Mafia Fraud Attack against the RC
Distance-Bounding Protocol

Aikaterini Mitrokotsa
EPFL, Lausanne
Email: katerina.mitrokotsa@epfl.ch

Abstract—At ACM CCS 2008, Rasmussen and Capkun intro-
duced a distance-bounding protocol [22] (henceforth RC protocol)
where the prover and verifier use simultaneous transmissions
and the verifier counts the delay between sending a challenge
(starting with a hidden marker) and receiving the response. Thus,
the verifier is able to compute an upper bound on the distance
separating it and the prover. Distance bounding protocols should
resist to the most classical types of attacks such as distance fraud
and mafia fraud. In mafia fraud, a man-in-the-middle adversary
attempts to prove to a legitimate verifier that the prover is in
the verifier’s proximity, even though the prover is in reality far
away and does not wish to run the protocol. The RC protocol
was only claiming to resist distance fraud attacks. In this paper,
we show a concrete mafia fraud attack against the RC protocol,
which relies on replaying the prover nonce which was used in
a previous session between a legitimate prover and the verifier.
This attack has a large probability of success. We propose a new
protocol called LPDB that is not vulnerable to the presented
attack. It offers state-of-the-art security in addition to the notion
of location privacy achieved by the RC protocol.

I. INTRODUCTION

Man-in-the-middle (MITM) attacks are powerful strategies
towards breaking the security of authentication protocols. In
authentication scenarios, a prover proves its legitimacy to a
verifier, and the basic security requirement is resistance to
impersonation attacks, i.e. the adversary (who is not legit-
imate) should not be able to impersonate a legitimate prover.
However, by relaying messages between a legitimate prover
(who is unaware of the attack) and a legitimate verifier, a
MITM adversary always succeeds in impersonating the prover.

Distance-bounding protocols were introduced in 1993 by
Brands and Chaum [6] as a countermeasure against MITM
attacks. Their idea relies on the observation that, in having to
process and then relay transmissions between the prover and
the verifier, the adversary has some non-negligible delay in
his responses. Thus, if a verifier is equipped with a clock and
measures the time-of-flight for challenges and responses, it is
able to detect relay attacks. Essentially thus, distance-bounding
protocols are an extension of authentication protocols, where
the verifier accepts the prover as legitimate if (1) the prover
proves to the verifier that it is in the verifier’s neighborhood,
and (2) the transmission time of the prover’s responses is
upper-bounded by some threshold value ,,,x. We should note
here that distance-bounding works best in scenarios where
transmissions are fast and can be assumed to take constant

Cristina Onete
CASED & TU Darmstadt, Germany
Email: cristina.onete @cased.de

Serge Vaudenay
EPFL, Lausanne
Email: serge.vaudenay @epfl.ch

time (e.g. transmissions at light speed for radio waves).

Distance-bounding is a well-researched area of cryptogra-
phy [1], [3]-[10], [12], [13], [15], [17]-[20], [23], [24], [26],
though the approach in most works is mostly informal. The
two formal frameworks due to Avoine et al. [3] and Diirholz
et al. [15] both concur in defining distance-bounding as an
authentication protocol where the verifier is convinced that
the prover is in its neighborhood. Both frameworks describe
the following four attacks for distance-bounding protocols:

DiISTANCE FRAUD: The dishonest prover wants to cheat
the verifier’s clock and prove that it is within the threshold
distance when it is in fact farther away.

MAFIA FRAUD: The MITM adversary can leech informa-
tion from the honest prover P in order to prove to the honest
verifier V that P is in proximity although he is far away.

TERRORIST FRAUD: Here the dishonest prover colludes
with the adversary A in order to help A successfully pass
the protocol. The restriction is that once the dishonest prover
stops helping, A should not be able to prove that the prover
is in the verifier’s neighborhood. In particular, the dishonest
prover is not allowed to disclose the secret key to A.

IMPERSONATION SECURITY: This requirement is a recent
idea, first introduced by Avoine and Tchamkerten [5]. Here,
the adversary should not be able to impersonate the prover to
the verifier, assuming that no pure relay is used.

