
Based on Past Experience:
Highlighting Potential Human Value

Issues in Domain Modelling

Jasneet Kaur

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

McGill University
Montréal, Québec, Canada

April 2023

© Jasneet Kaur 2023

Abstract

In this technologically evolving era, important human values such as freedom and social respon-

sibility are frequently overlooked in software systems, which can have significant negative social

consequences. For example, in an infamous breach Facebook provided unauthorized access to more

than 50 million user profiles during US elections or Delta Airlines ticket prices spiked during a

natural disaster. Therefore, it is important to help software developers incorporate human values

considerations throughout the software development process. In this thesis, we focus on domain

modelling with class diagrams, an important technique for requirements engineering and early de-

sign activities. To investigate how model elements in a domain model may affect various human

values, we analyze the domain model of WhatsApp through the lens of Schwartz’s taxonomy of

human values to compile a list of issues concerning human values. To collect these past experi-

ences including how to mitigate them, we propose a domain-specific language called HVT (Human

Value Trigger). Practitioners may utilize this language to contribute more such examples to grow a

catalogue of human value issues over time. Furthermore as proof-of-concept, a prototype implemen-

tation addresses the need for human values to be integrated in software engineering by providing

suggestions on the model element type, name, and the semantics based on synonyms for a domain

model based on these collected past experiences. To find synonyms of a model element, an analysis

of eight synonym services is performed to find the optimal synonym service or combination of syn-

onym services to use with the implementation. Moreover, an extensive testing process is performed

to evaluate the capabilities of the prototype.

ii

Abrégé

En cette ère d’évolution technologique, des valeurs humaines importantes telles que la liberté et

la responsabilité sociale sont souvent négligées dans les systèmes logiciels, ce qui peut avoir des

conséquences sociales négatives importantes. Par exemple, lors d’une tristement célèbre violation,

Facebook a fourni un accès non autorisé à plus de 50 millions de profils d’utilisateurs lors des

élections américaines ou les prix des billets de Delta Airlines ont grimpé en flèche lors d’une catas-

trophe naturelle. Par conséquent, il est important d’aider les développeurs de logiciels à intégrer les

considérations relatives aux valeurs humaines tout au long du processus de développement de logi-

ciels. Dans cette thèse, nous nous concentrons sur la modélisation de domaine avec des diagrammes

de classes, une technique importante pour l’ingénierie des exigences et les premières activités de

conception. Pour étudier comment les éléments de modèle dans un modèle de domaine peuvent

affecter diverses valeurs humaines, nous analysons le modèle de domaine de WhatsApp à travers

le prisme de la taxonomie des valeurs humaines de Schwartz pour compiler une liste de problèmes

concernant les valeurs humaines. Pour collecter ces expériences passées, y compris comment les

atténuer, nous proposons un langage spécifique au domaine appelé HVT (Human Value Trigger).

Les praticiens peuvent utiliser ce langage pour contribuer davantage d’exemples de ce type afin de

développer un catalogue de problèmes de valeur humaine au fil du temps. De plus, en tant que

preuve de concept, une implémentation de prototype répond au besoin d’intégrer les valeurs hu-

maines dans le génie logiciel en fournissant des suggestions sur le type d’élément de modèle, le nom

et la sémantique basée sur des synonymes pour un modèle de domaine basé sur ces expériences

passées collectées. . Pour trouver des synonymes d’un élément de modèle, une analyse de huit

services synonymes est effectuée pour trouver le service synonyme optimal ou la combinaison de

iii

Abrégé

services synonymes à utiliser avec l’implémentation. De plus, un processus de test approfondi est

effectué pour évaluer les capacités du prototype.

iv

Acknowledgements

I would like to take this opportunity to express my heartly gratitude towards all those individuals

who have helped me in the successful completion of my thesis. First and foremost, I would like

to thank my thesis supervisor Professor Gunter Mussbacher, whose constant support, guidance,

encouragement, and expertise was invaluable in completing my research and writing. It has been

an honour and a privilege to have worked under his guidance.

Other than my supervisor, I would also like to extend my sincere thanks to my fellow student

and friend Prabhsimran Singh and Rijul Saini who helped me immensely with the understanding

of certain research related concepts that could have been difficult for me.

Finally, I would like to thank my parents, Mr. Balwinder Singh and Mrs. Ranjit Kaur and my

brother Inderveer for their constant support, encouragement, and countless blessings throughout

the course of my study and in life. I am also immensely thankful to my friends in Montreal who

made these years great fun. This accomplishment would not have been possible without them.

Thank you.

v

Table of Contents

Abstract . ii

Abrégé . iii

Acknowledgements . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

List of Listings . x

List of Abbreviations . xi

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Thesis Methodology and Contribution . 3
1.3 Thesis Overview . 4

2 Background . 6
2.1 Schwartz Taxonomy . 7
2.2 Domain Modelling . 8
2.3 TouchCORE . 9
2.4 Metamodel . 10
2.5 Xtext . 14
2.6 Summary . 18

3 Motivating Example . 19
3.1 WhatsApp . 19
3.2 Summary . 25

4 Metamodel . 26
4.1 Human Value Trigger (HVT) Metamodel . 26
4.2 Summary . 31

5 Analysis of Synonym Services . 32
5.1 Analysis of Single Synonym Service . 32
5.2 Analysis of Combinations of Synonym Services . 38
5.3 Summary . 40

vi

Table of Contents

6 Human Value Trigger Algorithm . 42
6.1 Algorithm Overview . 42
6.2 Algorithm Initialization . 43
6.3 Algorithm Details . 45
6.4 Verification . 49
6.5 Discussion . 55
6.6 Summary . 55

7 Related Work . 57
7.1 Human Values . 57
7.2 Pattern Matching . 63
7.3 Summary . 64

8 Conclusions . 65

Bibliography . 67

Appendices

A Grammar Definition for Human Value Trigger (HVT) DSL 71

B HVTF for all WhatsApp Scenarios Covered in Chapter 3 73

vii

List of Tables

3.1 List of Values Affected by Five Different Scenarios for WhatsApp Model 22

5.1 List of Different Synonym Services and Information to use Various APIs 34
5.2 Detailed Results for Wordnet . 35
5.3 Results for all Synonym Services . 36
5.4 Results for the Pair-Wise Combination of Synonym Services 38
5.5 Results for the Combination of Three Synonym Services 39

6.1 Different Test Scenarios Covered for the Matching Logic of Suggestion and Trigger . 50

viii

List of Figures

2.1 Schwartz’s Theory of Basic Human Values (adapted from source [31]) 7
2.2 Domain Model Example Expressed with UML Class Diagram 9
2.3 TouchCORE Editor for Creating Domain Models 10
2.4 Class Diagram Metamodel for TouchCORE (adapted from source [5]) 11
2.5 Datatypes in Class Diagram Metamodel for TouchCORE (adapted from source [5]) . 12
2.6 Metamodel Hierarchy (adapted from source [3]) . 13
2.7 Generated Metamodel from Xtext Grammar . 17

3.1 WhatsApp Domain Model . 20

4.1 Human Value Trigger Metamodel . 27

5.1 Example Domain Model . 33

6.1 Overview of Algorithm . 44
6.2 Example Domain Model . 46
6.3 Display the Suggested Element, Trigger, Examples, and the Reasons to Modeller . . 48
6.4 Visualize the Impact on Domain Model using UI . 49
6.5 Example Domain Model for Test Case . 52

ix

List of Listings

2.1 Grammar Definition in Xtext . 15
2.2 Example Model Conforming to Specified Grammar 17

4.1 Scenario (iv) as an HVT Model . 29

6.1 Suggestion in Human Value Trigger File . 47
6.2 Human Value Trigger File (HVTF) for First Test Case 51
6.3 Test for Multiple Synonyms Exist for a Class . 53
6.4 Human Value Trigger File (HVTF) for Second Test Case 53
6.5 Test for Multiple Synonyms Exist for a Class but only for one Attribute 54

A.1 Grammar Definition for Human Value Trigger in Xtext 71

B.1 Human Value Trigger File for WhatsApp Scenarios 73

x

List of Abbreviations

AI Artificial Intelligence

HV T Human Value Trigger

HV TF humanValueTriggerFile

HV TS Human Value Trigger System

NLP Natural Language Processing

xi

1
Introduction

Human values are crucial in life and serve as an inspiration for all of one’s action. People use

values as a criterion to assess actions, people, and events. We all have a variety of values that

are important to us in different ways. In recent years, there has been an increased focus on the

impact of systems on human values [40]. Modern socio-technical systems have great influence on

the interpersonal relationships amongst people as well as human-machine interactions. Due to their

ever-increasing importance and wide-ranging impact on our daily lives and society in general, it is

crucial to incorporate human values into these system. When these values are missed, they often

lead to considerable social consequences. For example, in an infamous breach, Facebook provided

unauthorized access to more than 50 million user profiles to a data firm during US elections which

were subsequently utilized to customize political adverts for individual US voters to influence their

voting decisions [7]. Another example is the Delta Air Lines scandal where people from evacuating

areas hit by Hurricane Irma were charged by the ticket reservation system five times more than

1

1.1. Problem Statement

the usual ticket price. It was seen as a breach of human values by the system [19]. In another

instance, Instagram was partially blamed for the suicide of a British teenager who was exposed to

self-harming images ‘normalized’ among other images [2] which resulted in a huge backlash from

the public. Consequently, it is important to incorporate human values considerations throughout

the software development process.

1.1 Problem Statement

Thesis Statement. Lack of consideration for human values when developing software often leads

to social repercussions. The proposed Human Value Trigger System aims to address the need for

human value consideration during domain modelling by providing suggestions based on collected

past experiences.

Considering human values in software engineering is challenging due to the lack of methods to track

and incorporate those values in all phases of development cycle. This leads to the development of

software systems that act in a different way than anticipated and have detrimental consequences.

Galhotra et al. [14] highlight these incidents and express the necessity to integrate human values

into the software.

A solution is required to help practitioners consider human values when building different soft-

ware. Some approaches exist that aim to consider human values in software development. Jon

Whittle et al. highlight the importance of human values and present ideas to address them in soft-

ware [40]. Perera et al. demonstrate that GDPR can be utilized to incorporate concrete definitions

to human values in the context of software [29]. Mougouei et al. offer a roadmap to operational-

izing human values in software [23]. However, there is currently no tool support for human value

analysis in domain modelling - an important activity for requirements engineering and early de-

sign activities, even though Mussbacher et al. [25] offer initial evidence that domain models indeed

incorporate human values. To address this challenge, we explore further human values in domain

modelling and provide tool support to incorporate value focused elements to avoid human value-

based implications.

2

1.2. Thesis Methodology and Contribution

1.2 Thesis Methodology and Contribution

To incorporate human values in domain model, this thesis proposes a domain-specific language

called HVT (Human Value Trigger) which captures different examples for potential human value

issues. This includes a detailed description that shows how the presence or absence of model element

in the domain model positively or negatively impacts the human values identified by Schwartz’s

taxonomy [34].

Furthermore, this thesis proposes the Human Value Trigger System (HVTS) that provides sug-

gestions for a domain model based on captured past experiences. The proposed system takes two

inputs, a domain model and the human value trigger file. The system iterates over the model

elements of the human value trigger file and the domain model and performs various checks and

comparisons. These checks and comparisons determine suitable matches found based on model ele-

ment type, name, and the semantics based on synonyms. Once the system completes the matching

process, it presents possible suggestions to the modeller, asks the modeller to select which sugges-

tions to incorporate in the domain model, and then integrates the modeller-selected suggestions in

the domain model.

To demonstrate the feasibility of HVTS, a prototype tool that implements the proposed system

is developed as proof-of-concept. A comprehensive test suite containing tests with different scenarios

for domain models and human value trigger files ensures the matching capabilities of the system.

The contributions of this thesis in the form of the Human Value Trigger System are as follows:

• To further illustrate the need to include value-based elements in domain modelling, the domain

model of the WhatsApp system is examined while taking into account the values in Schwartz’s

taxonomy [34].

• A domain-specific language called Human Value Trigger is specified that enables practitioners

to contribute more examples to the captured past experiences.

• When a new system is built, the Human Value Trigger System provides information to mod-

ellers to help them be aware of the implications of human values that might be present in the

system based on similar past situations.

• To find the synonyms for a given name of a model element, an analysis of eight synonym

3

1.3. Thesis Overview

services and their combinations is performed to find the best synonym service or combination

of synonym services to use in the system. These synonym services include dictionaries and

thesauri along with Natural Language Processing (NLP)-based and Artificial Intelligence

(AI)-based services.

• A test suite containing tests with varied human value trigger files and domain models is used

to verify the HVTS.

1.3 Thesis Overview

The thesis is organized as follows:

• Chapter 2: Background

This chapter explains Schwartz’s taxonomy of human values, the concept of the domain

model, TouchCORE (the software and the modelling framework used for the proof-of-concept

implementation), the concept of the metamodel, and the Xtext language used to specify the

proposed domain-specific language in this thesis. The author contributed to the full chapter.

• Chapter 3: Motivating Example

This chapter includes an analysis of the WhatsApp domain model to motivate our approach

to incorporate values in domain modelling. The author contributed to the full chapter.

• Chapter 4: Metamodel

The metamodel used for HVT is explained in detail in this chapter. This includes the pur-

pose and definition of all metamodel elements and the description of the grammar definition

specified with Xtext. The author contributed to the full chapter.

• Chapter 5: Analysis of Synonym Services

This chapter includes an analysis of eight synonym services and their combinations to find

the best synonym service or combination of synonym services to use for the proposed system

in this thesis. The author contributed to the full chapter.

• Chapter 6: Human Value Trigger Algorithm

4

1.3. Thesis Overview

This chapter discusses the HVTS algorithm that provides the suggestions to integrate in the

domain model and the verification process followed to evaluate the capabilities of HVTS. The

author contributed to the full chapter.

• Chapter 7: Related Work

This chapter discusses similar work done by various authors and outlines the difference be-

tween our work and prior work. The author contributed to the full chapter.

• Chapter 8: Conclusions

This chapter summarizes the contributions of our thesis and discusses future work. The

author contributed to the full chapter.

5

2
Background

This chapter provides background information relevant to understand this thesis. Section 2.1 sum-

marizes Schwartz’s basic theory of human values which is used in our research. The model elements

of class diagrams which is the notation used for domain modelling are discussed in Section 2.2. Sec-

tion 2.3 gives information about TouchCORE, a modelling tool used to create domain models, i.e.,

the input and output for our proposed Human Value Trigger System (HVTS). Furthermore, the

concept of metamodel is described in Section 2.4 together with information about the Xtext lan-

guage which is used to create our proposed domain-specific textual language called Human Value

Trigger (HVT) in Section 2.5.

6

2.1. Schwartz Taxonomy

Figure 2.1: Schwartz’s Theory of Basic Human Values (adapted from source [31])

2.1 Schwartz Taxonomy

Human values are valuable in our life as they help us to grow and develop. In 1992, Schwartz [34] [31]

introduced the basic theory of human values which defines ten broad category values according

to universal requirements of human existence which are needs of the individual, social interaction,

survival, and welfare. The type of goal or motivation each human value represents is the underlying

means to set them apart from one another. It measures these ten motivationally distinct category

values using 58 distinct values. The ten category values are arranged in a circular structure as

shown in Figure 2.1 to depict the relations of conflict between different values. Values located close

to each other are complementary, whereas values further apart tend to be in tension with each

other and similarly values which are diagonal are more opposite to each other and are harder to

reconcile. For example, values that highlight the concern for welfare and the interest of others

(universalism, benevolence) conflict with the values that show an individual’s own ambitions and

success and control over others (power, achievement). In our work, we use the values defined by

Schwartz to identify positive or negative impact on them due to the presence or absence of model

elements in a domain model.

7

2.2. Domain Modelling

2.2 Domain Modelling

A domain model [6] is the visual depiction to describe and model real world entities and relationships

of a problem domain. It is used to represent the selected concepts of a domain to solve the problem.

