learning applications, developement issues of machine learning
ranging from 2016 to 2022. The final list of include 163
papers. The processes of filtering and refining were done by
the first two authors, and a detailed discussion was held to
reach consensus among all the authors.

III. SURVEY RESULTS AND DISCUSSION
We first give out a list of all the selected papers in Table I.

As an early milestone in the data-driven intelligence develop-
ment paradigm, the Cross-Industry Standard Process for Data
Mining (CRISP-DM) organizes related analytics activities into
six phases: Business Understanding, Data Understanding, Data
Preparation, Modeling, Evaluation and Deployment [168].
The CRISP-DM suggests a well-defined sequence of tasks
with iterative feedback loops that suggests a requirements
analysis cycle of data preparation, model design and evalution.
Recently, CRISP-ML(Q) extends CRISP-DM to support the
development of machine learning applications, whose special
focus is on quality measurements of machine learning models,
including robustness, scalability, explainability, model com-
plexity and resource demands [169].

Vogelsang and Borg set out to define characteristics and
challenges unique to Requirements Engineering (RE) for ML-
based systems [20]. They identified several major changes
in development paradigms, including the elicitation of ML
performance measurements, the emerging of quality require-
ments such as explainability, freedom from discrimination, and
specific legal requirements.

There are many recent proposals on software engineering
approaches for machine learning applications. Amershi et
al. [178] studied several representative example ML projects
in Microsoft, in which several major challenges and suc-
cess factors are summarised, including: sustainable end-to-
end pipeline; data collection, cleaning and accessibility; model



TABLE I: Topics of All the Seleted Papers

Topics Sum Papers

Big Picture 15 [10-24]

Stakeholders, Roles and Collaboration 8 [25-32]

Requirements Process Model 7 [33-39]

Requirements Elicitation and Specification 9 [3, 40-47]

Quality, Security, Ethics, and Assessment 38 [48-85]

Physics-Informed and Knowledge-based 19 [9, 86-103]

Machine Learning System Development 15 [103-117]

Interpretability and Explainability 17 [118-134]

Data Pipeline 8 [135-142]

Model Provenance, Verification 7 [143-149]

Applications 18 [150-167]

TABLE II: Distribution of Requirements-Related Concerns for ML Applications

Summary Business Experts Requirements Engineers Software Engineers Domain Experts Data Scientists

Concerns
(Functional
Goals, Non-
functional
Requirements)

• Business Goals
• Accuracy
• Stability
• Efficiency
• Fairness

• Stakeholders
• User Stories
• Domain Models
• Resources
• System Scope

• Prototyping
• Architecture
• Interface
• Speed and Cost
• Capacity

• Mechanism
design

• Data Explanation
• Knowledge

acquisition

• Data Pipeline
• Task Definition
• Train Resources
• Model Performace
• Explainability

Key
challenges
of RE for
data-driven
intelligence

In data-driven
intelligent applications,
the satisfaction
of business goals
are constrained
by limitations of
technological solutions.
Sometimes the business
experts have to make
compromises and
accept a less than
expected solution.

The requirements
process for data-driven
intelligence applications
is more complex than
traditional requirements
engineering, hence
impose changes to
existing vocabulary and
requirements analysis
tools.

The complexity of the
software architecture
requires extension
to include data and
machine learning
models. What is more,
it is harder to define the
prototype which relies
on a not unexplainable
model.

Domain experts shares
their understanding and
knowledge about the
working mechanism of
a given problem. How-
ever, this is a progres-
sive task as our under-
standing of the domain
evolves constantly.

It is extremely challeng-
ing for data scientists as
good quality data is al-
ways hard to get. Over-
come this limitation and
make good use of the
available data, and con-
vey technical limitations
as early as possible are
equally important.

Reference [170] [171] [79] [47] [80] [172] [173] [17] [22] [174] [175] [176] [87] [20] [177] [32]

evaluation, evolution and deployment, etc. Then a nine-stage
process model was proposed to address the above data-oriented
challenges (e.g., collection, cleaning, and labeling) and model-
oriented challenges (e.g., model requirements, feature engi-
neering, training, evaluation, deployment, and monitoring), in
which feedback loops are constructed from model evaluation

and monitoring back to the previous stages, and from model
training to feature engineering (e.g., in representation learn-
ing).