It is easy to realize the significance of distance-bounding
protocols if we take under consideration real-world applica-
tions such as bankcards and access control to cars. RFID
protocols are frequently used by car manufacturers for the
locking/unlocking system in cars. However, it has been shown
that these protocols are susceptible to relay attacks [16].
Payment with bankcards [14] are also vulnerable to relay at-
tacks. The main countermeasure against this type of attacks is
distance-bounding protocols [14]. Thus, there is an increasing
need to use secure distance bounding protocols in order to
achieve security and reliability in real-world applications.

Cremers et al. [11] presented a new attack called distance
hijacking, which involves an honest and a dishonest prover.
The idea is that the dishonest prover uses the honest prover in
order to commit distance fraud. Since the standard distance-
bounding scenario only consists of a single prover and verifier,
this attack is out of scope for models such as [3] and [15].

Distance-bounding protocols typically consist of an initial-

ization phase, in which the verifier’s clock is not used, and of a
rapid bit exchange (RBE) or distance bounding phase, where
the verifier challenges the prover and measures the time-of-
flight until it receives the prover’s response. Typically this is
done on a round-to-round basis [5]-[7], [19]-[21].

However, in 2008, Rasmussen and Capkun introduced a
distance-bounding protocol that aimed to also achieve loca-
tion privacy. This protocol (the RC protocol, in short) uses
simultaneous transmissions between the prover and verifier,
therefore we do not speak of round-based challenges and
responses. During the initialization phase, both the prover and
the verifier compute a hidden marker M. During the distance
bounding phase, the prover and verifier begin by sending out
random transmissions (in a continuous, simultaneous stream).
At some point, the verifier will send the hidden marker and
then a randomly-chosen challenge, and will count the delay
(in bits) until it receives the response. Thus, the verifier
is able to upper-bound its distance from the prover; since
we assume constant, fast transmission speeds, the notion of
time distance is well defined and corresponds to a physical
distance between two parties. We note that the hidden marker
is encrypted and signed using two shared secret keys: thus,
some measure of authentication is automatically achieved.
Rasmussen and Capkun claim that this protocol is not to be
used for authentication, even though it is based on a secret
key. This obviously suggests that it offers little security.

Recently Aumasson et al. [2] showed an attack against this
scheme, which relies on replaying the nonces chosen by the
prover and verifier. This passive dictionary attack may lead to
revealing the location of the prover and the verifier. Neverthe-
less, this attack has a complexity which is exponential in terms
of the size of the used nonces and thus, it can be deployed
only after eavesdropping a very high number of sessions.

Our Contribution: In this paper we show an efficient mafia
fraud attack against the RC protocol. The attacker first eaves-
drops on an honest session between the legitimate prover and
the legitimate verifier, then it tries to replay the same nonce
as the one used by the prover in a subsequent attempt to pass
the protocol. This attack can be run in a mafia fraud setting,
to relay the credential of a far away prover to the verifier,
which is what distance bounding was meant to avoid. The
key vulnerability here is that the prover’s and the verifier’s
messages during the initialization phase are independent of
each other, and can thus be replayed. The success of the
attack depends on the probability that the adversary guesses
the length offsets of the challenge, resp. the response, in the
adversary’s and resp. the prover’s attempts to pass the protocol.
Guessing the time offset depends on an adversary’s ability to
guess the location of the prover.

II. PRELIMINARIES

We consider distance-bounding protocols as outlined in
[15], i.e. we consider a single prover P and a single verifier
V which share a key K generated by some key generation
algorithm Kg. The mafia adversary is a MITM type of adver-
sary, which we denote by A. The adversary may eavesdrop

on distance-bounding executions between P and V), and may
interact with each of the two parties.

The RC protocol aims to achieve location privacy. While
we do not discuss the topic of location privacy, distance-
bounding is automatically associated with some measurements
of relative distance between parties. In general, for two parties
A and B, we denote by At(A, B) the time distance between
A and B, i.e. the time it takes for a bit to travel the distance
between A and B. We note that, for messages consisting
of multiple bits, the sending and receiving times of two
different bits of this message may be distinct, depending on
the communication protocol used between the two parties.