To create a domain model, the Unified Modeling Language (UML) is used which is a general-purpose

modelling language to visualize the design of a system [18]. In UML, a class diagram is one way to

describe the structure of the system. Basically, a domain model uses the class diagram notation to

specify a particular problem. However, a domain model does not use all model elements of a class

diagram (e.g., it does not specify operations) [32].

The domain model elements include classes, attributes, enumerations, and relationships between

different classes. A class describes a set of similar objects, it can be a thing, place, an event and

many more. An example domain model is shown in Figure 2.2. Here, Owner, LicencePlate,

Wheel, Motor, ParkingCompany, Vehicle, Car, and Truck are the classes for the domain model.

An attribute is a piece of data related to the class. It has a simple data type associated with it

(String, Integer, Date, Time etc.). For example, weight is the attribute for Vehicle with datatype as

double. An enumeration describes a predetermined list of options. An individual option is referred

as literal, e.g., TransmissionType in the example represents an enumeration whereas Manual and

Automatic are its literals.

A class may be involved with one or more relationships with other classes. A relationship can be

an association, composition, aggregation, or generalization. An association defines a relationship

between two classes and describes the role and multiplicity each class plays in this relationship. A

multiplicity defines the number of instances of a class that are related to an instance of the other

class in the relationship. It can be one (1), many (*), and optional (0). By default, these association

are considered bi-directional, but it is possible to limit the direction by using directed arrows. For

example, the relationship between Owner and Vehicle represents an association between them.

A composition is like an association, but it is considered a whole-part relationship. Furthermore,

if the parent (container) in a composition is destroyed, the parts will automatically be destroyed.

For example, a Vehicle is composed of at least one Motor and at least four Wheels. An aggregation

is also considered a whole-part relationship except the parts are not destroyed with the parent (e.g.,

the relationship between Vehicle and LicencePlate).

8

2.3. TouchCORE

A generalization represents an “is-a” relationship between two classes. In this relationship, the

subclass inherits the features of the superclass, e.g., “a car and a truck are a vehicle” where Vehicle

is the superclass and Car and Truck are its subclasses. An association class is used to add properties

to an association, aggregation, or composition that cannot be placed in either class participating

in the relationship. Furthermore, an association class stipulates that at the most one instance of

the association class exists with the same pair of instances from the classes participating in the

relationship (e.g., the Registration association class).

In our work, we focus on how to incorporate human values in domain modelling. To accomplish

this task, we use domain models as input to HVTS to provide suggestions based on model elements

matched to past experiences.

Figure 2.2: Domain Model Example Expressed with UML Class Diagram

2.3 TouchCORE

TouchCORE [38] [33] is a multi-touch enabled tool for creating reusable design models. It is built

on top of EMF (Eclipse Modeling Framework) [10] and MT4J (a multi-touch library for java) [24].

9

2.4. Metamodel

We use the TouchCORE class diagram editor to define domain models which we then analyze for

potential human value issues.

Figure 2.3 shows the TouchCORE editor for creating domain models. It allows the creation

of classes, enumerations, and data types. After a class has been created, it allows the addition of

attributes, associations, aggregations, compositions, generalizations, and association classes.

Figure 2.3: TouchCORE Editor for Creating Domain Models

2.4 Metamodel

A metamodel [9] refers to a model of a model. Basically, a metamodel is a higher-level model

which describes a language to define the lower-level model. As an example of a metamodel, the

TouchCORE metamodel for class diagrams (CDM) is shown in Figure 2.4. To define a class in

the domain model, the Class from the CDM metamodel is used. Every Class is a Classifier which

sets the properties such as datatype, abstract, and visibility type for the user-defined class. This

Classifier class is contained in the root class called ClassDiagram. An attribute for a Class is defined

using the Attribute class which is contained inside the Classifier. To define the datatype for an

Attribute, the metamodel support the primitive datatypes (e.g., String, Boolean, . . .) defined under

10

2.4. Metamodel

Figure 2.4: Class Diagram Metamodel for TouchCORE (adapted from source [5])

the PrimitiveType Class. The datatypes present in the CDM metamodel are shown in Figure 2.5.

To define the relationships between two classes, an Association class from the metamodel is used

which has two or more AssociationEnds attached to it. The AssociationEnds are contained in their

Classifier. The lowerBound and upperBound attributes in the AssociationEnd class are used to

define the multiplicities for the association end. Similarly, the referenceType attribute allows us to

define a composition, aggregation, regular, or qualified relationship. All Types and Associations

created are contained inside the root class. The inputs to HVTS are created using this metamodel

and the integration of recommended suggestions that are accepted by the modeller also requires

knowledge of the CDM metamodel.

Figure 2.6 illustrates the concept of metamodel hierarchy with the help of the MindMap ex-

ample. The lowest-level layer is M0 which refers to the user objects in memory space, i.e., the

runtime instances of the M1 layer. The M1 layer is an instance of the M2 layer and correlates

11

2.4. Metamodel

Figure 2.5: Datatypes in Class Diagram Metamodel for TouchCORE (adapted from source [5])

to the user model. As an example of the M1 layer, Figure 2.6 shows a model that contains the

Robotics MindMap, two Topics named as Sensors and Ultra-Sonic, and two links named as topics

and subtopics. Another example of M1 is an input domain model created using the TouchCORE

metamodel. To create these models, we need something that can be used to define these instances.

Similar to the relationship between the M1 layer and M2 layer, the M2 layer is an instance of

the M3 layer and corresponds to the metamodel layer. In the example, the M2 layer contains the

metamodel of MindMap, i.e.,the MindMap class that is used to define Robotics, and the Topic class

that is used to define Sensors and Ultra-sonic. It also contains the composition between MindMap

and Topic that is used to define topics and the self-composition of Topic that is used to define

subtopics. Another example of M2 is the CDM metamodel of TouchCORE. The highest-level layer

is M3 which refers to the metametamodel layer that is used to define languages to specify meta-

models (i.e., metalanguages). In the example, the M3 layer includes the language elements from the

Ecore metalanguage that are used to define MindMap and Topic as EClass. Similarly, EAttribute

is used to define the attribute description, and EReference is used to define the compositions and

associations in M2. The CDM metamodel is also defined in Ecore.

In summary, the User Objects layer (M0) describes a specific situation in an information do-

12

2.4. Metamodel

Figure 2.6: Metamodel Hierarchy (adapted from source [3])

main. The Model Layer (M1) defines a model to describe the information domain, e.g., a model

created using UML. To define M1 models, technologies like UML and CWM (Common Warehouse

Metamodel) are used which are defined in the Metamodel Layer (M2). Different language engineer-

ing environments exist for the Metametamodel Layer (M3) based on metamodelling. Ecore [12]

and MOF (MetaObject Facility) [15] are examples of metamodelling-based environments. MOF

is an object-oriented modelling language which offers concepts such as classes, primitive types,

enumerations, generalization, attributes, associations, and operations for the definition of software

languages. Ecore is the metametamodel language of the Eclipse Modeling Frameworks (EMF). It

is a java-based implementation of MOF. It facilitates automatic generation of different implemen-

tations such as Java code, XML documents, and XML Schemata.

Context-Free Grammars [13] are an alternative language engineering environment to metamod-

elling. BNF (Backus-Naur form) [1] and EBNF (Extended Backus-Naur form) [41] are examples

of context-free grammars which allow the specification of textual languages. These are used to

describe the abstract and the concrete syntax at the same time but focus on the concrete syntax.

Elements of a language are defined with production rules in context-free grammars. Context-free

13

2.5. Xtext

grammars are a tree-based representation as cyclic relationships are not expressed explicitly with

these grammars. Instead, a string is defined which implicitly identifies the relationship with the

desired production rule instead of an actual reference. Metamodelling, on the other hand, clearly

separates the abstract syntax from the concrete syntax. Furthermore, metamodelling is a graph-

based approach which allows cyclic relationships to be expressed explicitly. Given the advantages of

metamodelling, we decided to use Xtext as our language engineering environment for HVT. Xtext

combines metamodelling with BNF specifications for the concrete syntax, which makes explicit

the desired metamodel and leverages the concept of cross reference to effectively model graphs, as

discussed in the next section.

2.5 Xtext

Xtext [42] is an open-source framework used to create a textual domain-specific language (DSL).

It is used to generate a metamodel, parser, and editor from the grammar definition. The grammar

definition for Xtext is similar to BNF [1] but combines it with metamodelling by integrating type

rules for the definition of metamodel elements. These rules contain terminals, assignments, and

cross references.

To better understand an Xtext grammar definition, let us take an example statement to model:

A shelf has multiple books written by authors and published by publishers, and each book has

multiple chapters. Each book is of one genre which is of type fiction, drama, or poetry. Each book

has one or more authors associated with it and has one publisher. Some of the books are rated

as top sellers. Each chapter has a title and a number of pages. The grammar definition for this

example is shown in Listing 2.1.

Each Xtext grammar starts with a header that defines the properties of the grammar. The first

line declares the name of the language. The with specification represents an existing grammar pro-

vided by Xtext to inherit and use predefined rules. For example, line 1 in Listing 2.1 indicates that

the name of the grammar is Bookshelf and that the grammar uses org.eclipse.xtext.common.

Terminals which introduces the common set of rules.

Each rule is defined using a series of terminals and non-terminals and is converted to a class in the

metamodel. Here terminals are considered as the quoted strings and non-terminals are considered as

14

2.5. Xtext

the names of the other rules. For example, ‘Book’, ‘<’, ‘popular’, ‘:’, ‘by’, ‘,’, ’published’, ’by’, and

’>’ in line 11 are terminals and ID, Genre, Author, Publisher, and Chapter are the non-terminals.

The name of the rule is used as the name of the class. For example, rules Shelf, Book, Chapter,

Author, and Publisher in lines 5, 10, 16, 19, and 22, respectively are converted to the classes Shelf,

Book, Chapter, Author, and Publisher, respectively, in the metamodel.

Listing 2.1: Grammar Definition in Xtext

1 grammar org.xtext.example.bookshelf.Bookshelf with org.eclipse.xtext.common.Terminals

2
3 generate bookshelf "http://www.xtext.org/example/bookshelf/Bookshelf"

4
5 Shelf:

6 (authors+=Author)*

7 (publishers+=Publisher)*

8 (books+=Book)*;

9
10 Book:

11 ’Book’ ’<’ name=ID topSeller ?= ’popular’ genre=Genre ’:’ ’by’ (authors+=[Author] (’,’ authors+=[

Author])*)? ’published’ ’by’ (publisher=[Publisher] ’>’ ’{’ (chapters+=Chapter (’,’ chapters+=

Chapter)*)? ’}’;

12
13 enum Genre:

14 FICTION=’fiction’ | DRAMA=’drama’ | POETRY=’poetry’;

15
16 Chapter:

17 title=ID ’#’ numPages=INT;

18
19 Author:

20 ’Author’ name=ID;

21
22 Publisher:

23 ’Publisher’ name=ID;

An enumeration rule is used to map strings to enumeration literals. For example, in line 13, the

datatype rule Genre is defined with alternative values (Fiction, Poetry, Drama) as literals using

vertical bar (|). This is converted into the Enumeration named as Genre with literals as Fiction,

Poetry, Drama in the metamodel.

For assignment operators, the = sign is used for a feature of the current class (rule) that accepts

only one element, the += sign is used for a multi-valued feature which adds a list of elements for

the right hand side, and the ?= sign is used for a Boolean feature. For example, in line 12, a single

Publisher is assigned (=) to a feature called publisher, i.e., multiplicity 0..1 in the metamodel. In

line 8, multiple Books are assigned (+=) to a feature called books, i.e., multiplicity 0..* in the

metamodel. Similarly, in line 11 topSeller represents a Boolean feature.

15

2.5. Xtext

A cross reference to a rule is indicated by square brackets on the right-hand side during the

assignment to a feature. For example, the feature named publisher in line 11 is a cross reference

(note the square brackets).

Xtext is using Extended Backus-Naur Form (EBNF) to define the different repetitions for

features. There are four possible repetitions: if no operator is used it is considered as exactly one,

the ? operator is used to indicate the repetition to be zero or one, the * operator sets the repetition

to be zero or more, and lastly the + operator sets the repetition to be one or more. For example,

in lines 6, 7, and 8, Shelf contains an arbitrary number (*) of books, publishers, and authors. If

the * for the books in a Shelf were to be replaced with +, then at least one book would have to

be specified. However, ? used for authors and chapters in a Book indicates a repetition of zero or

one (i.e., authors and chapters are optional). The features name and genre of Book, on the other

hand, are mandatory as no repetition operator is used.

A feature of the current class (rule) is converted to an attribute in the metamodel when the

right-hand side indicates an enum or datatype rule or an inherited rule such as ID. A feature is

converted to a reference in the metamodel when the right-hand side indicates another rule. If the

reference to another rule is using square brackets, then an association is used in the metamodel

whereas if it is not, then a composition is used. For example in line 17, title and numPages are

features converted to attributes for the class Chapter in the metamodel. To define these attributes,

we have title = ID. Here, ID is the standard identifier specified in the parent grammar Terminals

(see first line). The left-hand side refers to the feature name (title) of the current class (Chapter).

The right-hand side is an EString in this case. Similarly, we have numPages = EInt. Moreover, the

feature called name in the Book, Author, and Publisher rules is converted to an attribute in the

metamodel. On the other hand, the reference between Book and Publisher is a regular association

because square brackets are used for Publisher in the Xtext rule for Book. The reference between

Shelf and Book is a composition, because square brackets are not used for Book in the Xtext rule

for Shelf. Figure 2.7 shows the elements of the metamodel resulting from the Xtext grammar,

i.e., the abstract syntax which defines the concepts of the language and their relationships among

themselves.

The grammar also specifies the concrete syntax by using the keywords which makes it easier to

read and understand a textual specification. For example, the rule Book starts with the keyword

16

2.5. Xtext

Figure 2.7: Generated Metamodel from Xtext Grammar

‘Book’ and then uses ‘:’ and ‘by’ to differentiate Genre and Authors, and ‘published’, ‘by’ is

used to differentiate the Authors and the Publisher. In the same rule, Chapters and Authors are

comma separated. Moreover, for the rule of enum Genre, it is possible to use alternative literals for

enumerations like ‘fiction’ for FICTION. Also, in the rule Chapter, the name and the numPages are

separated by ‘#’. Furthermore, the rule for Author and Publisher includes keywords ‘Author’, and

‘Publisher’, respectively, to make the textual specification clearer. Listing 2.2 shows an example

model that conforms to the specified grammar.

Listing 2.2: Example Model Conforming to Specified Grammar

1 Author FredrikBackman

2 Publisher SimonSchuster

3 Book < AManCalledOve popular drama : by FredrikBackman published by SimonSchuster > { chapter1#4,

chapter2#8 }

We have used Xtext to create the domain-specific language referred as Human Value Trigger

(HVT). A detailed description of the HVT metamodel is explained in Chapter 4.

17

2.6. Summary

2.6 Summary

In this chapter, we discuss the technologies used in this thesis. It explains Schwartz’s taxonomy of

human values, the concept of domain model, the TouchCORE modelling framework, the concept

of metamodel, and the Xtext language in detail.

The next chapter provides an analysis of an example domain model to motivate our approach

to include human values in domain modelling.

18

3
Motivating Example

This chapter investigates an example system to motivate our approach to include human values-

based elements in domain modelling. We examine the domain model for the WhatsApp System

considering the human values in Schwartz’s taxonomy.

3.1 WhatsApp

WhatsApp is a chat application that provides instant messaging and calling services to its user. Fig-

ure 3.1 exhibits all the classes, attributes, and relationships for the domain model of the WhatsApp

system. For this example, we followed the process suggested for addressing human values in a

domain model [25]. The initial step involves identifying the classes, then related attributes, asso-

ciations, compositions, aggregation, association classes, and generalization are considered without

taking human values explicitly into account. The next step includes the analysis of usage scenarios,

19

3.1. WhatsApp

i.e., we considered various features of WhatsApp such as privacy, document sharing, messaging

privately, emojis, video, and voice calls. The final step performs human values analysis using

Schwartz’s theory to identify model elements and the impact on human values. This is an iterative

process even though its description is rather sequential. The domain model under discussion is

created by the authors based on their knowledge and experience gained from the use of WhatsApp.