Nalchigar et al. [39] proposes a modeling methodology
representing generic ML design as solution patterns for busi-
ness analytics. The pattern maps an actual business decision



goal to a few questions, which are then answered through
insights obtained from machine learning based on given data.
Washizaki et al. [179] reviews architectural patterns and de-
sign patterns for ML systems covering different ML related
tasks, such as datalake for storage, provision of raw data for
analytics, decoupling of business logic from machine learning
workflow, adoption of event-driven micro-services, version
management of machine learning models, etc. The knowhow
is rich and reusable but cannot cover ML application design
process systematically. Trustworthiness of ML applications
requires the compliance to applicable laws and regulations,
as well as a series of domain specific physical laws. Hence
the elicitation and evaluation of the compliance has become
another major topic of interest in RE for ML. Sothilingam et al.
[180] conducted an empirical case study of three ML software
project organizations, and examined variations in project team
designs using i* concepts of Agents, Roles, and Positions to
support the analysis of complex organizational relationships
for insufficient roles and expertises mapping.

There are related study on integrating scientific knowledge
with machine learning for engineering and environmental
systems, as well as hybrid modelling approaches that combine
machine learning and simulations [181]. The integration could
go both ways, either using ML to enhance domain models
where the cause-effect relations are not fully evident [182],
or using common-sense knowledge, common knowledge and
domain knowledge models to modify generic models for
specific domain. This is also called physics-aware learning or
informed machine learning [98].

A. RQ1: What are the roles involved in engineering data-
driven intelligence applications?

In requirements engineering for traditional software de-
velopment, the main roles are business experts, software
requirements engineers and development engineers. A gen-
eral requirements process starts with defining the scope of
the business problem, which identifies the stakeholders by
establishing the extent of the work. The software requirements
engineer further identifies the requirements after requirements
elicitation and specification through communication with the
stakeholders, especially the business expert. When it comes to
requirements of machine learning (or data-driven intelligence)
functionalities, data scientists will take part in the RE process,
and domain experts also play an irreplaceable role in industrial
applications since domain knowledge are always necessary for
understanding relevant theory and scenarios.

We summarize the concerns and challenges in process of
RE for ML in Table II. It is not an exhaustive list, but include
the ones that are most mentioned in the literature related to
data-driven intelligence requirements. For example, fairness is
introduced into the non-functional requirements since machine
learning models can be biased by chosing training datasets in
favor of certain group. And stability becomes more important
than ever as the predictive results generated by machine
learning models are unreliable when there is minor changes
of situation.

The challenges stand for urgent problems to be solved from
each role. For business experts, building a reasonable cognition
on related technologies is quite meaningful, which would give
the proposed business goals more supports. For requirements
engineers, researchers have proposed some novel requirements
modeling methods for machine learning applications in recent
years, considering factors like privacy [183], security [76],
scenarios [47] and goal revision [184]. For the other roles, the
challenges mainly come from multidisciplinary and technical
bottlenecks.

B. RQ2: What are the areas for the engineers to collaborate
during requirements stage?

In RE, there are many proven practices for the elicitation,
modeling, specification, verification and management of re-
quirements. These include goal-oriented modeling and analysis
of functional requirements using KAOS and non-functional
requirements using NFR, actor-based analysis to organiza-
tional structures with iStar, and scenario-based description
of use-system interactions with use cases and use stories.
These approaches well apply to the requirements processes
for current industrial applications. For one example, the Volere
Reqirements Process [185] is generally applicable to any early
requirements stage when we try to understand the business
context, form a system design idea, and verify it.

However, as we discussed in section III-A, the concerns
of each role have changed and more roles must be involved.
Digging into the concerns of each role, we can see the con-
nection between them. For example, the business goals from
business experts should be fulfilled by the prototypes from de-
velopment engineers, while the prototypes must correctly use
the machine learning models from data scientists. We decribe
the connections in Fig. 1, where the roles are represented by
circles, and red lines highlight the analysis process of using
data-driven ML approach to address a problem.

Here we list the most widely discussed collaboration-related
issues covered by the references.