As far as the communication model goes, we simply note
that when an adversary A, placed at distance At(A,S) from
a sender S eavesdrops on the transmission of a single bit b
between the sender S and a receiver R (in practice, the sender
could be either the honest prover or the honest verifier), the bit
is eavesdropped by the adversary with a delay corresponding to
that time distance. Concretely, if a bit b is sent at time ts by S,
it is received by the receiver R at time tr = ts+At(R, S), and
eavesdropped by the adversary at time tr 4 = ts + At(A4, S).
We use these notations in the description of our attack.

Furthermore, we note that the success of our attack de-
pends on the adversary’s ability to eavesdrop on (and fully
reconstruct fragments of) an execution of the RC protocol
between an honest prover and an honest verifier. Rasmussen
and Capkun [22] suggest the use of frequency hopping as a
countermeasure to eavesdropping attacks. However, we note
that an adversary could simply eavesdrop on all possible
frequencies at the same time using for instance a sniffer [25]
and subsequently reconstruct the transmission. Thus, we do not
consider frequency hopping as an impediment to our attack.

III. THE RC PROTOCOL

In what follows, we outline the distance-bounding protocol
due to Rasmussen and Capkun [22]. This protocol runs in two
consecutive phases, at the end of which the verifier V upper-
bounds the distance between itself and the prover P. The two
parties share a secret key K for encryption and authentication.
Initially, the prover and verifier run the so-called initialization
phase, where the hidden marker M is generated by the verifier
and sent (as part of an encryption) to the prover. Subsequently,
the two parties run the distance bounding phase.

The protocol uses a symmetric encryption scheme (KGen,
Enc, Dec), and an unforgeable MAC algorithm.
Initialization Phase:

Step 1: The prover P generates a random nonce Np of
length n. It then computes the encryption Encg (P, V, Np)
where P and V denotes the identities of P and V corre-
spondingly. The prover also calculates the MAC of Np (i.e.
MAC(Np)) and sends the concatenation of the two values (i.e.
c1 = Encg (P, V, Np)|MAC(Np)) to the verifier V.

Step 2: V receives the value ¢, generates a random variable
M of length m that is called hidden marker and com-
putes the encryption Encg(P,V, Np) as well as the MAC
of the concatenation of Np and M (i.e. MAC(Np|M).

Finally he sends the concatenation of the two results (i.e.
¢z = Encg (P, V, Np)||MAC(Np|M)). Finally the verifier V
generates a random nonce Ny, of length n.

Step 3: P decrypts the value ¢o and checks that the MAC.
If so, the distance bounding phase is run as below; else, the
protocol aborts.

Distance Bounding (DB) Phase: In this phase P and V
transmit simultaneously, in a constant bit stream. The verifier
V transmits a stream stream,, as follows:

streamy := Randy, | M| Ny |Randy, .

The beginning time of this transmission is random. However,
it seems that this bit stream is transmitted simultaneously with
a stream streamp generated by the prover P such that:

streamp := Randy, ® Randp, |M @ Randp,|
Ny @ Np||Randy, ® Randp,
:= Randp,|Ny ® Np|Randp,,

Here, it holds that Randp, := Randy, ® Randp, and
Randp, = Randy, ® Randp,. We note that the prover
P parses the received bits from the stream streamy and
sends its own transmission of streamp at the same time;
however the two parties begin their simultaneous continuous
bit stream exchange at a random time. The distance-bounding
properties of the protocol rely on the fact that P’s response is
asynchronous. We describe this process in five steps:

1) V generates and sends random data (Randy,) to P. As
P receives this data, it XORs the received bits with random
data generated by itself and responds with the resulting stream
(Randy, ®Randp,). Depending on when P really starts, some
leading bits of Randy, may be ignored by P (if P starts later)
or some extra leading 0’s may be added by P (if P starts
earlier).