Figure 3.1: WhatsApp Domain Model

The domain model supports the functional requirements such as user registration, adding con-

tacts, one to one chat, and group chat. Different types of communication between the users are

covered such as text messages, voice calls, and video calls but also multi-media messages, emojis,

attachments, location information, and contact information. Privacy settings for the profile photo

and the status stories shared by the user on his profile are captured. After scrutinizing the domain

model in terms of how different model elements interact with human values, we have come up

with scenarios where essential human values were disregarded. These scenarios are covered in the

following discussion.

i) For the Group class, various WhatsApp groups exist and anyone knowing of their existence

can share information. So, misinformation could potentially be shared by members from one group

20

3.1. WhatsApp

to another which leads to the circulation of rumors sometimes and ultimately may cause disruption

in the society or even a crisis in the society. For example, elections may be manipulated by

conveying false information in the society. Nothing in this domain model indicates the verification of

information being shared again and again. Moreover, end-to-end encryption makes shared messages

immune to third parties, so it is difficult to trace back to the origin. The absence of model elements

to address these issues may lead to violation of values like Privacy, Freedom, and many more as

defined by Schwartz’s taxonomy. In total, we identify 19 values that may be impacted. A complete

list of values affected by the different scenarios is shown in Table 3.1 where we systematically

analyze the impact on the 58 human values compiled by Schwartz. To prevent this breach, we

could have added the flag attribute in the Message Class which can then be used as a poll to

validate the information according to the opinion shared by different people.

ii) For the ProfilePhoto class, we have only options like Everyone, My Contacts, and Nobody

to secure the privacy of the profile picture. But sometimes people need to save a random contact

number to have one-time contact with another person. There is a minute possibility that the profile

photo can be saved, e.g., by taking the screenshot which can be misused. This could lead to the

compromise of values such as Privacy, Self-Respect, and many more. In total, we identify 7 values

that may be impacted. To avoid this situation, we could have added a custom based option for

selecting the contacts with whom the person wants to share the photo.

iii) Another possible scenario is that if a random person somehow has the contact number of

another person, then that random person can send messages to the other person. While the receiver

has the option to block the sender after receiving the message, that message can have an impact on

the receiver in various ways depending upon the type of information being shared in the message.

This has detrimental impact on values like Privacy, Pleasure, and many more. In total, we identify

6 values that may be impacted. Nothing in this domain model points to something that could have

avoided this state. As a precautionary measure, we could have the option to create a whitelist of

contact persons as a protection step.

iv) People get addicted to WhatsApp, and they do the same thing repeatedly which results

in reduced (or no) interaction with other people. This negatively affects values like Creativity,

Healthy, and many more. In total, we identify 16 values that may be impacted. To eliminate this

possibility, we could have added an attribute in the model for which a user can enter the value as

21

3.1. WhatsApp

a time a person wants to spend on the app and the user gets a notification when the entered time

is over.

v) Lastly, currently there is no way for people with disabilities to use the WhatsApp especially

if the user is visually impaired. This impacts values like Freedom, Choosing your own goal, and

many more. In total, we identify 9 values that may be impacted. To overcome this shortcoming,

an attribute such as virtualAssistantIsRequired could be added in the User class.

Table 3.1: List of Values Affected by Five Different Scenarios for WhatsApp Model

Misinformation
is being
shared

Profile Pic-
ture is be-
ing shared

Messages
from un-
known
user

Addiction People
with dis-
abilities

Self-Direction

Creativity X X

Privacy X X X

Curious X

Freedom X X

Choosing
own goal

X X

Independent

Stimulation

Daring

A varied life X

An exciting
life

X

Hedonism

Pleasure X

Enjoying life X X X

Self-
indulgent

X

Achievement

Successful X

Capable

Ambitious

Influential X

Intelligent

Self-respect X X

Power

Social power X

Authority X X

Wealth

22

3.1. WhatsApp

Preserving
my public
image

X X X

Social recog-
nition

X

Security

Healthy X X X

Family secu-
rity

X

Social order X

Clean

Reciprocation
of favours

National se-
curity

X

Sense of be-
longing

X

Conformity

Self-
discipline

X X

Politeness X X

Honoring of
elders

X

Obedient X

Tradition

Humble X

Detachment

Devout

Respect for
tradition

X

Moderate X

Accepting
my portion
in life

Benevolence

Helpful

Honest X

Forgiving X

Loyal X

Responsible X

True friend-
ship

X

Mature love X

Meaning of
life

23

3.1. WhatsApp

A spiritual
life

X X

Universalism

Equality for
all

X

Protecting
the environ-
ment

Inner har-
mony

A world of
beauty

A world of
peace

X

Unity with
nature

Broad mind-
ed/tolerance

X

Social justice X X

Wisdom

Based on the motivating example, we can see that value assessment is challenging, and it is

easy to overlook certain circumstances unless the practitioner exhibits a profound understanding of

the domain. Even with deep knowledge of human value issues, it is still possible that the potential

concerns may have been discussed during earlier phases in the software development life cycle but

may not have been thoroughly documented or followed up on. Therefore, we observe the need

to capture these issues from the past experiences so that when somebody builds a new system

and encounters a similar situation, they may use this information to help them to be aware of

the implication of human values they might have in the system. So, the goal is to build a tool

that flags potential human value violations. This requires us to build a metamodel to collect past

experiences by capturing different examples for each human value and model element type. Based

on this, we formalize a DSL that can express such detailed scenarios, the human values impacted

by the scenario, and the involved model elements.

24

3.2. Summary

3.2 Summary

This chapter includes an example domain model (i.e., WhatsApp) to motivate our approach used

in HVT. An analysis of the example is performed which shows the need to capture human value

issues in domain modelling.

In the next chapter, we present a detailed explanation of the metamodel that specifies the HVT.

25

4
Metamodel

This chapter discusses the HVT metamodel in detail and explains the use of the Xtext language

to define the grammar for the proposed domain-specific language HVT.

4.1 Human Value Trigger (HVT) Metamodel

The Human Value Trigger (HVT) metamodel as shown in Figure 4.1 defines the human values as

well as the suggestions provided in response to the detection of a potential human value issue in

the analyzed domain model. It contains the main classes HumanValue, Suggestion, and Trigger.

The HumanValue class refers to the information about the 58 human values, their definition, and

respective categories according to the Schwartz theory, e.g., for the Creativity human value, Self-

Direction is its category, and Able to create new and original ideas is considered as the concise

definition explaining the value itself.

26

4.1. Human Value Trigger (HVT) Metamodel

Figure 4.1: Human Value Trigger Metamodel

The Suggestion class contains the different triggers collected based on past experiences and

the suggested elements that could be added to prevent an impact on various human values. Each

Suggestion has one1 modelElement as a suggested element that could be added in the analyzed

domain model. For example, in scenario (iv) discussed in the motivating example in Chapter 3,

“timeYouWantToSpend” is a suggested attribute for the User Class to avoid a similar situation.

Each Suggestion can have multiple alternative triggers that each could lead to that scenario.

The Trigger class is defined to capture various cases and their significant impact on human

values. Each Trigger has one triggering element which corresponds to the ModelElement which is

being matched in the analyzed domain model. A ModelElement correspond to different elements

in the class diagram, i.e., either a Class, Attribute, Enumeration, Literal, AssociationClass, or

AssociationEnd. For example, in scenario (iv), the “User” class of the WhatsApp domain model is

considered as the triggering element which Corresponds to the Class subclass of ModelElement.

Each Trigger also contains multiple examples and their corresponding reasons on how presence

or absence of the element impacts different human values. Each Example refers to a detailed

explanation for the Trigger. Here “People get addicted to WhatsApp, and they do the same thing

1Ecore/EMF does not enforce automatically mandatory associations (multiplicity greater than 0) but rather
provides validation support to ensure that a model conforms to its metamodel

27

4.1. Human Value Trigger (HVT) Metamodel

repeatedly which results in reduced (or no) interaction with other people” is considered as the

example for this scenario. Each Reason contains the explanation and the positive and negative

impacts on the corresponding value if the element is absent in the analyzed domain model. For the

same example, “People spend more time facing health issues like migraine problem” is referred as

a justification for the Reason and “Healthy” corresponds to the name of the HumanValue which is

impacted negatively when the element is not in the analyzed domain model.

We decide to restrict ourselves to one triggeringElement for a Trigger as well as one modelEle-

ment for a Suggestion as the sample scenarios we investigated can be modelled with this approach.

By restricting ourselves to one triggering element, we increase the chances of matches in the an-

alyzed domain model compared to more complex patterns that could be matched. This increases

the exposure of potential human value issues to the modeller with the trade-off that more false

positives may be presented to the modeller. In the case where we need multiple model elements for

the same Suggestion, a duplicate of the Suggestion could be created for each additional required

model element. In future work, the multiplicity could be changed from 1 to 1-to-many.

Each ModelElement conforms to the TouchCORE Class Diagram Metamodel (CDM). This

means that ModelElement could point directly to an element in the CDM, instead of specifying

different model elements in the HVT metamodel. However, a complete class diagram would be

required if we were to point directly to a CDMmodel element as a single CDMmodel element cannot

exist in isolation. Furthermore, there are many more features defined for CDM model elements

that are of limited use for our purpose but would have to be specified. In our HVT metamodel, we

can focus on those elements that we actually need, making that clearer and explicitly defined. For

example, if we want to express an AssociationEnd using the CDM metamodel, we have to specify

additional attributes like navigable and ordered and additional classes like Association conforming

to the CDM definition of “AssociationEnd”. Further with addition of these attributes, we have

to discover a method to capture the elements being matched and the ones which are not being

matched for the analyzed domain model. Including these elements directly in HVT provides a clear

view of the exact pattern utilized for matching and helps maintain only the information required

for matching.

The HVT metamodel discussed in Figure 4.1 is equivalent to the grammar definition specified

with Xtext as shown in Appendix A. This grammar shows the metamodel and the concrete syntax

28

4.1. Human Value Trigger (HVT) Metamodel

of a domain-specific language which is used by a modeller to produce or read HVT models to

describe potential human value issues. We use this language as it helps the modeller express the

information in a natural and textual way. Additionally, the editor generated by Xtext from the

grammar specification features auto-completion, syntax highlighting, and syntactic validation which

helps with the correctness of the content. Listing 4.1 shows what the motivating example discussed

previously looks like as an HVT model.

The grammar in Appendix A specifies three main features HumanValue, Suggestion, and Trig-

ger. The rule for HumanValue starts with the keyword “HumanValue” followed by the feature

named as category which is separated from the identifier name using the “.” as shown in the con-

crete example in Listing 4.1. These keywords are used to specify what is anticipated next. In

Suggestion, there can be one modelElement and a number of Triggers which are added to a feature

called alternativeTriggers. In ModelElement, we use a vertical bar (|) to show the alternatives for

the elements. For each model element, we use a keyword for the specific type for clear understanding

of the instance created, e.g., an Attribute is identified by the keyword “Attribute”.

Attribute:

‘Attribute’ type=AttributeType modelClass=STRING ‘.’ name=ID

Similarly, to represent a Trigger, we use the keyword ‘Trigger’ which acts as a syntactic declara-

tion. If we look at the model in Listing 4.1, we have a pattern to match which is “Class User”. Here,

User will be matched to suggest possible recommendations for the analyzed domain model. If a

match exists and the modeller agrees, the suggestion ”Attribute Time ’User’.timeYouWantToSpend”

will be added to the analyzed domain model. Similarly, one or more examples from past experi-

ence are defined using the grammar. Then, one or more Reasons list out the impacted values and

their respective explanations in the format “negIfAbsent Creativity because People are addicted to

the social media so they keep on doing the same thing every day, which kills creativity”. Here,

“negIfAbsent” and “because” represent the keywords to indicate the properties they define. Simi-

larly, “posIfAbsent” is used to represent the postive impact on values if the model element does not

exist in the analyzed domain model. Capturing negative and positive impact allows for trade-off

analyses. Practitioners may utilize this language to contribute more such suggestions, triggers,

examples, and reasons.

29

4.1. Human Value Trigger (HVT) Metamodel

Listing 4.1: Scenario (iv) as an HVT Model

1 HumanValue Universalism.BroadMindedOrTolerance ’Liberal in views and reactions’

2 HumanValue Universalism.SocialJustice ’Everyone deserves equal economic, political, and social

rights and opportunities’

3 HumanValue Universalism.Wisdom ’The quality of having experience, knowledge, and good judgment’

4 //Apart from the above mentioned values, there are a total of 58 values defined according to

Schwartz’s taxonomy of human values (not all shown for brevity).

5
6 Attribute Time ’User’.timeYouWantToSpend

7 Trigger Class User

8 Example ’People get addicted to WhatsApp, and they do the same thing repeatedly which

results in reduced (or no) interaction with other people’

9 negIfAbsent Creativity because ’People are addicted to social media so they keep on doing

the same thing every day, which kills creativity’

10 negIfAbsent Curious because ’People get addicted to chatting so they do not study news or

current topics or study their course.’

11 negIfAbsent AVariedLife because ’People are addicted to WhatsApp and doing the same thing

over and over again.’

12 negIfAbsent SelfIndulgent because ’People are addicted to WhatsApp not knowing which

person is sitting next to them.’

13 negIfAbsent Healthy because ’People spend more time facing health issues like migraine

problem.’

14 negIfAbsent SelfDiscipline because ’People spend more time on WhatsApp due to which people

forget to do important work.’

15 negIfAbsent Politeness because ’There is a change in style of conversation; basically

WhatsApp changed the way people talk mostly on instant messages or on call’

16 negIfAbsent HonoringOfElders because ’WhatsApp changed the way people talk mostly on

instant messages or on call so people forget the right way.’

17 negIfAbsent Obedient because ’Due to constant usage people tend to lose track of time.’

18 negIfAbsent Humble because ’Due to excessive use there is a change of behavior among the

users.’

19 negIfAbsent RespectForTradition because ’People are so involved in using the WhatsApp that

they forget about the customs and tradition.’

20 negIfAbsent Moderate because ’Due to addiction people tend to go to extremes.’

21 negIfAbsent Forgiving because ’As people spend more time on WhatsApp the same things come

up again and again.’

22 negIfAbsent Loyal because ’Due to addiction people tend to talk more than needed, which

may lead to miscommunication among users.’

23 negIfAbsent TrueFriendship because ’Due to spending more time on WhatsApp people ignore

their relationship with the people around them.’

24 negIfAbsent MatureLove because ’Spending more time on WhatsApp can impact relationships by

decreasing the amount and quality of time people spend together.’

The human value trigger system proposed in this thesis compares every CDM element of the

analyzed domain model with the triggers collected from past experiences. For example, if the

analyzed domain model contains the class “User”, then all the triggers for class “User” from the

collection are presented to the user. Based on the matched elements, the examples and the reasons

for the impacted values are presented for each trigger to better understand the suggested element

and the potential human value issue that needs to be considered. To optimize this matching process,

we support the semantic detection of human value issues based on synonyms. The next section

provides more detail about the process followed to accomplish this task.

30

4.2. Summary

4.2 Summary

This chapter explains the HVT metamodel, its purpose and use of its elements in detail. The

concepts of suggestion, trigger, and human value are defined. Moreover, this chapter explains the

use of the Xtext language to define the grammar for the proposed domain-specific language HVT.

In the next chapter, we discuss the details of the analysis performed on eight synonym services

and various combinations of synonym services to find the best one to use as a synonym service in

the envisioned tool.

31

5
Analysis of Synonym Services

This chapter provides a detailed explanation of the analysis performed on eight synonym services

in Section 5.1 and the analysis performed on the various combinations of these synonym services

in Section 5.2 to determine the best combination of synonym services for the HVTS.