• What should be considered if we want to use machine
learning models as expected? This issue covers a wide
range, including the widely concerned topic, XAI (or
trustworthy AI). The collaboration on this issue gener-
ally happens between requirements engineers and data
scientists. [77]

• How can software architectures be designed to enable
robust integration of machine learning models? This issue
exists because there is a huge gap between software
development technologies and data science. The architec-
tures design considerations have to include data quality,
uncertainty, privacy and so on. Obviously this belongs
to the partnership of development engineers and data
scientists. [85]

• How can the process of requirements analysis be adaptive
to machine learning systems? Due to big gap between tra-
ditional software and machine learning systems, existing
requirements methods have to be improved accordingly.



Fig. 1: General collaborations of Stakeholders involved in ML Application Development

Fig. 2: Solution Mapping for Task Specific ML Applications

This issue is partly related to the above two issues, but
from a higher perspective. [22]

• How can domain knowledge help design of machine
learning models? The domain knowledge can be physical
constrains, logic rules or knowledge graphs. To solve
this issue, it requires close collaboration between domain
experts and data scientists. [9]

C. RQ3: What kind of support a collaborative requirements
engineering for machine learning is needed?

We present frameworks or patterns that are helpful for
the collaboration in reuquirements engineering for machine
learning from our selected papers. They are organized in the
following two parts.



1) Mapping Use Cases to Specific ML Tasks: The process
of data-driven intelligent system engineering requires several
cross knowledge domain leaps: mapping a given use cases to
corresponding machine learning task, building data pipeline
and developing ML model, evaluating and deploying the
model as software services. Nalchigar et al. [39] illustrate three
solution patterns for machine learning that come from real
world analytics projects in IBM. In each solution pattern, a
concrete business goal is mapped to a business model with a
specific machine learning task embeded, for which hierachical
goal decomposition is conducted until an algorithmic solution
is identified. Moreover, design rationale about how to develop
a solution are represented as a context model showing the
status of data, the motivations and technical constraints. The
solution pattern provides an integrated view of multiple aspects
of data-driven intelligent requirements or design decision
making, for which we need a stepwised guideline to pilot the
designers run through the process. The development of a spe-
cific ML application is never trivial, which could fail for many
reasons, such as, poor data conditions, improper hyperparame-
ter setting, or lack of algorithm selection. Therefore, evaluation
criteria for acceptability should be carefully defined, including
performance metrics, confidence and robustness, training cost,
etc. Fig. 2 provides an overview of the general guideline for
mapping where the red lines stand for collaborations and the
blue lines belong to data scientists.

2) General Guidelines for Integrating Domain Knowledge
with ML: Domain knowledge plays a key role in traditional re-
quirements engineering in the development of most industrial
applications. When come to knowledge-based cases, domain
experts are extremely important for requirements engineers to
understand business contexts and targets. For example, in the
field of safety engineering, there are many well-established
practice and tools for the evaluation of potential harmful
events, such as: Hazard and Operability Analysis (HAZOP),
Failure Modes and Effects Analysis (FMEA), Failure Modes,
Effects and Criticality Analysis (FMECA), Layer of Protec-
tion Analysis (LOPA), Fault-Tree Analysis (FTA) and Event
Tree Analysis (ETA), also called Bow-Tie Analysis, What-if
Analysis, etc. These are practical models being widely used
in process engineering fields, such as chemical engineering,
pharmaceuticals, and nuclear energy engineering. It has been
attracting the attention of software engineering researcher and
practitioners since the 90’s. With these approaches in place,
practitioners build information systems to evaluate, manage
potential risks of accidents. In recent years, tool vendors are
looking into the possible intelligence extensions to existing
functionalities. In order to build practical ML applications, it
often requires knowledge fusion from multiple sources, those
come from prior domain knowledge, and those come from
data. For a pure ML process, data is fed into the machine
learning pipeline, and produce the final prediction result,
solves the problem by a ML model. Hence, we need to find
alternative ways to incorporate knowledge into this pipeline.
Rueden et al. [98] provide a survey that describes how different
knowledge representations such as algebraic equations, logic

rules, or simulation results can be used for machine learning.
Four directions of integration are proposed, including training
data generation, hypothesis set definition, learning algorithm
modification and final hypothesis checking. Specifically, more
than 30 strategies of integrating different knowledge and ma-
chine learning are described. Typically, scientific knowledge
can be used in the design of loss term of deep learning models
as a strong constraints. And regularization term based on
the graph Laplacian matrix can enforce strongly connected
variables to behave similarly in the model. We summerize this
in Fig. 3.