2) At some randomly selected point, unspecified by [22], V
starts transmitting the hidden marker M, which the P also
XORs with random data (M @ Randp,), sending this as part
of its stream.

3) After M is fully transmitted, V starts sending Ny (i.e. the
nonce it generated during the initialization phase) to P. The
prover, who has also computed the hidden marker M, will
expect Ny to be transmitted after the transmission of //. When
M stops, the prover XORs the subsequent received bits (which
we denote Nv) with its own random nonce Np, sending in
its continuous stream the value (NV @ Np).

4) After finishing the transmission of Ny, the verifier) restarts
transmitting random data Randy,, to which the prover P
responds by XORing this data with random values of its own
as follows: Randy, ® Randp,. Both parties continue sending
random data for a random interval, then stop transmitting.
Again, depending on whether P halts before or after V', some
tailing bits are ignored or some extra are added by P.

5) At the end of this phase, the verifier } counts the number
of bits it received between sending the first bit of Ny and
receiving the first bit of the value Ny @ Np. This delay can
be translated into an upper bound on the distance At(P, V)
by using the bit rate and the process delay.

Notes on the protocol: Note that the XORing process is
wholly unnecessary in this protocol: in fact, the prover could
simply respond by transmitting random data and, after the
hidden marker M is received, it could simply reply with the
value Nv @ Np. If the messages should be both encrypted
and MACed, we suggest using state-of-the-art symmetric
authenticated encryption.

IV. DESCRIPTION OF THE ATTACK

P A V
c1 C1
c2 C2
streamy streamy
streamp random
fail

Repeat until result equals succeed:

—a
7
Co
-—2
t ’
S Teamv

stream 4

result

Fig. 1. Mafia fraud Attack.

The attack can be discriminated in two stages: the man-in-
the-middle stage and the guess stage. More precisely:
Stage 1: Man-in-the-middle

In this stage, the adversary .4 acts as a man-in-the-middle
when the protocol is run between a legitimate prover P and a
legitimate verifier).

More precisely, the prover P sends some value c; (i.e.
Enck (P,V, Np)|MAC(Np)). The adversary acting as a
MITM relays c; to the verifier V. The verifier V responds with
a value C2 (1e EncK(P, V,]\47 Nv, Np)HMAC(M”Nv”Np))
where M, Ny, Np are used for the hidden marker and the
random nonces generated by the prover P and the verifier V
respectively and the adversary relays these messages.

During the distance bounding phase, A relays streamy, to
P and replies to V with a stream of bits picked at random. P
and V send streamp and resp. streamy such that:

streamy = Randy | M| Ny||Randz, and

streamp = Randsz| Ny @ Np|Randy.

where Rand;, for i € {1,2,3,4}, denotes random data sent
either by the prover P or the verifier V. It holds that:

(streamy | 0) @ Shift, (streamp||0) = Rands| Np||Rands||0
ey

where O denotes a bit stream of infinite length with only 0
bits, and p denotes a necessary offset which depends on when
P and V start sending their transmission. Shifty(s) denotes a
function that performs a shift of a stream s for & bits; k can be
positive or negative and thus, the shift is performed right or left
correspondingly. More precisely, the offset p depends on the
random time ¢p at which the prover P starts its transmission,
the time ¢ 4 at which the adversary A starts its transmission
and the time ¢yp depending on the time distance At(P,.A)
that is required for a message (consisting of possibly many
bits) to be transmitted from the adversary A to the prover P.
Thus, the offset p is given by the following equation:

p=(tattap —tp)=f

where f denotes the number of bits sent per second during
the distance bounding phase between the prover P and the
verifier V. We assume in this paper that f is the same for P
and V. Note that ¢p is random in the RC protocol.

If we assume that the adversary A can physically observe
the location of P, this means it can also deduce the time ¢ 4p
and then the time ¢p from the reception time of streamp.
Thus, it can calculate the value of p. If we assume an adversary
A that only knows the location of the verifier, this adversary
may just make a guess for p. Note that p is bounded by the
length of streamp and streamy, so it must be small in order
for the protocol to be efficient.