5.1 Analysis of Single Synonym Service

To understand the requirement for the optimization of matching, let us consider an example domain

model where the class “User” is referred as “EndUser” in their model as shown in Figure 5.1. When

the proposed system is used, all the triggers matched for class User must be recommended for this

analyzed domain model as User and EndUser are synonyms to each other. To accomplish this task,

we have analyzed eight synonym services and various combinations of them to extract words with

similar meaning. These synonym services include dictionaries and thesauri together with NLP-

32

5.1. Analysis of Single Synonym Service

Figure 5.1: Example Domain Model

based and AI-based services. Table 5.1 depicts the list of different synonym services and links to

the information to use various APIs to access these synonym services. All synonym services used in

the analysis have a defined list of synonyms except for GloVe and ChatGPT. GloVe contains vector

representation for words and compares the cosine similarity between the words to find the similar

words. The cosine similarity measures the angle between two vectors. Given two word vectors,

the cosine similarity score varies from -1 to 1, with a score of 1 indicating that the two words are

identical, and a score of -1 indicating that they are completely dissimilar. The higher the similarity

score between vectors, the more they are semantically similar [11] [28]. ChatGPT is a chatbot

based on a large language model that uses deep neural networks to estimate the probability of the

next word given a sequence of words. Also, some of the synonym services such as dictionary.com

and thesaurus.com are not used in this thesis as they are not accessible by an API.

Based on our motivating examples, WhatsApp and the Airline Reservation System [25], we

compile a list of words to compare the results from different synonym services. The words must

be taken from an example domain model, because the appropriateness of a word suggested as a

33

5.1. Analysis of Single Synonym Service

synonym by a synonym service depends on the context in which the word is used. The words

used are price, person, user, airline, delivered, status, text, message, active, privacy, story, and

phoneNumber. The list of words includes a combination of nouns like price, person, user, airline,

verbs like delivered, and adjectives like active. We also include the word “phoneNumber” as the

name of a model element is often a combination of more than one word. For such words, various

synonym service APIs require different combinations such as “phone number”, “phone-number”,

etc. to return the synonyms.

Table 5.1: List of Different Synonym Services and Information to use Various APIs

Synonym Ser-
vice

Link used to Access the Synonym Service Part of API

Wordnet https://projects.csail.mit.edu/jwi/

(User’s Manual- edu.mit.jwi 2.4.0 manual.pdf)
Dictionary &
Thesaurus

GloVe https://medium.com/analytics-vidhya/basics-

of-using-pre-trained-glove-vectors-in-

python-d38905f356db

https://nlp.stanford.edu/projects/glove/

Natural Language
Processing

Word Association https://rapidapi.com/twinword/api/word-

associations/

Dictionary

Word Dictionary https://rapidapi.com/twinword/api/word-

dictionary/

Dictionary

Wordnik https://developer.wordnik.com/ Dictionary

Oxford https://developer.oxforddictionaries.com/

documentation

Thesaurus

Webster https://dictionaryapi.com/ Thesaurus

ChatGPT https://openai.com/blog/chatgpt Artificial Intelli-
gence Chatbot

For each synonym service, we investigate the results based on the number of good and bad

words returned as a synonym. The words are categorized as a good or a bad word as a synonym of

the given word based on the interpretation done by the author of this thesis. Another researcher

verified the interpretation, and any disagreements were discussed and resolved. After labeling

the outcomes for different words, we formulate two criteria, to consider the best of these various

synonym services:

Criterion 1: The average of the percentages of all good words (Good words % = (Good words

/ (Good words + Bad words) *100) for those words where at least one synonym is found. This is

the precision of the result. We cannot calculate the recall of the result because the number of false

34

https://projects.csail.mit.edu/jwi/
https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db
https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db
https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db
https://nlp.stanford.edu/projects/glove/
https://rapidapi.com/twinword/api/word-associations/
https://rapidapi.com/twinword/api/word-associations/
https://rapidapi.com/twinword/api/word-dictionary/
https://rapidapi.com/twinword/api/word-dictionary/
https://developer.wordnik.com/
https://developer.oxforddictionaries.com/documentation
https://developer.oxforddictionaries.com/documentation
https://dictionaryapi.com/
https://openai.com/blog/chatgpt

5.1. Analysis of Single Synonym Service

negatives is not known in the absence of a gold truth.

Criterion 2: The average percentage of the count of words where at least one synonym is

found (Count % = Count words with synonym found / Count all words * 100).

Table 5.2: Detailed Results for Wordnet

Word Good words Bad words Number
of Good
Words
Found

Number
of Bad
Words
Found

Percentage
of Good
Words
Found

price cost, price, mon-
etary value, toll

damage, terms 4 2 67%

person individual,
someone, some-
body

soul, mortal 3 2 60%

user exploiter 0 1 0%

airline 0 0 −−
delivered 0 0 −−
status condition position 1 1 50%

text textual matter 1 0 0%

message message substance, sub-
ject matter, con-
tent

1 3 25%

active active agent 0 1 0%

privacy secrecy, private-
ness

seclusion, con-
cealment

2 2 50%

story narrative, write
up, tale, nar-
ration, story,
chronicle

level, taradiddle,
history, storey,
news report, re-
port, floor, ac-
count, fib

6 9 40%

phone num-
ber

0 0 −−

For example, for the word “price” in Wordnet, the synonyms “damage”, “cost”, “price”,

“terms”, “monetary value”, and “toll” are found. Out of these, “cost”, “price”,“monetary value”,

and “toll” are counted as good words while “damage”, and “term” are counted as bad words.

Similarly, for “user” we get “exploiter” from the synonym service which is considered as a bad

word for our analysis. For words such as “airline”, “delivered”, and “phone number”, there are no

results returned from this synonym service. Table 5.2 shows the results for the given list of words

for Wordnet. Here, the percentage of good words found is calculated based on the number of good

35

5.1. Analysis of Single Synonym Service

words found divided by the total number of words found for the word. As for the word “price”,

the percentage is 67% and for “user” the percentage is 0% whereas for “airline”, “delivered”, and

“phone number” the percentage is not considered. Then, we evaluated the values for Criterion 1

and Criterion 2 which are 32% (i.e., (67+60+0+50+0+25+0+50+40)/9) and 75% (i.e., 9/12*100),

respectively. Further, we consider the range of good words by taking into account the lowest and

the highest number of good words found which is 0-6 (“airline” − 0, “story” − 6). Lastly, we

determined the average of good words by considering the number of good words found for all words

which is 1.5 in this case (i.e., (4+3+0+0+0+1+1+1+0+2+6+0)/12).

Table 5.3: Results for all Synonym Services

Synonym Ser-
vice

Criterion 1 Criterion 2 Range of
Good Words
Found

Average of
Good Words
Found

Wordnet 32% 75% 0-6 1.50

Glove 28% 92% 0-5 2.58

Word Associa-
tion

8% 100% 0-4 2.41

Word Dictio-
nary

32% 100% 0-3 1.75

Wordnik 8% 83% 0-3 0.66

Oxford 21% 67% 0-12 3.50

Webster 20% 83% 0-10 2.33

ChatGPT 31% 100% 1-13 5.75

Table 5.3 shows the results for the given list of words. As shown in the table, we obtain

the maximum of 32% for Wordnet and Word Dictionary under Criterion 1, but Word Dictionary

receives 100% under Criterion 2. For Word Association, we receive results for all words, but the

percentage for Criterion 1 is lower compared to Wordnet and Word Dictionary. We obtain a high

range for good words for Oxford with an average of 3.50. Despite these results, the values for

Criterion 1 and 2 are lower when compared to Word Dictionary, because many false positives are

also reported by Oxford. This is not ideal for an automatic approach we would like to integrate into

HVTS. For Glove, we receive an average of 2.58 for good words but there is a decrease of 4% and

8% for Criterion 1 and Criterion 2 respectively when compared with Word Dictionary. Though,

there is a decrease of 0.83 in average of good words for Word Dictionary compared to Glove, Word

Dictionary performs better overall for an automatic approach. To conclude, the analysis above

36

5.1. Analysis of Single Synonym Service

shows that amongst the considered synonym services, Word Dictionary performs best overall. But

to find the optimal synonym service for synonyms, we ideally want to choose the one that meets

both selection criteria with a score of 100%. Another option would be to allow the modeller to

specify the synonyms explicitly as done by Singh et al. [37] in their proposed mistake detection

system. To implement this manual approach of providing synonyms, Oxford would be a good

option because we could just present the long list from Oxford and the modeller could choose the

appropriate synonyms. However, Oxford is not a good choice for our automatic approach.

Additionally, we investigate the results from ChatGPT. As shown in Table 5.3, ChatGPT

performs well and the results look promising. But the results are not guaranteed, as the responses

are generated by a large language model-powered chatbot that is known for varying its output. To

support this assertion, we further explore ChatGPT to see the variance in the response by posing

the same question five times in different runs (i.e., what are the synonyms for word “price”?). After

comparing the results, we noticed a significant difference between the responses ranging from 53%

to 90% with an average of 76%. This demonstrates that in some cases, the quality of responses

may be very good and highly relevant, while in other cases, it may be mediocre. Therefore, due to

the significant variance in the results from one run to another we exclude ChatGPT from further

analysis. However, ChatGPT is a viable option for an interactive, manual approach and could

even outperform Oxford in that case. One could also experiment with providing additional context

together with the question to receive more accurate and relevant responses.

Therefore, to further investigate the synonym services with the aim to improve the outcomes

for both criteria, we aggregate the results from different synonym services by selecting the common

values for the synonym services under discussion. For example, the results for the word “price”

for Wordnet are “damage”, “cost”, “price”, “terms”, “monetary value”, and “toll” and for Word

Dictionary “discount”, “charge”, “cost”, “toll”, and “ticket”. Consequently, the words “cost” and

“toll” are considered as the result for the combination of these synonym services (Wordnet + Word

Dictionary). The criterion used for the analysis of combinations of synonym services is explained

in the next section.

37

5.2. Analysis of Combinations of Synonym Services

Table 5.4: Results for the Pair-Wise Combination of Synonym Services

Synonym Ser-
vice

Criterion 1 Criterion 2 Range of
Good Words
Found

Average of
Good Words
Found

Oxford + Word
Dictionary

67% 50% 0-3 0.75

Oxford + Web-
ster

37% 67% 0-7 1.75

Oxford + Word-
net

38% 42% 0-2 0.50

Oxford + GloVe 40% 42% 0-2 0.33

Word Dictio-
nary + Web-
ster

89% 42% 0-2 0.66

Word Dictionary
+ Wordnet

83% 42% 0-3 0.75

Word Dictionary
+ GloVe

50% 50% 0-2 0.33

Webster +
Wordnet

26% 42% 0-4 0.50

Webster +
GloVe

75% 33% 0-2 0.33

Wordnet +
GloVe

89% 25% 0-2 0.33

5.2 Analysis of Combinations of Synonym Services

The selection criteria to combine the synonym services is based on the values obtained for Criterion

1. According to Table 5.3, we obtained more than 10% for Criterion 1 for five synonym services

namely Wordnet, GloVe, Word Dictionary, Webster, and Oxford. Based on this, we decide to keep

only these for further analysis as indicated in Table 5.4. We investigate each pair-wise combination

of these five synonym services.

As indicated in the last two rows of Table 5.4, the results for Criterion 1 and Criterion 2 are

lower when compared to other combinations (e.g., Word Dictionary + Webster). Therefore, we

choose to disregard these two rows. The remaining combinations can be grouped into three groups

based on Criterion 2: one row with 67%, two with 50%, and five with 42%. For each of those groups,

we then choose the combination with the highest score in Criterion 1, as the best combination from

that group, i.e., Word Dictionary + Webster for the combination of synonym services with 42% for

Criterion 2, Oxford + Word Dictionary for the combinations with 50% as Criterion 2, and Oxford

38

5.2. Analysis of Combinations of Synonym Services

+ Webster for the combinations with 67% as Criterion 2.

Table 5.5: Results for the Combination of Three Synonym Services

Synonym Ser-
vice

Criterion 1 Criterion 2 Range of
Good Words
Found

Average of
Good Words
Found

Wordnet +
GloVe + Word
Dictionary

89% 25% 0-2 0.33

Wordnet +
GloVe + Web-
ster

83% 17% 0-2 0.25

Wordnet +
GloVe + Oxford

67% 25% 0-2 0.25

Wordnet +
Word Dic-
tionary +
Webster

92% 33% 0-2 0.33

Wordnet +
Word Dictio-
nary + Oxford

75% 33% 0-2 0.41

Wordnet +
Webster +
Oxford

45% 42% 0-2 0.41

GloVe + Web-
ster + Oxford

67% 25% 0-2 0.25

GloVe + Web-
ster + Word
Dictionary

100% 17% 0-2 0.25

GloVe + Ox-
ford + Word
Dictionary

100% 17% 0-2 0.25

Oxford +
Word Dic-
tionary +
Webster

78% 50% 0-2 0.66

When comparing the results from Word Dictionary + Webster with Oxford + Word Dictionary,

Criterion 1 in the first combination is 22% more than the second combination while Criterion 2 in

the first combination is 8% less than the second combination with a similar range and average of

good words. Therefore, we move forward with the first combination (Word Dictionary + Webster).

Further, when we compare the results fromWord Dictionary +Webster with Oxford +Webster,

39

5.3. Summary

it is very clear from Table 5.4 that Criterion 1 is 52% more for the first combination. Consequently,

Word Dictionary + Webster is the best choice from Table 5.4, even though Criterion 2 of Oxford

+ Webster is 25% more than Word Dictionary + Webster. However, a high result for Criterion

1 is more important for our desired automated approach as the number of incorrect synonyms is

minimized.

We observe a similar tradeoff between the best choices from Table 5.3 and Table 5.4. Criterion 2

and the average of good words for the combined synonym service (Word Dictionary + Webster) has

decreased by 58% and 1.09, respectively, when compared with the results from Word Dictionary.

Now, in contrast to Criterion 2, Criterion 1 is 57% more in case of the combined synonym services

than Word Dictionary alone. Although the decline in Criterion 1 causes us to miss some good

synonyms, there is a significant increase in the quality of words we are receiving as a synonym.

Based on this conclusion, we finalize the combined synonym services (Word Dictionary + Webster)

as the synonym service for the proposed HVTS.

To assure us that a combination with three synonym services does not yield a better result,

Table 5.5 reports the results of all combinations of three synonym services. The rows in bold

font indicate those combinations where either Criterion 1 or Criterion 2 is better than the best

choice from Table 5.4. While Criterion 1 reaches 100% now for two combinations, Criterion 2 drops

to 17%, which we deem to be too low for the results to be useful for our proposed HVTS. The

remaining two bold options from Table 5.5 are also discarded, because an increase in one criterion

is accompanied by a larger decrease in the other criterion. Hence, Word Dictionary + Webster is

indeed our combination of choice.

5.3 Summary

This chapter discusses the process followed for the analysis of eight synonym services and various

combinations to find the optimal synonym service to use as a synonym service in the proposed

HVTS.

In the next chapter, we discuss the details of our prototype tool that can be used to integrate

human values in a domain model and explain how the metamodel discussed in Chapter 4 and

the synonym services discussed in this chapter are used by the human value trigger algorithm in

40

5.3. Summary

HVTS to match possible human value issues based on past experience and integrate user-approved

suggestions into the analyzed domain model. Moreover, it also provides insights on the verification

process followed for HVTS.

41

6
Human Value Trigger Algorithm

This chapter discusses the algorithm that provides the suggestions to integrate the consideration of

human values in domain modelling based on collected past experiences. The chapter first gives the

overview of the algorithm in Section 6.1 and then explains in detail the data structures initialized

by the algorithm in Section 6.2. In addition, the chapter covers the comparison between collected

experiences and the analyzed domain model as well as the addition of suggested elements in the

domain model in Section 6.3. Furthermore, Section 6.4 covers the verification process of the HVTS.