D. RQ4: What are the important issues require more future
study?

Requirements engineering for machine learning could be
answering different questions for different people under dif-
ferent context. Depending on the roles or perspectives, the
requirements to be elicited and analysed are different. As
shown in Fig. 1 e.g. data scientists’ main objective is to prepare
a useful dataset for a given task; machine learning algorithms
researchers’ objective is to design a good foundation model
that is adaptable to as many applications as possible, while
ML engineers’ goal is to improve the performance of a model
by fine-tuning or selection of hyperparameter for a targeted
problem; for designers of machine learning framework and
platform, providing a model zoo and efficient model manage-
ment services is of the top priority; for a system engineer,
integrating ML component with traditional information sys-
tems techniques to address end-user needs is the ultimate goal.
Each area has its own challenges to be addressed and requires
relevant skillset and knowhow.

Besides these well-explored issues mentioned above, the
following topics could be studied further:

• How a requirements model can adapt to dynamic chang-
ing scenarios and connect with a sustainable active ma-
chine learning pipline? This is important for ML appli-
cations to handle situations with real-world complexity.

• How can we effectively produce a reliable overall cost
estimation of a given project? Cost estimation is in-
dispensable in traditional software development. How-
ever, machine learning technologies bring obstacles and
challenges for this task. Unexpected cost may emerge
anywhere during the process, including data collection,
training, serving and model modification.

• How can we implement simulation-based prototyping for
the development of machine learning applications? Early
detection of prototype problems is essential to control
risks. An effective way is to simulate the environment
of applications, by which the technical methods can be
verified in situ with limited additional cost.

IV. COLLABORATIVE REQUIREMENTS ANALYSIS PROCESS

In this section, we give a summary to the collaborative
requirements analysis process and discus the main motivations
of the selected papers by Fig. 4.



Fig. 3: A Reference Model for Integrating Knowledge with ML
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Fig. 4: Overview of Collaborative Requirements Analysis Process

A. Collaborative Analysis Steps

In Fig. 4, we use green rectangles to stand for the inputs or
outputs of the requirements analysis step. The blue arrowed
lines means where the analysis happens, linking the input to
the output. We use Collaborative Step with a few stars to mark
the collaborative analysis steps, while the number of stars rates
the complexity of a step. Except for the start node and the end
node, the execution of the intermediate steps doesn’t have to
be in strict order. Here, we describe each step in detail:

• Problem Formalization: the step of problem formalization
bridges the gap between business/domain experts and
data scientists. However, in complex scenarios, formal-
izing requirements for data-driven intelligence is not that
easy. Several types of formalization can be used, such
as mathematical equations, logical rules and machine

learning paradigm. After problem formalization, data
scientists would match the problem with known solutions.
This could be done by solution mapping as in Fig. 2. This
step has a two star rating as domain knowledge is usually
incomplete at the beginning, which makes it difficult to
identify the technical problem right away.

• Context elicitation: A suitable technical solution requires
efforts from business/domain experts and data scientists
for understanding the situation. This step is not only data
mining, but also mechanism mining and businiess logic
mining. Details about this step is described in Fig. 3.
This step has a three stars rating as it requires intensive
interdisciplinary cooperation and there is no ready-made
solution for it.

• Data Requirements Elicitation: To find a suitable tech-



(a) the scenario (b) detection targets

Fig. 5: A Virtual Excavator Supervisor with Smart Helmet

nical solution, data requirements have to be made clear.
Business owners provide data source and examine for
potential data ethics issues. Domain experts confirm that
the data is used properly. Data scientists look closely
to the completeness, sample distribution, iid assumption
and so on. It is said that about 80% of time in a
machine learning application development is comsumed
for preparing data. Since coding is not that hard, what
dominates the cost shoule probably be data requirements.

• Metric Translation: There is a gap between technical
metrics and user understandable criterion. Data scientists
and requirements engineers have to work together to
translate the technical metrics to its business meaning.

• business goal evaluation: Finally, the business goals come
from domain context, risk criterion and data criterion.
Requirements engineers are responsible for making the
business goals and values clear, and understandable to
investors and end users.

B. An Example Case

In this section, we discuss an example case, which is a retro-
spective study to a machine-learning application development
case in relation to the questions discussed above. The business
background will be introduced first, and then go through the
collaborative requirements analysis steps. Through the exam-
ple, we try to provide concrete evidences for why collaboration
is needed and how hard it can be in real world.