The adversary A also makes a guess for the random position
L of Np in the stream streamy @ Shift,(streamp) (i.e.
equation (1)) and deduces a value N7’3 based on this guess.
If the position L was guessed correctly, then the adversary
can deduce Np exactly.

At this point, the adversary has stored the value c; and a
mapping (p, L) — Np. If the values p and L are correct, then
N7’> = Np. Note that stronger adversaries, who are aware of
the prover’s position, know the correct offset p and thus do
not need to guess it.

Stage 2: Guess

This second stage is depicted in Figure 1 and labeled as
“repeat”. Here, the adversary A starts a new session with the
verifier V and sends as its first message the eavesdropped
values c;. Note that this allows the adversary to replay the
same Np, regardless of how secure the encryption and the
signature schemes are.

The verifier V will generate its own (fresh) nonce and
hidden marker. Thus, the values used in this session are M,
Np, and N{,. In the distance bounding phase of this session,
the verifier V sends a new stream of bits stream), such that:

stream!, = Rand}|M'|Ny,|Rands.

In turn, the adversary .4 makes a guess for p and L and re-
sponds with its own bitstream stream 4 computed as follows:

stream = Shift,(stream},) ® (Np||Np| ... |Np)

where N, denotes the value that the adversary A has guessed
for Np in Stage 1 and q is a required alignment (compensating

for the distance between the verifier and the adversary). The
alignment ¢ must be chosen such that 4 is sure that the value
Ny, ® Ny, is included in stream 4. In other words, the length
(L") of the Rand}, i.e. the number of random bits transmitted
in the guess stage before the hidden marker M’ is sent, is a
multiple of the length of Np.

Thus, the verifier V should be able to calculate the value of
the offset ¢ such that it satisfies the following condition:

q=(|M'|+ L") mod |Np|.

This stage repeats until the attack succeeds.

Insight: the offset q: The offset ¢ need not be equal
to the length (in bits) of Rand||M’. Instead, we write
|(Rand!||M")| = k-n+q, where n is the length of the prover
and verifier nonces. Since ¢ is a remainder of the division by
n, it follows that it can take values between 0 and n — 1, and
can be guessed with probability % Consequently, if the offset
q is guessed accurately, the verifier will receive the response
N, @®Ny, upon transmitting Ny,. Thus, if the adversary’s guess
of Np is accurate, the attack succeeds.

Attack scenarios: The attack can be launched in different
scenarios depending on the location of the legitimate prover
‘P. One scenario might include an adversary A whose goal is
to impersonate (stage 2) a legitimate prover P after having
eavesdropped (stage 1) a session between P and V. In such a
scenario the prover P is in the range of the verifier V (depicted
in Figure 2(a)).

Another scenario is our previous description of a mafia fraud
where the legitimate prover P might be located very far from
the verifier V while the adversary is in the communication
range of V (depicted in Figure 2(b)). In this case the adversary
A relays messages between P and V (i.e. corresponding to
stage 1 of the described attack). Obviously, by simply relaying
messages the distance bounding protocol will fail since the
legitimate prover P is located quite far from the verifier
V. Nevertheless, the adversary A will be able to restart the
protocol (i.e. stage 2 of the described attack) and use the
information it received from Stage 1 to get authenticated.
Complexity of the attack: As described above, the success of

e ~l P.

(a) Attack Scenario 1 (b) Attack Scenario 2

Fig. 2. Attack scenarios

the attack depends on calculating/guessing correctly the offsets
p and ¢ and the length L. If we denote by P; the success
probability of one iteration of the guess phase in the attack
and by P,, P, and Py, the probability to successfully guess

the offsets p and ¢ and the length L correspondingly then it
holds that: Py= P, P, Pp.

The number of repetitions is thus 1/P; on average.

The value P, depends on the min-entropy of the distribution
of L in the protocol (a value unspecified in [22]). By guessing
that L = arg max, P[L = {], we have P, = 2—Emin(L) where
Emin(L) is the min-entropy of L.