6.1 Algorithm Overview

The algorithm overview is shown in Figure 6.1. The algorithm takes two inputs, a model hu-

manValueTriggerFile (HVTF) specified by the Xtext grammar as described in Chapter 4 and a

CDM model domainModel (Action 1 in Figure 6.1). In general, the algorithm compares the model

42

6.2. Algorithm Initialization

elements of the humanValueTriggerFile and the domainModel by matching them based on type,

name similarity, and semantics. At the start, the algorithm compares the modelElement (see HVT

Metamodel in Figure 4.1) of Suggestion (see Figure 4.1) in the HVTF with the domain model to

validate the existence of these elements in the domain model (Action 2.1 in Figure 6.1). After

comparing, if there are possible Suggestions which do not exist in the domain model, then the

algorithm stores this information in a list of possible suggestions (Action 2.2). Then, the algorithm

compares the triggeringElement (see Figure 4.1) of the alternativeTriggers (see Figure 4.1) from

the list of possible suggestions with the elements of the domain model (Action 3.2) and adds any

matches to the list of possible suggestions and triggers (Action 3.3). The next step in the algorithm

is to present each possible Suggestion, its Trigger (from the alternativeTriggers in Figure 4.1), its

Examples (from the Trigger’s examples in Figure 4.1), and Reasons (see positivelyImpactedIfAb-

sent and negativelyImpactedIfAbsent in Figure 4.1) to (i) make the modeller aware of a potential

human values issue and (ii) get the input from the modeller regarding the suggestion the modeller

wants to integrate into the domain model (Actions 4.1 and 4.2). The algorithm then adds the “yes”

choices of the modeller to the final list of suggestions to include in the domain model (Action 4.3).

In the last stage, the algorithm integrates the selected suggestions into the domain model (Action

5.1).

6.2 Algorithm Initialization

In Action 1 of Figure 6.1, the algorithm initializes the data structures to capture the information

while comparing elements of the HVTF and the domain model. It creates and initializes the hash

maps for storing the suggestions and their respective synonyms, for storing the matched suggestions

and their triggers, and for storing the complete set of synonyms for matched suggestions and

triggers.

Whenever the algorithm finds a suggestion which does not exist in the domain model, it saves

those suggestions and possible synonyms of the model elements of the suggestion in a hash map to

keep track of the different possibilities (Action 2.2). We use the suggestion as key and the list of

synonyms as its value as this helps us to easily navigate throughout the algorithm. Each item in

the list of synonyms further stores information using a hash map with the model element as key

43

6.2. Algorithm Initialization

initialize domain
model (DM) & human

value trigger file
(HVTF) (1)

for each suggestion

from HVTF (2)

add suggestion to the
list of possible

suggestions (2.2)

add to list of possible
suggestions and

triggers (3.3)

add the suggested
element to domain

model (5.1)

check suggested

element or its synonym

exists in domain model

based on the type

of element (2.1)

suggested element
does not exist

for each suggestion

from list of possible

suggestions (3)

compare element of

trigger or its synonym based

on type of element with

domain model elements

(3.2)

present suggested
element, respective
trigger, examples,

and reasons to
modeler (4.1)

matches

for each item in list

 of possible suggestions

and triggers(4)

get choice from modeler

(4.2)

add to final list of
suggestions and
synonym pairs

(4.3)

yes

 for each item in final

list (5)

suggested element already exists

next suggestion exists

for each trigger in
suggestion (3.1)

does not match

no

ne
xt

 s
ug

ge
st

io
n

 d
oe

s
no

t e
xi

st

next suggestion

 exists

ne
xt

 s
ug

ge
st

io
n

 d
oe

s
no

t e
xi

st

next trigger exists

next trigger does not exist

next item exists

next item exists

ne
xt

 it
em

 d
oe

s
no

t e
xi

st
ne

xt
 it

em
 d

oe
s

 n
ot

 e
xi

st

Figure 6.1: Overview of Algorithm

44

6.3. Algorithm Details

and its synonym as the value.

In Action 3.3, the algorithm stores the matched triggers of a possible suggestion for the domain

model using a hash map with the suggestion as key and the list of triggers as its value. We use the

suggestion as the key as it is possible to have more than one trigger for a suggestion. This makes it

easier to store the different triggers with the same suggestion without repetition of the suggestion.

In Action 3.3, the algorithm also stores the synonyms of the model elements of suggestions

and the triggers using a hash map with suggestion and trigger as the key and the list of possible

synonyms pairs as its value. The list of synonym pairs is implemented in the same way as described

earlier. We use both suggestion and trigger as key, as it will help to find the exact match to use

during the process of presenting the elements to the modeller.

In Action 4.3, the algorithm also stores the suggestion and the synonyms of the model elements

of the suggestion for each suggestion that the modeller wants to integrate in the domain model

using a hash map with suggestion as the key and an item from the list of possible synonym pair

as its value. The item from the list of possible synonym pairs is implemented in the same way as

described earlier. This makes it easier to add the suggestion in the domain model with the right

synonym pair.

6.3 Algorithm Details

To better understand the algorithm let us again consider an example domain model where the class

“User” is referred to as “EndUser” in their domainModel as shown in Figure 6.2 and compare it

with the HVTF as shown in Listing 6.1. The algorithm begins by iterating through the suggestion

in the HVTF file as shown in Line 1 in Listing 6.1 (Action 2 in Figure 6.1) and checks for the

type of the element in the suggestion, in this case the AssociationEnd (see HVT Metamodel in

Figure 4.1).

The algorithm then compares the elements of the AssociationEnd in Suggestion with all the

AssociationEnds which exists in the domainModel (Action 2.1). To compare the elements of an

AssociationEnd, the algorithm starts by comparing its corresponding classes which is “User” for

both modelClass and otherClass (see Figure 4.1) with all the classes in the domainModel and checks

for the existence of an instance of the Class (see Class Diagram Metamodel in Figure 2.5) with the

45

6.3. Algorithm Details

Figure 6.2: Example Domain Model

same name in the domainModel. If it does not exist, then the algorithm checks for its synonym

and if the synonym service returns the synonyms for the “User”, then it further compares those

results with the domainModel. In this case, the synonym service will return “EndUser” and after

comparison the match is found as the Class “EndUser” exists in the domainModel. After confirming

that both the classes associated to the AssociationEnd exists in the domain model, the algorithm

then compares the AssociationEnd “whitelistContacts” with the AssociationEnds of the matched

classes in the domainModel. Since, the association end with an exact match does not exist in the

domainModel, then the algorithm further checks for the existence of the synonyms in domainModel.

As there is no match found, the algorithm adds this suggestion to the list of possible suggestions

(Action 2.2). As this suggestion does not exist in the domainModel, the algorithm also stores the

information of the found synonyms of the elements in the hash map as discussed in Section 6.2.

The algorithm iterates through the list of possible suggestions (Action 3). Then, the algorithm

checks whether the trigger for the suggestion exists in the list of possible suggestions (Action 3.1).

The algorithm then checks the type of the element of Trigger which is of type AssociationEnd as

46

6.3. Algorithm Details

shown in Listing 6.1. The algorithm compares the AssociationEnd and its associated classes in the

similar way as discussed in the above paragraph (Action 3.2). In this case, the match is found as

the elements of the Trigger “User”, “contacts”, and “User” exist in the domainModel. Then, the

algorithm adds the suggestion and its trigger to the list of possible suggestions and triggers and

compiles the list of synonym pairs after combining the synonyms pairs which exist for the suggested

element and the trigger (Action 3.2). While Loop 3 (i.e., Actions 3.1, 3.2, and 3.3) could be nested

inside Loop 2, we retain this illustration to help make the phases more explicit.

Listing 6.1: Suggestion in Human Value Trigger File

1 AssociationEnd ’User’.whitelistContacts -- ’User’ [’0’..’*’]

2 Trigger AssociationEnd ’User’.contacts -- ’User’ [’0’..’*’]

3 Example ’If a random person somehow has the contact number of another person, then that

random person can send messages to the other person. While the receiver has the option to block

the sender after receiving the message, that message can have an impact on the receiver in

various ways depending upon the type of information being shared in the message.’

4 negIfAbsent Privacy because ’Continuous messages from a random person can affect the

private life of an individual.’

5 negIfAbsent Pleasure because ’Messages from a random person can cause unnecessary stress

which further impacts pleasure.’

6 negIfAbsent EnjoyingLife because ’Messages from a random person could affect the

perspective of an individual towards life and another individual.’

7 negIfAbsent SelfRespect because ’Random messages from a random person could also affect the

self respect of an individual and cause sense of insecurity.’

8 negIfAbsent PreservingMyPublicImage because ’Any random person could easily tarnish the

public image of an individual by broadcasting bogus messages over the WhatsApp.’

9 negIfAbsent ASpiritualLife because ’Messages from a random person could cause sense of

restlessness amongst the individual.’

The algorithm then displays these suggestions to the modeller. The algorithm iterates through

the list of possible suggestions and triggers (Loop 4) and then uses the combination of suggestion

and trigger to fetch the list of synonym pairs to be used which exist in the domain model. Then,

the algorithm iterates over the list of synonym pairs and displays the suggested element, trigger,

example, and the reasons (Action 4.1).

There are multiple ways to ask the consent of the modeller about integration of new suggestions

in the domain model. One simple way is to show the recommended suggestions and ask the modeller

“Which suggestion do you want to add to your diagram?” and providing the option to modeller for

selecting, e.g., “1”, ”2”, ..., or “n (for none)” (Action 4.2). In Figure 6.3, only one option exists, so

”1/n (for none)” is shown. The modeller can then choose 1 or none if the new suggestions should be

integrated in the model or not. Another option is to show the modeller what impact the suggestion

could have on the domain model before adding the suggestions by displaying the elements in the

47

6.3. Algorithm Details

Figure 6.3: Display the Suggested Element, Trigger, Examples, and the Reasons to Modeller

UI as shown in Figure 6.4 (Action 4.2). In this figure, the elements highlighted in red indicate the

suggested element and the elements highlighted in green indicate the trigger. The pop-up provides

the option to the modeller about integrating the suggestion in the domain model. Another pop-up

option can be added to demonstrate the examples and reasons for the recommendation. After

displaying the suggestions to the modeller, the algorithm then saves the combination of suggestion

and respective synonym pair which the modeller wants to integrate in the domain model to the

final list (Action 4.3).

The algorithm then iterates over the final list of suggestions to integrate them in the domain-

Model (Action 5). The algorithm takes the suggested element to add and checks the type of element

of Suggestion, i.e., AssociationEnd in the example. The algorithm then fetches the name of the

AssociationEnd and its associated classes and checks if that AssociationEnd exist in the domain

model. This step of checking “if the element exists in the domain model” is done to make sure

that the element that needs to be added by the current suggestion has not already been added by

another suggestion. If it does not exist in domain model, the algorithm checks if the corresponding

classes exists. If they exist, then the algorithm fetches the instances of those classes, and if they

do not exist, then the algorithm creates the classes and adds them to the diagram. To create the

class, the algorithm creates the instance of the class and then for the instance created, the default

properties are added to conform with the CDM metamodel in Figure 2.5. The class is added to the

list of classes in the domain model. In this case, the associated classes with the AssociationEnd

which is “EndUser” already exists in the domainModel, so the algorithm fetches the instance from

the domain model.

In the next step, the algorithm creates the AssociationEnd with name ‘whitelistContacts’ and

uses values of the lowerBound, upperBound, and referenceType (see HVT Metamodel in Figure 4.1)

to set the properties to conform with the CDM metamodel. It then adds the association end to the

48

6.4. Verification

Figure 6.4: Visualize the Impact on Domain Model using UI

modelClass and then creates another association end with default values and adds the end for the

otherClass. The algorithm then creates the Association for the two classes and adds it to the list

of associations in the domainModel. Then in the last step, the algorithm links the Association with

the two ends created. After adding all the modeller-selected suggestions to the domain model, the

algorithm then saves the domain model at the end (Action 5.1).

6.4 Verification

To evaluate the capabilities of HVTS, we have performed an extensive testing process. These tests

focus on testing the matching logic of the implemented Suggestion and Trigger in the HVT. To

cover edge cases, multiple test cases are created for each type of ModelElement. For example,

to test the matching logic for Class as a ModelElement, test cases cover the scenario where the

49

6.4. Verification

Table 6.1: Different Test Scenarios Covered for the Matching Logic of Suggestion and Trigger

ModelElement
tested

Different scenarios for matching existing element in do-
main model

Class Class exists Synonym of Class ex-
ists

Attribute (Attribute name,
modelClass) exist

(Synonym of At-
tribute name, Syn-
onym of modelClass)
exist

(Attribute name,
Synonym of model-
Class) or (Synonym
of Attribute name,
modelClass) exist

Enumeration Enumeration exists Synonym of Enumer-
ation exist

Literal (Literal name, mod-
elClass) exist

(Synonym of Literal
name, Synonym of
modelClass) exist

(Literal name, Syn-
onym of modelClass)
or (Synonym of Lit-
eral name, model-
Class) exist

AssociationClass (AssociationClass
name, firstClass,
secondClass) exist

(Synonym of Asso-
ciationClass name,
Synonym of first-
Class, Synonym of
secondClass) exist

Combinations (Syn-
onym of Association-
Class name, Syn-
onym of firstClass,
Synonym of second-
Class) or (Synonym
of AssociationClass
name, firstClass, sec-
ondClass) or so on
exist

AssociationEnd (AssociationEnd
name, otherClass,
modelClass) exist

(Synonym of Associ-
ationEnd name, Syn-
onym of modelClass,
Synonym of other-
Class) exist

Combinations (Syn-
onym of Associ-
ationEnd name,
Synonym of mod-
elClass, Synonym
of otherClass) or
(Synonym of Asso-
ciationClass name,
modelClass, oth-
erClass) or so on
exist

Class with same name exists as an instance of the Class, or its synonym exists in the domain

model. This also includes a test case where the Class matches with two synonyms in the domain

model. Similarly, to test the matching logic for the Attribute, test cases cover the scenarios where

the modelClass (see HVT Metamodel in Figure 4.1) and the name of the Attribute exist, or their

synonyms exist in the domain model. This also includes the test case where the modelClass matches

50

6.4. Verification

with two instances as a synonym in the domain model, but only one instance of Class contains the

Attribute being matched. To test the matching logic for AssociationClass (see Figure 4.1), the test

cases include the scenarios where the instance of firstClass (see Figure 4.1) and secondClass (see

Figure 4.1) or their synonyms exist in the domain model. The test cases also cover the mix and

match of the existence of the instance of the Class or its synonym. This also includes the test case

where the AssociationClass as a Suggestion already exist in the domain model as an instance of

the Class. To test the logic for AssociationEnd, test cases cover the scenarios where the instance of

AssociationEnd, its modelClass, and otherClass exist or their synonyms exist in the domain model.

Multiple test cases are created to cover the existence of the combination of the original element or

its synonyms for all the elements being matched for the AssociationEnd. To test the Enumeration

(see Figure 4.1) and Literal (see Figure 4.1), test cases cover the scenario where the instance of

the Enumeration exists, or its synonym exist in the domain model. This also includes the test case

where the Enumeration matches with two synonyms in the domain model. Similarly, to test the

matching logic for the Literal, test cases cover the scenarios where the modelClass (see Figure 4.1)

and the Literal exist, or their synonyms exist in the domain model. Table 6.1 shows the different

scenarios covered during the testing of matching with different model elements. These scenarios

are tested for both Suggestion and Trigger in the test HVTF.

To cover the structure used by the test cases and explain the assertions utilized in these tests,

let us consider the example domain model shown in Figure 6.5 and compare it with the HVTF

shown in Listing 6.22. The HVTF contains the Class “Cost” as the Trigger. When we run this test

case with the example domain model, HVTS detects the two instances of the Class, i.e., Price and

Charge, hence passing the test case and verifying that it matches with the synonyms3.

Listing 6.2: Human Value Trigger File (HVTF) for First Test Case

1 Class AuthorizedPayment

2 Trigger Class Cost

3 Example ’Check for the authorized person to make payment’

4 negIfAbsent Authority because ’Unauthorized users are not provided with any authorization

over the data/info transfered.’

The code of the test case is shown in Listing 6.3. Every test case requires a .cdm file which is

created using the TouchCORE tool and the .hvt file which is specified as an instance of HVT using

2For testing purposes only; does not necessarily reflect past experience.
3Used synonym service (Chapter 5) considers price and charge synonyms of cost

51

6.4. Verification

Figure 6.5: Example Domain Model for Test Case

the grammar specified in Appendix A. The two inputs are passed to the compareSuggestedElement

function in line 7 to see if there are Suggestions in HVTF which do not exist in the domain model.