Business Case Description The case is a virtual excavator
supervisor application. In this use case, we were asked to
develop a smart device based solution to replace the human
supervisors of excavators’ field work. The main task is to count
the workload of machinary operators in terms of buckets of
materials have been picked up and loaded into trucks, as shown
in the images in Fig 5a. For an excavator leasing company, it is
very important to track the workloads of each leased excavator.
In the past few years, this task imposed high annual labor cost,
which is expected to be replaced by automated solutions.

Problem Formalization and Context Mining Modern
machinaries are often equipped with various preinstalled sen-

sors. Our first option was to build a rule-based function to
recognize the movements of buckets directly by analyzing
signals collected from pre-installed sensors on the steel arms.
However, as we could hardly tell the difference between
discharging or excavating by reading the pressure signal, it
is difficult to recognize a complete conveyance cycle and give
an accurate count for workload. Inspired by the excellent per-
formance of ML in computer vision tasks, we tried to analyze
the bucket movement by analysing the images collected with
a camera installed in front of the wind shield of the excavator.
The operations of buckets are recorded as stacks of video
files from which number of conveyances are expected to be
recognised automately. However, there is no ready-made video
image analysis algorithms directly usable for this task, as it is
not a straightforward application of existing ML algorithms,
such as object identification or posture recognition, etc. What
made it even worse was the unreliable prediction results of
the machine learning solution. We must pay good effort to
collect data and ensure its quality. This task became a burden
of the software engineers and data scientists, while sometimes
domain exports have to provide professional and essential
advices.

Data Requirements Elicitation The data is collected with
a digital helmet. The first challenging data requirements is
how to define the annotation rules. Different people have
very different understandings about annotation of the digging
buckets. For example, some one draws rectangles containing
both the buckets and the stones in it, while others may prefer
rectangles covering only the buckets. The differences will
seriously affect the outcome of ML model training. Another
common issue is unbalanced distribution of samples among
data classes. The target with a small number of samples
cannot be recognized with high confidence. The diversity of
data and the clarity of images will bring challenging data
requirements too. In practice, we can only cover a few cases of
possible scenarios. Data availability, complexity of real world
situation, and generalisability of machine learning models limit
the practicality of machine learning-based solutions. Also, the
overwhelming efforts required for data processing and data
quality improvement is a last straw. Many ML application
projects fail due to the poor generalisability of the model when
facing new scenes, which may need better data requirements
analysis.

Metric Translation When comparing the alternative ma-
chine learning algorithms of detecting buckets and trucks,
a key criterion is Intersection over Union(IoU). However,
this metric does not reflect the performance of counting the
workload. For users, we need metrics like true positive rate
and false positive rate.

business goal evaluation When setting business goals,
we have to constrain the scenarios by the training set. True
positive rate and false positive rate are required in existing
scenarios. Besides recognition recordings should be remained
for possible manual examination. The trained and verified
model can still fail after deployment. Because there are often
data shifts in real world applications, especially for the data



from complex formative factors. Continuous monitoring and
timely update are essential in order to maintain satisfying
effect. Monitoring goals in the long term are important in goal
identification.

V. CONCLUSION AND FUTURE WORK

In requirements engineering for machine learning appli-
cations, data description, performace metrics, data quality
and candidate solutions, have to be iteratively and repeatedly
orchestrated under a unified motivation. Failing in any single
step can lead to the failure the entire project. In this paper, we
provide an overview and reflection the collaboration among
the different roles in requirements engineering for machine
learning applications. We focused on the collaboration issues
among business experts, requirements engineers, development
engineers, domain experts and data scientists, including the
integration of domain knowledge and machine learning mod-
els, how to use machine learning model as expected and
so on. We further summarize the work that can be used
to support collaborations, like the mapping from business
cases to ML tasks, and practical reference of integration
prior knowledge and machine learning workflow. An example
cases of industrial data-driven intelligence applications are also
provided.

Possible future work along the current line of research in-
clude: conducting more extensive empirical studies on success
and failure cases industrial data-driven intelligence application
projects; focus on the key issues identified and conduct more
thorough case study; further evaluate the body of knowledge
as (re)useable requirements and design patterns and form
practical guidelines for effective collaborative requirements
decision making on the alternatives ways for project success.
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