The distribution that minimizes the &,,;,(L) over a given
set of values is the uniform distribution. The adversary knows
that the verifier must send the nonce Ny, preceded by the
hidden marker. Thus, its guess of L ranges over the values
{0,1,...,|streamy| — |Ny|}. Thus, it holds that:

1
P>z ———.

|streamy| —n
Here, n is the length of the prover and verifier nonces, as
specified in the protocol. If A knows the location of P and V
that implies that P, = 1, while P, is given by:

b 11
= |N7)| B ’I’L.

Otherwise, if the adversary does not know the position of

the prover and verifier, he must guess the offset p, thus:

1 1
 |streamp| — |[Np| |streamp| —n’

by
The success probability if p is known is thus:
1

P, > .
* 7 n(|streamy| — n)

If p must be guessed, the probability is:
1

P, = .
n(|streamy| — n)(|streamp| — n)

Significance of this result. In the worst case scenario, that of
an adversary who must guess the offset p as well as L and g,
the complexity is upper bounded by the value n(|streamy,| —
n)(|streamp|—n) as shown above. This is polynomial in n, as
a minimal efficiency requirement is to demand that the prover
and verifier run in polynomial time. To make the protocol
usable in practice, both streamy and streamp must be small.
Thus, in fact, the complexity of the adversary is quite small.

V. THE LPDB PrROTOCOL

To combat the attack described in Section 4, we propose
the following protocol (depicted in Figure 3). We call it the
LPDB protocol, as for Location-Privacy Distance-Bounding.

We assume again that the prover P and verifier V share a
secret key K. The protocol is again composed of two phases:
the initialization phase and the distance bounding phase.
Initialization Phase: The prover P generates a random nonce
Np and sends it to the verifier V. The verifier }V generates a
random nonce Ny and sends it to the prover P. Both the prover
and the verifier use as input the concatenation of the nonces
Np and Ny as input to a keyed pseudorandom function (fx)
and divide the output of the PRF into two parts, i.e.:

M| Rp < fx(Np|Nv).

Finally, V generates another random value Ry of length n.

Distance Bounding (DB) Phase: In this phase V computes a
streamy such that: streamy := Randy, | M | Ry |Randy,.
P in a similar way to the RC protocol parses the streamy;
at the same time computes and sends the streamp such that:
streamp := Randp, |Rp (—BI%VHRande Randy,, Randy,,
Randp,, Randp, denote random values generated by the
prover P and the verifier V respectively.

VI. SECURITY OF THE LPDB PrROTOCOL

We briefly sketch here the security proof for our new
protocol. Location privacy works just like in [22]. In addition
to this, we can also formally prove resistance to distance fraud
and mafia fraud, assuming that f is a PRF.

Theorem 1: Assuming that f is a PRF, that Ry, is uniformly
distributed in a set of exponential size, that Rp is in a set of
exponential size, the LPDB protocol in Section V is a distance
bounding protocol which provides location privacy, resistance
to distance fraud, and resistance to mafia fraud.

Sketch: We don’t redo the location-privacy part which is
as discussed in [22].

a) Distance fraud: Assuming that a malicious prover P can
pass the protocol with V' although he is far away, we can
transform it into an algorithm which guesses a random Ry
which is selected by someone else at random. This is because
no information about Ry leaks from)V and the prover must
send the correct value of Rp @ Ry before receiving Ry .

b) Mafia fraud: Let A be an adversary who runs a mafia
fraud between a far away honest prover P and a verifier V.
Following the game reduction technique, we transform the
mafia fraud game into a game in which, for all Np and Ny,
there is at most one session of the prover protocol P and
one session of the verifier protocol ¥V which use Np and Ny.
So, the input to f does not collide in between two prover’s
sessions or two verifier’s sessions. Then, we replace f by a
truly random function in a bridging step based on the PRF
assumption on f. We obtain that M and Rp are uniformly
distributed for the pair of matching prover-verifier sessions.
So, at the critical time when .4 must send Rp @ Ry (assuming
that he correctly guesses the position of M), he received no
information about Rp yet from P who is far away. So, the
probability to succeed is negligible. []