Then, the output from this function and the domain model is passed to the compare function in line

9 that creates the static rememberTrigger hash map and rememberSynonymPair hash map which

are further used for assertions. We first assert the number of possible suggestions recommended to

the modeller in line 11. For this case, it should be one. We then fetch the first Suggestion in line

12, then the Triggers given this Suggestion in line 13. We then assert the number of triggers, which

in this case should be one in line 14. Then the synonym pairs which exist in the domain model are

fetched in line 16. We then assert the number of synonym pairs that exist for this test case in line

17, i.e., there should be two. After this, we check the modelElement and the triggerringElement

for the recommended suggestion in lines 19 to 21. In this test, the modelElement should be

“AuthorizedPayment” and the two triggeringElements should be “Charge” and “Price”.

The test case for another scenario uses Figure 6.5 again as the domain model and the HVTF in

Listing 6.44 which contains the recommendation for Attribute “amount” as a ModelElement with

4For testing purposes only; does not necessarily reflect past experience.

52

6.4. Verification

modelClass as “Cost”. HVTS again detects two instances of the Class, i.e., Price and Charge, in

the domain model but the Attribute “amount” matches only with the attribute in Class “Price”.

This is accomplished by comparing all the attributes of the matched classes, i.e., Price and Charge,

with the ModelElement, i.e., amount. Here, the attribute “amount” of class “Price” is matched.

The algorithm also checks for the synonyms of all the attributes to find the possible matches.

For example, the synonyms for the attribute “totalAmount” in class “Charge” are not matched

to “amount” because “totalAmount” is not a synonym of ”amount” according to the synonym

services. Hence the test case is passed, verifying that it matches with the correct synonyms.

Listing 6.3: Test for Multiple Synonyms Exist for a Class

1 @Test

2 public void testMultipleSynonymCaseForClass() {

3
4 var fileName="../humanValueTrigger/cdm/StoreManagement/ClassDiagramLanguage/StoreManagement.

domain_model.cdm";

5 var classDiagram = HumanValueTrigger.cdmFromFile(fileName);

6 var humanTrigger = HumanValueTrigger.exportXMI("../humanValueTrigger/trigger/Example/

Class_MultipleSynonym.hvt");

7 List<Suggestion> suggestionList=HumanValueTrigger.compareSuggestedElement(humanTrigger,

classDiagram);

8
9 HumanValueTrigger.compare(classDiagram,fileName,suggestionList);

10
11 assertEquals(1,HumanValueTrigger.rememberTrigger.size());

12 var suggestion=HumanValueTrigger.rememberTrigger.entrySet().stream().findFirst().get().getKey()

;

13 var triggers=HumanValueTrigger.rememberTrigger.get(suggestion);

14 assertEquals(1,triggers.size());

15
16 var pairs=HumanValueTrigger.getListOfPairFromTheMap(HumanValueTrigger.rememberSynonymPair,

suggestion,triggers.get(0));

17 assertEquals(2,pairs.size());

18
19 assertEquals("AuthorizedPayment",suggestion.getModelElement().getName());

20 assertEquals("Price",pairs.get(0).get("Cost"));

21 assertEquals("Charge",pairs.get(1).get("Cost"));

22
23 }

Listing 6.4: Human Value Trigger File (HVTF) for Second Test Case

1 Attribute String ’Cost’.slip

2 Trigger Attribute Int ’Cost’.amount

3 Example ’Providing the slip helps to maintain the record for the purchase’

4 negIfAbsent healthy because ’It increases the risk of miscommunication between seller and

the buyer which impacts overall mental healthy for both’

The code of the test case is shown in Listing 6.5. The input files (cdm and hvt) are loaded and

53

6.4. Verification

then passed to the compareSuggestedElement and compare function to find the recommendations

for the domain model in lines 7 to 9. Then, the rememberTrigger list is used for assertions. We first

assert the number of possible suggestions recommended to the modeller in line 11. For this case, it

should be one. We first fetch the Suggestion in line 12 and Triggers in line 13. We then assert the

number of triggers, which in this case should be one in line 14. Then, the synonym pair which exists

in the domain model is fetched in line 16. We then assert the number of synonym pairs that exist in

line 17, i.e., there should be one. After this, we check the modelElement and the triggerringElement

for the recommended suggestion in lines 19 to 22. In this test, the modelElement of the Suggestion

should be “slip” as an Attribute with modelClass as “Price” and the triggeringElement should be

“amount” as an Attribute and the modelClass as “Price”. Here, the “Cost” class is replaced by

the matching pair for both the Suggestion and the Trigger.

Listing 6.5: Test for Multiple Synonyms Exist for a Class but only for one Attribute

1 @Test

2 public void testMultipleSynonymCaseForAttribute() {

3
4 var fileName="../humanValueTrigger/cdm/StoreManagement/ClassDiagramLanguage/StoreManagement.

domain_model.cdm";

5 var classDiagram = HumanValueTrigger.cdmFromFile(fileName);

6 var humanTrigger = HumanValueTrigger.exportXMI("../humanValueTrigger/trigger/Example/

Attribute_MultipleSynonym.hvt");

7 List<Suggestion> suggestionList=HumanValueTrigger.compareSuggestedElement(humanTrigger,

classDiagram);

8
9 HumanValueTrigger.compare(classDiagram,fileName,suggestionList);

10
11 assertEquals(1,HumanValueTrigger.rememberTrigger.size());

12 var suggestion=HumanValueTrigger.rememberTrigger.entrySet().stream().findFirst().get().getKey()

;

13 var triggers=HumanValueTrigger.rememberTrigger.get(suggestion);

14 assertEquals(1,triggers.size());

15
16 var pairs=HumanValueTrigger.getListOfPairFromTheMap(HumanValueTrigger.rememberSynonymPair,

suggestion,triggers.get(0));

17 assertEquals(1,pairs.size());

18
19 assertEquals("slip",suggestion.getModelElement().getName());

20 assertEquals("Price",pairs.get(0).get(((org.xtext.example.hvt.humanValueTrigger.Attribute)

suggestion.getModelElement()).getModelClass()));

21 assertEquals("Price",pairs.get(0).get("Cost"));

22 assertEquals("amount",pairs.get(0).get("amount"));

23
24 }

54

6.5. Discussion

6.5 Discussion

Taking into account the system’s accuracy, human intervention is necessary to ensure context

awareness during domain modelling. The proposed system is designed in such a way that it helps

to highlight the potential issues and bring them to the modeller’s attention. Furthermore, the

system provides suggestions to incorporate in the domain model to address the possible concerns.

The system requires the modeller’s intervention to choose the suggestions to incorporate in domain

model. It is possible that bias is introduced using the catalogue of collected experience. Bias can

influence the way modellers perceive, interpret, and analyze information. This can have negative

consequences on the developed domain modelling-based solution. To reduce the risk of bias, it is

important to have a diverse and inclusive team throughout the modelling process that represents

society very well. Additionally, it is helpful to be aware of personal biases and use multiple per-

spectives and reviews to ensure context and accuracy. This also applies to the task of adding new

examples of human value issues to the catalogue of collected experience.

Moreover, it is possible that the proposed system provides suggestions where software / system

goals may contradict human values. For example, consider scenario (iv) in Chapter 3, i.e., “People

get addicted to WhatsApp, and they do the same thing repeatedly which results in reduced (or

no) interaction with other people”. In this circumstance, the system could block users after some

time. This suggestion will be contradicting to stakeholders responsible for WhatsApp as they may

benefit from users engaging with the app as much as possible (even if it is due to addiction). HVTS

cannot force stakeholders to adopt suggestions. However, government rules and regulations or

public pressure could force stakeholders to adopt the suggestions. To conclude, it is essential for a

diverse and inclusive team of humans to be involved in the modelling process to ensure appropriate

examples are included in the domain model.

6.6 Summary

This chapter explains the matching algorithm of HVTS in detail. The usage of HVT metamodel

elements and the matching criteria for providing the suggestion are explained in this chapter. All

the steps are explained with the help of an example. Moreover, this chapter also provides insights

into the process followed for the verification of the HVTS. It explains the structure used by the

55

6.6. Summary

test cases using two examples.

In the next chapter, we discuss the work done by other researchers related to this thesis.

56

7
Related Work

This chapter first discusses the work done in the field of human values in software engineering in

Section 7.1 and then investigates the approaches proposed on pattern matching of class diagrams

and in query languages in Section 7.2.

7.1 Human Values

Waqar Hussain et al. propose the Value Design Hub (VDH) [19] framework which considers social

values when creating design patterns. To carry out the valuefication of design pattern, this frame-

work is created with the collaboration of software developers, users, and social scientists. This

study comprises of six component which includes a collection of Guidelines, Indicators, Tools, and

Techniques (GITTs) to achieve the goal of VDH. The initial component is a VDH Classifier which

consists of a GITTs for categorizing current design patterns and their respective value implications.

57

7.1. Human Values

The next component “VDH Pattern Maker” uses GITTs to extend or create design pattern which

specifically include social values. The subsequent component “VDH Guide” employs GITTs to

make it easier for software projects to use value-driven design patterns. The following component

“VDH Connector” acts as an input to the aforementioned components as it uses GITTs for cap-

turing and assessing insights on the value facets of design patterns. The next component includes

“VDH Monitor” which enables tracking, gathering, and evaluating comments from collaborators on

the adoption of value-based design patterns. The last component comprises of “VDH Maintainer”

which tracks the variations in value-driven design patterns and GITTs. Fundamentally, this study

influences the collaborative integration of social values in software design patterns.

With respect to this work, our research focuses – instead of design patterns – on domain

modelling with class diagrams, an important technique for requirements engineering and early

design activities. We design a prototype tool which addresses the need for human values to be

integrated in software engineering by providing suggestions for a domain model.

Mougouei et al. offer a roadmap to operationalize Human Values in Software [23]. In this

study, the authors talk about the challenges to accomplish this task as well as open ended research

questions that may be investigated in future. The main obstacle indicated in the research is to

define human values in a way that can be applied to software, the second difficulty specified discusses

about existing software design decisions which are frequently made without considering values, and

the third problem specifies the missing metrics to quantify human values in engineering software.

The above stated work focusses on identifying challenges faced while integrating human values

in software. The major problem highlighted by this paper includes the lack of practical definitions

that are applicable to software designs. Our work focuses on identifying frequently overlooked

human values in domain models based on past experiences and providing recommendations to

incorporate them. This helps in making design decisions while considering human values.

Perera et al. investigate the General Data Protection Regulation (GDPR) [29] to determine the

extent to which it encompasses fundamental human values. GDPR is an endeavor by the European

Union to safeguard data and personal information of EU people by establishing data protection

principles and data subject rights. In their research, the authors applied GDPR rights to understand

GDPR principles and then matched these principles to the widely recognized Schwartz theory of

basic human values. They demonstrate that GDPR covers a variety of values such as power,

58

7.1. Human Values

security, and universalism etc. and can be utilized to incorporate concrete definitions to human

values in the context of software.

Jon Whittle in his paper “Is Your Software Valueless?” [39] talks about ignorance of human

values such as compassion and justice in software engineering. This article further emphasizes on

how values of the software developer community do not align with broader values. Consequently,

the author discusses how the current state of different software methods, such as agile development

methods and user stories, could easily be modified to ensure that end user values are considered.

Jon Whittle et al. in their article “A Case for Human Values in Software Engineering” [40]

emphasize on the significance of human values in engineering by discussing some preliminary ideas

on how the not-for-profit industry incorporates human values. The first insight highlights the

need for practical definitions for human values to work with projects. To accomplish this goal,

the authors suggested to consider the Schwartz taxonomy and then generate value portraits which

encapsulates the meaning of values in the context of the project. This study also underlines the

method to provide value-based reasoning for requirements / design choices which further assist

team members to recall their choices. Lastly, the authors talk about the need to consider these

documented values throughout the lifecycle of software development.

Our research work is highly motivated by the above stated work as we became aware of the

significance of human values in software engineering. Our work helps practitioners in capturing the

implications for human values based on past experience using the domain-specific language HVT.

Also, it helps practitioners to address those values in a new system with similar situations.

Mussbacher et al. [25] offer preliminary evidence that a domain model indeed incorporates

human values. They propose enhanced guidelines for domain modelling to perform human value

analysis to further analyze domain models to demonstrate how existence or absence of elements

can have considerable impact on the human values. To identify the domain model elements, the

authors explore 58 values compiled by the Schwartz taxonomy to describe the positive or negative

influence of these elements on values. They contend that human value enriched modelling is useful

to prevent system rejection and detrimental societal effects.

With respect to the above stated work, we also investigate an existing system to compile the

list of issues concerning human values using the Schwartz taxonomy. To capture these experiences,

we create a domain-specific language called HVT (Human Value Trigger) using a framework called

59

7.1. Human Values

Xtext which captures different examples for each human value and the model element type including

the detailed scenario which identifies the impact occurred with the presence or the absence of the

element. Our work provides tool support for the process described by Mussbacher et al. [25] by

providing suggestions based on the collected past experiences.

To facilitate systematic integration, tracing, and evaluation of human values, Perera et al. [31]

propose the Continual Value(s) Assessment (CVA) framework which uses goal modelling in com-

bination with feature modelling. This methodology consists of four primary sections. The initial

component includes evaluation of the satisfaction of identified stakeholder values, which further

helps in understanding the consequences of human values on system. The next component in this

study consists of developing an initial feature model for the system. The subsequent component

involves identifying connections between features and stakeholder values, which demonstrates the

influence of various design decisions after considering the human values at various levels of the soft-

ware development life cycle (SDLC). The final step determines the extent to which human values

are satisfied at various stages of development. Basically, this study illustrates the thinking that

links design choices to human values which ultimately ensures that the SDLC is satisfying the value

needs of stakeholders.

The above stated work focusses on goal modelling as it handles the positive and negative

interaction between different needs. They extended this technique with value-based goals with

the help of a feature model that represents design choices whereas this thesis focusses on domain

modelling and hence is complementary to the work by Perera et al. [31].

Perera et al. investigate the publication of Software Engineering conferences and journals (2015-

2018) [30] for their relevance to different human values and concluded that only 16% of these papers

include human values and 41% of these papers focuses on security related issues implying that very

few publications directly addressed the majority of the human values.

Galhotra et al. [14] propose a testing-based method to measure the discrimination that may

occur in software. In their study, they evaluate twenty software systems and conclude that dis-

crimination is incorporated in software even though fairness is the main goal of developers. The

authors further express the necessity to consider fairness testing during software development.

Rifat Ara Shams et al. investigate existing Bangladeshi agriculture mobile apps [35] to deter-

mine which user desired values are taken into account when creating apps. To conduct this case

60

7.1. Human Values

study, authors manually evaluated user reviews to learn about values user wanted from those apps

by classifying them based on Schwartz’s theory for human values. During analysis, they explore

the values that are missing in the existing apps as well as the extent to which the desired values

exist in the available apps. After completing the evaluation, they conclude that only eleven out

of twenty-one desired values are reflected in the chosen applications and the remaining values are

missing. The result from this study gives guidance on the values to the developers that they should

consider when creating Bangladeshi agriculture apps.

Hussain et al. conducted a case study [20] to understand changing software development prac-

tices by corporations to accommodate human values properly while designing software. This work

outlines the relationship between developer’s knowledge about values and the company’s culture

and the level at which values are considered during the development process. Further, this paper

discusses the difficulties faced by developers to accommodate them throughout the process. For

example, in their research, authors interviewed practitioners from two firms about their elicitation

and analysis techniques. The methodology used by the consultants from “Koala” firm revolves

around user participation, personas, and prototypes that indicate stakeholder values. Moreover, to

persuade clients to consider essential human values they present the consequences of ignoring these

values on corporate outcomes. Whereas the “Wallaby” firm practices simply focus on prioritized

in-person interaction and iterative development to incorporate values into software. Furthermore,

“participants in Wallaby were more inclined to believe that the delivery of an efficient (time-saving,

automated) system addresses user’s values automatically as the technology itself makes life easier

and meaningful”. Clearly, these strategies are considered by the team members in early phases of a

project to capture user values and emotions and their perspective and understanding significantly

influence their considered approach.