VII. CONCLUSION

In this paper we present in detail a mafia fraud attack against
the distance bounding protocol proposed by Rasmussen and
Capkun. We argue that the attack can be easily deployed and
give the success probability of the attack which is quite high
when the streams exchanged during the distance bounding
phase have relatively short length; something that is implied if
the protocol will be used in practice. Furthermore, we propose
a new protocol that can be used to combat the attack and that
is provably secure. We should note here that the selection of
the random delays employed in the distance bounding phase
is critical in order to guarantee that the locations of the prover
and verifier remain private. We plan to investigate the selection
of these random delays in future work.

Prover P

Verifier V

shared key K

Initialization phase

Np & (0,1}
M| Rp < frx(Np||Ny)

Distance Bounding phase

streamy
e

parse Randy, | M| Ry |Randy,

streamp := Randp,|Rp ® Ry|Randp,

End of Distance Bounding phase

Np

Ny

streamp

shared key K

Ny & o, 13m
M|Rp — fx(Np|Nv), Ry < (0,1}

streamy := Randy, |M|Ry| Randy,

parse Randp,|Rp @ Ry|Randp,

set t as the time difference between
sending Ry & receiving Rp @ Ry
calculate upper bound on the distance to P.

Fig. 3.

ACKNOWLEDGMENT

This work was partially supported by the Marie Curie IEF
Project “PPIDR: Privacy-Preserving IntrusionDetection and
Response in Wireless Communications”, Grant No. 252323,

[1]

[3]

[4]
[5]

[6]

[7]

[8]

[10]

[11]

REFERENCES

M. R. S. Abyneh. Security Analysis of two Distance-Bounding Pro-
tocols. In Proceedings of RFIDSec 2011, Lecture Notes in Computer
Science. Springer, 2011.

J.-P. Aumasson, A. Mitrokotsa, and P. Peris-Lopez. A Note on a Privacy-
preserving Distance Bounding Protocol. In Proceedings of the 13th
International Conference on Information and Communications Security
(ICICS 2011), LNCS, pages 78-92. Springer, Beijing, China, 23-26
November.

G. Avoine, M. A. Bingol, S. Karda, C. Lauradoux, and B. Martin. A
Formal Framework for Analyzing RFID Distance Bounding Protocols.
In Journal of Computer Security - Special Issue on RFID System
Security, 2010, 2010.

G. Avoine, B. Martin, and T. Martin. Optimal Security Limits of RFID
Distance Bounding Protocols. In RFIDSec 2010, pages 220 — 238.

G. Avoine and A. Tchamkerten. An Efficient Distance Bounding RFID
Authentication Protocol: Balancing False-Acceptance Rate and Memory
Requirement. In Information Security, volume 5735 of Lecture Notes
in Computer Science, pages 250-261. Springer-Verlag, 2009.

S. Brands and D. Chaum. Distance-bounding protocols. In Advances in
Cryptology — Eurocrypt’93, Lecture Notes in Computer Science, pages
344-359. Springer-Verlag, 1993.

L. Bussard and W. Bagga. Distance-bounding Proof of Knowledge to
Avoid Real-time Attacks. Security and Privacy in the Age of Ubiquitous
Computing, 181:222-238, 2005.

S. Capkun, L. Buttydn, and J.-P. Hubaux. SECTOR: Secure Tracking
of Node Encounters in Multi-hop Wireless Networks. In Proceedings
of ACM Workshop on Security of Ad Hoc and Sensor Networks - SASN,
pages 21 — 32. ACM Press, 2003.

D. Carluccio, T. Kasper, and C. Paar. Implementation details of a multi
purpose ISO 14443 RFID-tool. In Printed handout of Workshop on
RFID Security - RFIDSec 06, July 2006.