Nurwidyantoro et al. conducted an exploratory study [26] to extract human values from soft-

ware development artifacts and use them to address human values throughout software develop-

ment. To accomplish this task, the authors conduct interviews with software practitioners and

develop a prototype called as “human value dashboard” to support the process. The participants

acknowledges that this process will raise awareness of values among team members. For example,

the statement given by P10-Project manager “So at the design level, we can target those areas

where the accessibility issues can be pointed out so that the things are more planned accordingly in

61

7.1. Human Values

terms of accessibility” indicates one of the benefits as it will assist with decision making based on

identified values. Moreover, this study concluded “requirement document” and “issue discussion”

as the most appropriate approach for employing artefacts as a source of value identification in the

dashboard.

Hussain et al. investigate one of the agile methodologies “Scaled Agile Framework” [21] to

introduce human values in all software development phases. Their study highlights existing artefacts

including user stories, personas, roles, ceremonies, practices, and culture that can be modified to

serve as a potential intervention point for incorporating values. Furthermore, authors introduce

new methods, e.g., values companion, checklist, and value conversation, to address human values

in software.

To better understand the values significant to Bangladeshi female farmers, Rifat Ara Shams et

al. conducted a survey using Portrait Values Questionnaire (PVQ) [36] which helps developers to

embrace such values during app development. This ensures that the apps developed are aligned with

the values of their users. This research demonstrates how social and cultural norms influence the

level of importance of different values among different demographics and concludes that Conformity

and Security are the most essential values and Power, Hedonism, and Stimulation are the least

important.

Nurwidyantoro et al. present a case study to show that human values are present in software

development artefacts [27]. The authors chose 1097 issues collected from the issues in GitHub of

three open-source Android projects: Signal, K-9, and Focus. A pilot study was then performed on

the issues collected to determine if human values are present and to discover new human values

which are not yet considered in existing software engineering human values’ models. To make sure

that the analysts involved for pilot analysis share the same understanding for human values, the

concepts and definitions from Schwartz’s theory are considered. The authors develop two defi-

nitions based on their results from the pilot study. As a first definition, an observation (issue)

can be considered as a value theme if it indicates that there is a feeling of liking or disliking by

a contributor towards the application. Second, a value theme is considered present when such a

theme is discovered in issue discussions. The main research is conducted after the pilot study and

20 value themes are discovered. It reveals that out of twenty values identified, ten theme values

(including conformity, pleasure, dignity, inclusiveness, sense of belonging, freedom, independence,

62

7.2. Pattern Matching

wealth, privacy, and security) directly correspond to Schwartz’s human values, while the other ten

are more technical and termed as system value themes (trust, correctness, compatibility, portabil-

ity, reliability, efficiency, energy preservation, usability, accessibility, and longevity). The results

conclude that human values can be discovered in almost one-third of the studied issues in Signal,

K-9, and Focus apps and automated detection tools should be developed to analyze presence of

human value themes in software development projects.

With respect to the above stated work, our work focuses on providing tool support for the

detection of human value issues in domain models and provides suggestions based on the captured

past experiences.

7.2 Pattern Matching

We investigate some approaches proposed on matching of the class diagram and patterns match-

ing in query languages because extensive research has been done in the field of matching which

determines similarity/dissimilarity or extracts data using graphical matching or queries. Bian et

al. [4] report on the matching of class diagrams in the context of grading student solutions. They

present an automatic grading algorithm that compares student responses with template models

using syntactic, semantic, and structural matching. Moreover, their algorithm provides the grades

based on the outcomes of matching of the model elements. Similarly, Singh et al. [37] propose

an algorithm to detect mistakes in a class diagram by comparing the student solution with an

instructor solution. Their approach compares the model elements based on the information like

name, attributes, type of model elements, and relationships and supports matching based on the

synonyms of the elements. Moreover, their algorithm provides detailed information about the de-

tected mistake and its related elements. Additionally, Boubekeur et al. [5] propose a feedback

algorithm that provides progressive feedback for the detected mistakes in a class diagram based on

the knowledge of the student. With respect to above stated work, the HVTS also requires matching

of the model elements based on the syntactic detection as well as synonym-based semantic detec-

tion. Furthermore, pattern matching may be performed using OCL [16] and QVT [17]. OCL is a

formal language used to specify constraints and rules on UML models such as preconditions and

postconditions, ensuring that the models remain consistent and correct. Pattern matching can be

63

7.3. Summary

used to define more complex constraints and other expressions by using patterns to describe the

structure of objects in the UML models. Whereas QVT is a standard set of languages used to

specify transformations. Pattern matching in QVT is used as it provides a way to match patterns

within models and apply transformations to those patterns. Clark [8] proposes an extension to

OCL object navigation for pattern matching and introduces declarative patterns that can be used

to match object structures instead of using lengthy repeated navigation statements. This paper

analyzes OCL extensions with elaborated examples and syntax definitions. Li et al. [22] present

a graphical model query using semantics and pattern matching of QVT relations. Further, their

work proposes a method for mapping a query’s selection criteria into XSLT to make the execution

easier. In addition, they develop a tool to design queries and generate XSLT code automatically.

We acknowledge that a lot of work has been done in the area of matching diagrams using graphical

and query languages. For greater control over the matching process, we opt for a custom-built

solution for our proof-of-concept implementation.

7.3 Summary

This chapter provides an insight of the work done in the domain of human values in software

engineering. Furthermore, various approaches for matching of class diagrams are reviewed. This

chapter discusses the related work done by other authors and states how the proposed HVTS is

different from the existing approaches.

The next chapter concludes this thesis and talks about the future improvements to the HVTS.

64

8
Conclusions

Thesis Statement. Lack of consideration for human values when developing software often leads

to social repercussions. The proposed Human Value Trigger System aims to address the need for

human value consideration during domain modelling by providing suggestions based on collected

past experiences.

Human values play a significant role in decision making in users, practitioners, and organi-

zations. Users expect software that considers human values. The Human Value Trigger System

(HVTS) aims to reduce the ignorance of human values during domain modelling by guiding software

practitioners. The HVTS incorporates human values by providing suggestions for a domain model

based on past experiences. With the proposed HVT, a domain-specific language called Human

Value Trigger, different examples for each human value and various types of model elements are

captured along with a detailed scenario that explains how the presence or absence of the model

65

Chapter 8. Conclusions

element impact the values.

In this thesis, we specify the domain-specific language HVT that captures examples from past

experiences. We explain the language and the metamodel for HVT in greater detail. We investigate

the domain model for the WhatsApp System considering all the values in Schwartz’s taxonomy to

motivate our approach to include human values-based elements in our domain modelling. Moreover,

we present in detail the implementation of the matching algorithm of HVTS. Furthermore, an

analysis of eight synonym services including dictionaries and thesauri as well as NLP-based and

AI-based services is performed to find the optimal synonym service or combination of synonym

services to use with the implementation. To validate the system, we test the HVTS using tests

with different human value trigger files and domain models, boosting our confidence in the matching

capability of HVTS. However, there is still potential for advancement in this research area.

In the future, the matching algorithm of HVTS could be improved so that it works for patterns

of multiple elements as Trigger and Suggestion instead of single elements. This could be difficult to

achieve with a “from scratch” solution as presented in this thesis as this will require pattern match-

ing for all trigger elements to add the suggestion in the domain model. Instead, pattern matching

and model querying technologies such as OCL and QVT could be used. Additional examples from

past experiences could be collected using the grammar specified by HVT over time. Moreover, a

user study could be conducted to assess the usefulness of the proposed system. Furthermore, other

key RE modelling techniques such as goal models and state models could be analyzed to utilize a

similar approach to address human values throughout the process of software development.

66

Bibliography

[1] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and
M. Woodger. Revised report on the algorithmic language ALGOL 60. The Computer
Journal, 5(4):349–367, 01 1963. ISSN 0010-4620. doi: 10.1093/comjnl/5.4.349. URL
https://doi.org/10.1093/comjnl/5.4.349.

[2] N. Baker. Molly russell: Instagram bans graphic selfharm images after suicide of uk teen,
2019. URL https://www.sbs.com.au/news/molly-russell-instagram-bans-graphic-

self-harm-images-after-suicide-of-uk-teen.

[3] Thorsten Berger. A new dsl textbook in town! Keynote, Educators Symposium at 2022
ACM/IEEE 25th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS’22).

[4] Weiyi Bian, Omar Alam, and Jörg Kienzle. Automated grading of class diagrams. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C), pages 700–709, 2019. URL https://doi.org/10.1109/

MODELS-C.2019.00106.

[5] Younes Boubekeur. A learning corpus and feedback mechanism for a domain modeling as-
sistant, McGill University, Canada, June 2022. URL https://escholarship.mcgill.ca/

concern/theses/9593v1553.

[6] Lethbridge T. C. and Laganière Robert. Object-oriented software engineering : practical soft-
ware development using uml and java. 2nd edition. McGraw Hill / Europe, Middle East and
Africa, 2004.

[7] C. Cadwalladr and E. Graham-Harrison. Revealed: 50 million facebook profiles harvested for
cambridge analytica in major data breach, 2018. URL https://www.theguardian.com/news/

2018/mar/17/cambridge-analytica-facebook-influence-us-election.

[8] Tony Clark. Ocl pattern matching. OCL@MoDELS, CEUR, (1092:33–42), 01 2013.

[9] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe, James Steel, and
Didier Vojtisek. Engineering Modeling Languages: Turning Domain Knowledge into Tools.
Chapman and Hall/CRC, 2020.

[10] Eclipse Foundation. Eclipse Modeling Framework (EMF). URL https://www.eclipse.org/

modeling/emf/.

[11] GloVe: Global Vectors for Word Representation. Website. URL https://nlp.stanford.edu/

projects/glove/.

[12] Eclipse Foundation. Ecore. URL https://wiki.eclipse.org/Ecore.

67

https://doi.org/10.1093/comjnl/5.4.349
https: //www.sbs.com.au/news/molly-russell-instagram-bans-graphic-self-harm-images-after-suicide-of-uk-teen
https: //www.sbs.com.au/news/molly-russell-instagram-bans-graphic-self-harm-images-after-suicide-of-uk-teen
https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1109/MODELS-C.2019.00106
https://escholarship.mcgill.ca/concern/theses/9593v1553
https://escholarship.mcgill.ca/concern/theses/9593v1553
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://wiki.eclipse.org/Ecore

Bibliography

[13] Context free grammar. Website. URL https://en.wikipedia.org/wiki/Context-free_

grammar.

[14] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: Testing software for
discrimination. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, page 498–510, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450351058. doi: 10.1145/3106237.3106277. URL https:

//doi.org/10.1145/3106237.3106277.

[15] Object Management Group. The MetaObject Facility Specification™ (MOF™), April 2002.
URL https://www.omg.org/mof/.

[16] Object Management Group. Object constraint language, February 2014. URL https://www.

omg.org/spec/OCL.

[17] Object Management Group. Mof query/view/transformation, June 2016. URL https://www.

omg.org/spec/QVT/1.3/About-QVT/.

[18] Object Management Group. OMG® Unified Modeling Language® (OMG UML®), Dec
2017. URL https://www.omg.org/spec/UML/2.5.1/PDF.

[19] Waqar Hussain, Davoud Mougouei, and Jon Whittle. Integrating social values into software de-
sign patterns. In 2018 IEEE/ACM International Workshop on Software Fairness (FairWare),
pages 8–14, 2018. doi: 10.1145/3194770.3194777.

[20] Waqar Hussain, Harsha Perera, Jon Whittle, Arif Nurwidyantoro, Rashina Hoda, Rifat Ara
Shams, and Gillian Oliver. Human values in software engineering: Contrasting case studies of
practice. IEEE Transactions on Software Engineering, 48(5):1818–1833, 2022. doi: 10.1109/
TSE.2020.3038802.

[21] Waqar Hussain, Mojtaba Shahin, Rashina Hoda, Jon Whittle, Harsha Perera, Arif Nurwidyan-
toro, Rifat Ara Shams, and Gillian Oliver. How can human values be addressed in agile meth-
ods? a case study on safe. IEEE Transactions on Software Engineering, 48(12):5158–5175,
2022. doi: 10.1109/TSE.2022.3140230.

[22] Dan Li, Xiaoshan Li, and Volker Stolz. Model querying with graphical notation of qvt relations.
SIGSOFT Softw. Eng. Notes, 37(4):1–8, jul 2012. ISSN 0163-5948. doi: 10.1145/2237796.
2237808. URL https://doi.org/10.1145/2237796.2237808.

[23] Davoud Mougouei, Harsha Perera, Waqar Hussain, Rifat Shams, and Jon Whittle. Op-
erationalizing human values in software: A research roadmap. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2018, page 780–784, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355735. doi:
10.1145/3236024.3264843. URL https://doi.org/10.1145/3236024.3264843.

[24] MT4j. Multitouch for java (mt4j) framework. URL https://sites.google.com/site/

gmitresearch/mt4j.

[25] Gunter Mussbacher, Waqar Hussain, and Jon Whittle. Is there a need to address human
values in domain modelling? In 2020 IEEE Tenth International Model-Driven Requirements
Engineering (MoDRE), pages 73–77, 2020. doi: 10.1109/MoDRE51215.2020.00015.

68

https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/3106237.3106277
https://www.omg.org/mof/
https://www.omg.org/spec/OCL
https://www.omg.org/spec/OCL
https://www.omg.org/spec/QVT/1.3/About-QVT/
https://www.omg.org/spec/QVT/1.3/About-QVT/
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1145/2237796.2237808
https://doi.org/10.1145/3236024.3264843
https://sites.google.com/site/gmitresearch/mt4j
https://sites.google.com/site/gmitresearch/mt4j

Bibliography

[26] Arif Nurwidyantoro, Mojtaba Shahin, Michel Chaudron, Waqar Hussain, Harsha Perera,
Rifat Ara Shams, and Jon Whittle. Towards a human values dashboard for software de-
velopment: An exploratory study. In Proceedings of the 15th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), ESEM ’21, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450386654. doi:
10.1145/3475716.3475770. URL https://doi.org/10.1145/3475716.3475770.

[27] Arif Nurwidyantoro, Mojtaba Shahin, Michel R.V. Chaudron, Waqar Hussain, Rifat Shams,
Harsha Perera, Gillian Oliver, and Jon Whittle. Human values in software development
artefacts: A case study on issue discussions in three android applications. Information
and Software Technology, 141:106731, 2022. ISSN 0950-5849. doi: https://doi.org/10.
1016/j.infsof.2021.106731. URL https://www.sciencedirect.com/science/article/pii/

S0950584921001828.

[28] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.

[29] Harsha Perera, Waqar Hussain, Davoud Mougouei, Rifat Ara Shams, Arif Nurwidyantoro, and
Jon Whittle. Towards integrating human values into software: Mapping principles and rights
of gdpr to values. In 2019 IEEE 27th International Requirements Engineering Conference
(RE), pages 404–409, 2019. doi: 10.1109/RE.2019.00053.

[30] Harsha Perera, Waqar Hussain, JonWhittle, Arif Nurwidyantoro, Davoud Mougouei, Rifat Ara
Shams, and Gillian Oliver. A study on the prevalence of human values in software engineering
publications, 2015 – 2018. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ICSE ’20, page 409–420, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450371216. doi: 10.1145/3377811.3380393. URL https:

//doi.org/10.1145/3377811.3380393.

[31] Harsha Perera, Gunter Mussbacher, Waqar Hussain, Rifat Ara Shams, Arif Nurwidyantoro,
and Jon Whittle. Continual human value analysis in software development: A goal model based
approach. In 2020 IEEE 28th International Requirements Engineering Conference (RE), pages
192–203, 2020. doi: 10.1109/RE48521.2020.00030.

[32] Nor Samsiah Binti Sani. Lab 3: Introduction to domain modeling and class diagram,
2009-2010. URL https://norsamsiah.files.wordpress.com/2010/01/lab-003-domain-

modeling1.pdf.

[33] Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg Kienzle, and Gunter Muss-
bacher. Feature modelling and traceability for concern-driven software development with
touchcore. In Companion Proceedings of the 14th International Conference on Modular-
ity, MODULARITY Companion 2015, page 11–14, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450332835. doi: 10.1145/2735386.2735922. URL
https://doi.org/10.1145/2735386.2735922.

[34] Shalom H. Schwartz. An Overview of the Schwartz Theory of Basic Values. Online Readings
in Psychology and Culture, 2(1), 2012. URL https://doi.org/10.9707/2307-0919.1116.

[35] Rifat Ara Shams, Waqar Hussain, Gillian Oliver, Arif Nurwidyantoro, Harsha Perera, and
Jon Whittle. Society-oriented applications development: Investigating users’ values from

69

https://doi.org/10.1145/3475716.3475770
https://www.sciencedirect.com/science/article/pii/S0950584921001828
https://www.sciencedirect.com/science/article/pii/S0950584921001828
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3377811.3380393
https://doi.org/10.1145/3377811.3380393
https://norsamsiah.files.wordpress.com/2010/01/lab-003-domain-modeling1.pdf
https://norsamsiah.files.wordpress.com/2010/01/lab-003-domain-modeling1.pdf
https://doi.org/10.1145/2735386.2735922
https://doi.org/10.9707/2307-0919.1116

bangladeshi agriculture mobile applications. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: Software Engineering in Society, ICSE-SEIS
’20, page 53–62, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450371254. doi: 10.1145/3377815.3381382. URL https://doi.org/10.1145/3377815.

3381382.

[36] Rifat Ara Shams, Mojtaba Shahin, Gillian Oliver, Waqar Hussain, Harsha Perera, Arif Nur-
widyantoro, and Jon Whittle. Measuring bangladeshi female farmers’ values for agriculture
mobile applications development. CoRR, abs/2012.01268, 2020. URL https://arxiv.org/

abs/2012.01268.

[37] Prabsimran Singh. Domain modeling mistake detection system, McGill University, Canada,
2022. URL https://escholarship.mcgill.ca/concern/theses/5x21tm741.

[38] TouchCORE. Website. URL http://touchcore.cs.mcgill.ca/.

[39] Jon Whittle. Is your software valueless? IEEE Software, 36(3):112–115, 2019. doi: 10.1109/
MS.2019.2897397.

[40] Jon Whittle, Maria Angela Ferrario, Will Simm, and Waqar Hussain. A case for human values
in software engineering. IEEE Software, 38(1):106–113, 2021. doi: 10.1109/MS.2019.2956701.

[41] Niklaus Wirth. The programming language pascal. Acta informatica, 1(1):35–63, 1971.

[42] Xtext. Website. URL https://www.eclipse.org/Xtext/documentation/301_

grammarlanguage.html.

70

https://doi.org/10.1145/3377815.3381382
https://doi.org/10.1145/3377815.3381382
https://arxiv.org/abs/2012.01268
https://arxiv.org/abs/2012.01268
https://escholarship.mcgill.ca/concern/theses/5x21tm741
http://touchcore.cs.mcgill.ca/
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html

A
Grammar Definition for Human Value Trigger (HVT)

DSL

Listing A.1: Grammar Definition for Human Value Trigger in Xtext

1 grammar org.xtext.example.hvt.HumanValueTrigger with org.eclipse.xtext.common.Terminals

2
3 generate humanValueTrigger "http://www.xtext.org/example/hvt/HumanValueTrigger"

4
5 HumanValueTriggerSystem:

6 (humanValues+=HumanValue)*

7 (suggestions+=Suggestion)*

8 ;

9
10 Suggestion:

11 (modelElement=ModelElement)

12 (alternativeTriggers+=Trigger)*

13 ;

14
15 ModelElement:

16 (Attribute | AssociationEnd | AssociationClass | Class | Enumeration | Literal)

17 ;

18
19 Attribute:

20 ’Attribute’ type=AttributeType modelClass=STRING ’.’ name=ID

21 ;

22
23 enum AttributeType:

24 Boolean=’Boolean’ | Double=’Double’ | Int=’Int’ | Long=’Long’ |

25 String=’String’ | Byte=’Byte’ | Float=’Float’ | Char=’Char’ |

26 Date=’Date’| Time=’Time’

27 ;

28
29 AssociationEnd:

30 ’AssociationEnd’ modelClass=STRING ’.’ name=ID referenceType=ReferenceType otherClass=STRING ’[’

lowerBound=STRING ’..’ upperBound=STRING ’]’

31 ;

71

Appendix A. Grammar Definition for Human Value Trigger (HVT) DSL

32
33 enum ReferenceType:

34 Composition=’<@>-’ | Aggregation=’<>-’ | Regular=’--’ | Any=’?-’

35 ;

36
37 AssociationClass:

38 ’AssociationClass’ name=ID firstClass=STRING ’--’ secondClass=STRING

39 ;

40
41 Class:

42 ’Class’ name=ID

43 ;

44
45 Enumeration:

46 ’Enumeration’ name=ID

47 ;

48
49 Literal:

50 ’Literal’ modelClass=STRING ’.’ name=ID

51 ;

52
53 Trigger:

54 ’Trigger’ (triggeringElement=ModelElement) (examples+=Example)*

55 (’posIfAbsent’ positivelyImpactedIfAbsent+=Reason)*

56 (’negIfAbsent’ negativelyImpactedIfAbsent+=Reason)*

57 ;

58
59 Reason:

60 (humanValue=[HumanValue])

61 ’because’ explanation=STRING

62 ;

63
64 HumanValue:

65 ’HumanValue’ category=HumanValueCategory ’.’ name=ID description=STRING

66 ;

67
68 enum HumanValueCategory:

69 SelfDirection=’SelfDirection’ | Stimulation=’Stimulation’ | Hedonism=’Hedonism’ |

70 Achievement=’Achievement’ | Power=’Power’ | Security=’Security’ | Conformity=’Conformity’ |

71 Tradition=’Tradition’ | Benevolence=’Benevolence’ | Universalism=’Universalism’

72 ;

73
74 Example:

75 ’Example’ detail=STRING

76 ;

72

B
HVTF for all WhatsApp Scenarios Covered in Chapter 3

Listing B.1: Human Value Trigger File for WhatsApp Scenarios

1 HumanValue Universalism.BroadMindedOrTolerance ’Liberal in views and reactions’

2 HumanValue Universalism.SocialJustice ’Everyone deserves equal economic, political, and social

rights and opportunities’

3 HumanValue Universalism.Wisdom ’The quality of having experience, knowledge, and good judgment’

4 //Apart from the above mentioned values, there are a total of 58 values defined according to

Schwartz’s taxonomy of human values (not all shown for brevity).

5
6 Attribute Boolean ’Message’.inappropriate

7 Trigger Attribute String ’Message’.body

8 Example ’For the Group class, various WhatsApp groups exist and anyone knowing of their

existence can share information. So, misinformation could potentially be shared by members from

one group to another which leads to the circulation of rumors sometimes and ultimately may

cause disruption in the society or even a crisis in the society.’

9 negIfAbsent Privacy because ’Misinformation shared in the groups can effect the privacy as

for example wrong information shared about the person health can effect the privacy.’

10 negIfAbsent Freedom because ’Misinformation shared can cause confusion which ultimately

effects freedom.’

11 negIfAbsent ChoosingOwnGoal because ’Misinformation shared in the groups can influence the

decision making as for example in case of elections’

12 negIfAbsent EnjoyingLife because ’Wrong information conveyed to the people can cause

unwanted stress or initiate overthinking.’

13 negIfAbsent Successful because ’Wrong information transmission can effect the reputation.’

14 negIfAbsent Influential because ’Misinformation can effect the mindset of an individual.’

15 negIfAbsent SocialPower because ’Wrong information conveyed through messages could lead to

massive destructions like riots.’

16 negIfAbsent Authority because ’Misinformation shared could pressurize authorities to take

severe actions.’

17 negIfAbsent PreservingMyPublicImage because ’Misinformation can effect the public image of

a person, e.g., fake news about the celebrity.’

18 negIfAbsent Healthy because ’Misleading content can cause damage to a person both mentally

or physically.’

19 negIfAbsent FamilySecurity because ’Sharing of misleading sensitive information could put

an individual into a critical situation.’

20 negIfAbsent SocialOrder because ’Misleading information can cause chaos in the social

circle of an individual.’

73

Appendix B. HVTF for all WhatsApp Scenarios Covered in Chapter 3

21 negIfAbsent NationalSecurity because ’Misinformation can lead to disorder between two

nations.’

22 negIfAbsent SelfDiscipline because ’A frequent misinformation can lead to distractions from

the goals of an individual.’

23 negIfAbsent Politeness because ’Misleading information can cause unnecessary debates

between people or communities.’

24 negIfAbsent Honest because ’People unknowingly share the wrong information and are often

wronged by others due to this.’

25 negIfAbsent Responsible because ’Wrong information unknowingly shared by the users but

nobody takes the responsibility of the chaos it can cause.’

26 negIfAbsent AWorldOfPeace because ’Misinformation can lead to crisis between the

nationalities’

27 negIfAbsent BroadMindedOrTolerance because ’Wrong information influences the thinking and

the mindset of an individual.’

28
29 AssociationEnd ’ProfilePhoto’.sharedWith -- ’User’ [’0’..’*’]

30 Trigger Enumeration Privacy

31 Example ’For the ProfilePhoto class, we have only options like Everyone, My Contacts, and

Nobody to secure the privacy of the profile picture. But sometimes people need to save a random

contact number to have one-time contact with another person. There is a minute possibility

that the profile photo can be saved, e.g., by taking the screenshot which can be misused’

32 negIfAbsent Privacy because ’Profile photo can be saved by taking the screenshot which can

be misused.’

33 negIfAbsent SelfRespect because ’Misusage of those photos can directly influence self

respect.’

34 negIfAbsent PreservingMyPublicImage because ’Photos saved as screenshot can be used to

defame the person by editing those photos.’

35 negIfAbsent SocialRecognition because ’Misusage of those photos can deeply impact the

recongnition received by an indivdual.’

36 negIfAbsent Healthy because ’Misusage of those photos can cause stress and anxiety to an

individual.’

37 negIfAbsent ASpiritualLife because ’Thinking about the consequences of misusage of the

picture can have the severe impact on the peace of mind’

38 negIfAbsent SocialJustice because ’Consequences of misusage of the picture can have severe

impact on the jusctice received by an individual.’

39
40 AssociationEnd ’User’.whitelistContacts -- ’User’ [’0’..’*’]

41 Trigger AssociationEnd ’User’.contacts -- ’User’ [’0’..’*’]

42 Example ’If a random person somehow has the contact number of another person, then that

random person can send messages to the other person. While the receiver has the option to block

the sender after receiving the message, that message can have an impact on the receiver in

various ways depending upon the type of information being shared in the message.’

43 negIfAbsent Privacy because ’Continuous messages from a random person can affect the

private life of an individual.’

44 negIfAbsent Pleasure because ’Messages from a random person can cause unnecessary stress

which further impacts pleasure.’

45 negIfAbsent EnjoyingLife because ’Messages from a random person could affect the

perspective of an individual towards life and another individual.’

46 negIfAbsent SelfRespect because ’Random messages from a random person could also affect the

self respect of an individual and cause sense of insecurity.’

47 negIfAbsent PreservingMyPublicImage because ’Any random person could easily tarnish the

public image of an individual by broadcasting bogus messages over the WhatsApp.’

48 negIfAbsent ASpiritualLife because ’Messages from a random person could cause sense of

restlessness amongst the individual.’

49
50 Attribute Time ’User’.timeYouWantToSpend

51 Trigger Class User

52 Example ’People get addicted to WhatsApp, and they do the same thing repeatedly which

results in reduced (or no) interaction with other people’

74

Appendix B. HVTF for all WhatsApp Scenarios Covered in Chapter 3

53 negIfAbsent Creativity because ’People are addicted to social media so they keep on doing

the same thing every day, which kills creativity’

54 negIfAbsent Curious because ’People get addicted to chatting so they do not study news or

current topics or study their course.’

55 negIfAbsent AVariedLife because ’People are addicted to WhatsApp and doing the same thing

over and over again.’

56 negIfAbsent SelfIndulgent because ’People are addicted to WhatsApp not knowing which

person is sitting next to them.’

57 negIfAbsent Healthy because ’People spend more time facing health issues like migraine

problem.’

58 negIfAbsent SelfDiscipline because ’People spend more time on WhatsApp due to which people

forget to do important work.’

59 negIfAbsent Politeness because ’There is a change in style of conversation; basically

WhatsApp changed the way people talk mostly on instant messages or on call’

60 negIfAbsent HonoringOfElders because ’WhatsApp changed the way people talk mostly on

instant messages or on call so people forget the right way.’

61 negIfAbsent Obedient because ’Due to constant usage people tend to lose track of time.’

62 negIfAbsent Humble because ’Due to excessive use there is a change of behavior among the

users.’

63 negIfAbsent RespectForTradition because ’People are so involved in using the WhatsApp that

they forget about the customs and tradition.’

64 negIfAbsent Moderate because ’Due to addiction people tend to go to extremes.’

65 negIfAbsent Forgiving because ’As people spend more time on WhatsApp the same things come

up again and again.’

66 negIfAbsent Loyal because ’Due to addiction people tend to talk more than needed, which

may lead to miscommunication among users.’

67 negIfAbsent TrueFriendship because ’Due to spending more time on WhatsApp people ignore

their relationship with the people around them.’

68 negIfAbsent MatureLove because ’Spending more time on WhatsApp can impact relationships by

decreasing the amount and quality of time people spend together.’

69
70 Attribute Boolean ’User’.virtualAssistantIsRequired

71 Trigger Class User

72 Example ’Currently there is no way for people with disabilities to use the WhatsApp

especially if the user is visually impaired’

73 negIfAbsent Creativity because ’User with disabilities are not provided with any assistance

to use WhatsApp with ease’

74 negIfAbsent Freedom because ’Absence of assistance for disabled also puts restriction

towards freedom of speech for disabled users.’

75 negIfAbsent ChoosingOwnGoal because ’Absence of assistance for disabled also makes it

difficult to navigate various options.’

76 negIfAbsent AnExcitingLife because ’As a new trend emerges for people to connect with each

other via WhatsApp, absence of assistance causes major blockage to disabled users to connect

with one another.’

77 negIfAbsent EnjoyingLife because ’It is impossible for visually impaired people to enjoy

the perks of interaction using the app.’

78 negIfAbsent Authority because ’Disabled users are not provided with any authorization over

the data/info transfered.’

79 negIfAbsent SenseOfBelonging because ’As disabled users find it difficult to use WhatsApp

as a regular tool, a sense of belonging is always missing.’

80 negIfAbsent EqualityForAll because ’Due to absence of features for disabled user, it would

be impossible for such users to follow up with trends of WhatsApp as compared to normal users.’

81 negIfAbsent SocialJustice because ’Absence of assistance for disabled makes them feel

excluded’

75

	Abstract
	Abrégé
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Problem Statement
	Thesis Methodology and Contribution
	Thesis Overview

	Background
	Schwartz Taxonomy
	Domain Modelling
	TouchCORE
	Metamodel
	Xtext
	Summary

	Motivating Example
	WhatsApp
	Summary

	Metamodel
	Human Value Trigger (HVT) Metamodel
	Summary

	Analysis of Synonym Services
	Analysis of Single Synonym Service
	Analysis of Combinations of Synonym Services
	Summary

	Human Value Trigger Algorithm
	Algorithm Overview
	Algorithm Initialization
	Algorithm Details
	Verification
	Discussion
	Summary

	Related Work
	Human Values
	Pattern Matching
	Summary

	Conclusions
	Bibliography
	Grammar Definition for Human Value Trigger (HVT) DSL
	HVTF for all WhatsApp Scenarios Covered in Chapter 3