J. Clulow, G. P. Hancke, M. G. Kuhn, and T. Moore. So Near and Yet So
Far: Distance-Bounding Attacks in Wireless Networks. In Proceedings
of the European Workshop on Security and Privacy in Ad-Hoc and
Sensor Networks, volume 4357 of Lecture Notes in Computer Science,
pages 83-97. Springer-Verlag, 2006.

C. Cremers, K. B. Rasmussen, and S. Capkun. Distance Hijacking
Attacks on Distance Bounding Protocols. Cryptology ePrint Archive,
Report 2011/129, 2011. EPRINTURL.

(12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

The LPDB protocol.

Y. Desmedt. Major Security Problems with the Unforgeable’ (Feige)-
Fiat-Shamir Proofs of Identity and How to Overcome them. In
SecuriCom, pages 15-17. SEDEP Paris, France, 1988.

S. Drimer and S. J. Murdoch. Keep your Enemies Close: Distance
Bounding Against Smartcard Relay Attacks. In Proceedings of the 16-
th USENIX Security Symposium on USENIX Security Symposium, article
no. 7. ACM Press, 2007.

S. Drimer and S. J. Murdoch. Keep your enemies close: distance
bounding against smartcard relay attacks. In Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, pages
7:1-7:16, Berkeley, CA, USA, 2007. USENIX Association.

U. Diirholz, M. Fischlin, M. Kasper, and C. Onete. A Formal Approach
to Distance Bounding RFID Protocols. In Proceedings of the 14™
Information Security Conference ISC 2011, Lecture Notes in Computer
Science, pages 47-62, 2011.

A. Francillon, B. Danev, and S. Capkun. Relay attacks on passive keyless
entry and start systems in modern cars. Cryptology ePrint Archive,
Report 2010/332, 2010.

K. Haataja and P. Toivanen. Two Practical Man-In-The-Middle Attacks
on Bluetooth Secure Simple Pairing and Countermeasures. Transactions
on Wireless Communications, 9(1):384-392, 2010.

G. P. Hancke. A Practical Relay Attack on ISO 14443 Proximity Cards.
http://www.cl.cam.ac.uk/gh275/relay.pdf, 2005.

G. P. Hancke and M. G. Kuhn. An RFID Distance Bounding Protocol.
In SECURECOMM, pages 67-73. ACM Press, 2005.

C. H. Kim and G. Avoine. RFID Distance Bounding Protocol with
Mixed Challenges to Prevent Relay Attacks. In Proceedings of the Sth
International Conference on Cryptology and Networks Security (CANS
2009), volume 5888 of Lecture Notes in Computer Science, pages 119—
131. Springer-Verlag, 2009.

C. H. Kim, G. Avoine, F. Koeune, F.-X. Standaert, and O. Pereira.
The Swiss-Knife RFID Distance Bounding Protocol. In Proceedings
of the 14™ Information Security Conference ISC 2011, Lecture Notes
in Computer Science, pages 98-115. Springer-Verlag, 2009.

K. Rasmussen and S. Capkun. Location Privacy of Distance Bounding.
In Proceedings of the Annual Conference on Computer and Communi-
cations Security (CCS). ACM Press, 2008.

J. Reid, J. M. G. Nieto, T. Tang, and B. Senadji. Detecting Relay Attacks
with Timing-Based Protocols. In ASIACCS, pages 204-213. ACM Press,
2007.

D. Singelée and B. Preneel. Distance Bounding in Noisy Environments.
In European Workshop on Security in Ad-hoc and Sensor Networks —
ESAS, volume 4572 of Lecture Notes in Computer Science, pages 101
— 115. IEEE Computer Society Press, 2007.

D. Spill and A. Bittau. BlueSniff: Eve meets Alice and Bluetooth. In
Proceedings on the 1st USENIX workshop on Offensive Technologies
(WOOT 07). USENIX Association Berkeley, CA, USA, 2007.

R. Trujillo-Rasua, B. Martin, and G. Avoine. The Poulidor Distance-
Bounding Protocol. In RFIDSec 2010, pages 239 — 257.

