
Functionality for Object Migration Among
Distributed, Heterogeneous, Autonomous DBS

Elke Radeke
Cadlab

Cooperation University of Paderhorn &:, S.\l1 AG
DahullOf:::;tr. :12, :1:n02 PaderbOl'll, GeflllnllY

elke(ftcadlab.de

Abstract

Marc H. Scholl
University of VIm

b'aculty of Computer Science
B90G9 l]lll, Cermctny

scholl (fl~inforlll atik .llni-lllm.de

In current. enterprisPR, dat.a is di~t.riblJted over a Illultitude of het.E'rogE'nE'olJf)~ autonomous

da,iabai:lc SYSLt'Illi:l. These i:),Vi:)Lcrn~ arc often i~olaLt'd aud an exchange of data among Lhem ii:l

not easy. On the other hand~ deCreCl.hing t.ime-tn-market period:::-, and raihing t.echniquE's like

Concurrent Enl';ineering require good support in dynamic change of data location in uariotls

gmnnlaritifS. Dat.a ,viii not rehide in the dat.abasE' :.:.;y:.:.;tern of a project group or depart.ment all

the time but need to be moved or duplicated concurrently to others. To fulfill this industrial

rcqllircrncni~ \VC develop fUllcLionalit,\' cnabliug differeni grauulariLics of daLa (object) migra

tion amongmttltipie database systems. The underlying architecture and concepts are beinl';

derived from a requirement analysis and ex Lend a federaLed DDS approach.

1 Introduction

Database systems are essential components of today's information systems. For more than two

dccadcs~ different database systems have bCCll builL or acquired ill LIte cuLcrprii:lcs. Due to

VariOlJfl reaflonfl they are di:..:.;triblJt.ed on :::-'f>veral COIllPIJt.E'rf)~ flupport different data tllodelf,~ and

arc diHiculi if noi irnpoi:)i:)iblc to merge. The 1f:J'hnical 'f'fBSOn ii:l thaL no DDS ii:l vvcll appropriaie

to all application dotllainf,~ e.g. an electronic circuit. databaflp IlllJRt provide fa:.:.;t accpf,f, t.o

complex circuit diagrams for simulators and routers while a price database has to provide

fa:::-,t. acrp:.:.;::') to individual records for billing applications. \hxE'over, it haR f'cmwmical TfJlSOlIS

because there are various DBS on the market supporting the same application domain but

differing in service aud price. oneu there arc also oryani:,;alional reason ... \vhen any department

1

http://nbn-resolving.de/urn:nbn:de:bsz:352-201409

can choo:::;e on it.s o\\'n a I)KS wit.hout a global enterpri:::;e st.rategy. So enterpri:::;es live and will

live in a world of distributed, hetero~eneous, and autonomous database systems.

During several years~ enterprises made huge investments for their various database systems:

many database Lools and programs are self-implemenied or acquired and gigabyies of daia are

stored in the databases. But in most enterprises, links amon~ these distributed, hetero~eneous,

and autonomous s.ysLems are missing or only in the minds of the DDS users.

I\ evertheless: users and ihe Vii hole enterprise will benefit frolTI functionality enabling the

n1igration of data/object.s among the -various I)HS:

• It enhances the availability of data, e.~. by replicating data. Techniques like Computer

Sappor'ied Cooperalive IVo.,." (CSCVV) [9] or Computer !lided Concurrent Engineering

(CACb~) [2J are :::;upported by making data of project group:::; or departments \vith a

speciIic DDS available to others wiih differeni DDS. These Lechniques are becoming

important in enterpri:::;es in order to decrease time-t.o-market periods.

• It. :::;upport:::; t.hemigration (~l application.s t.o other I)HS by t.ransferring their exist.ing

data to the target DBS.

• A controlled reduction of the number of DES is eased [12]. Legacy systems can be elimi

naied or DDS supporting the same applicaiion domain may be combined in an enierprise

and object. migration serves for tran:::;ferring :::;till relevant. dat.a to some remaining I)KS.

Our approach provides data/object mi~ration functionality in a software layer on top of the

IllulLiple DES. lL exll'mb Lhe approa.ch or a rederall'd daLabase sysLem (FDES) wiLh migraLion

capabilities. Users can dynamically transfer data of various granularities among the DBS of

an enLerprii:le or cooperaLion.

In contrast to gaLeway database systems offering ihe imporLation of foreign daia from speciIic

other I)HS~ we enable the migration of objects among arbitrary dat.abase :::;y:::;tems: no matter if

they possess a ~ateway feature or not. Additionally, the federation approach allows to globally

cont.rol the migrated object.s~ e.g. to guarant.ee data consist.ency bet.\veen replicas, while most

~ateway systems do not control redundancy between connected database systems. Hence, the

risk for daLa inconsisienc.y decrea.~es. Since our approach may also prei:lCTVe global ideniii.y of

migrated objects, existing ~lobal FDBS applications do not have to be recoded when some

object moves from one DDS io another. On Lhe oLher hand: gaLeway sysiems do noi provide

object identity :::;panning over all connect.ed database systems.

Also ioob i:lupporLing ihe migraiion froIll one isola Led daLabase sysiem to another [:3: 10J are

re:::;trict.ed to a given set of database :::;y:::;tems~ here only t\vo. This makes object migration

across all database systems quite difficult for an enterprise. It requires different migration

tool:::; and, hence~ often different techniques. In cont.raBt~ our II'I)KS approach offers a uniform

object migration mechanism to migrate data among multiple database systems. Moreover,

real world entitie~ that are ~plit over multiple DnS can be iran~ferred a.':) a i:linglc objecL to

some DBS.

In i:lome (homogeneou~~ non-autonomous) distribuled database systemi:l where a ~ingle DnS

i:::; di:::;tribut.ed over mult.iple sit.e:::; (e.g. computers)~ there are also mechani:::;m:::; t.o move or

replicate data from one site to another [lL 4]. nui the purpose i~ differeni io LhaL in FDnS.

In di:::;tributed databa.:::;e :::;y:::;tems~ object migration is realir,ed automatically according to acce:::;:::;

statistics in order to speed up data access. Such an automatic change of object locality, in

general~ is not. desirable for autonomou:::; I)KS. It could eliminate object.sfrom a I)KS which are

still required by some of its local applications. Instead we allow to move, replicate, and copy

objed~ on Ui:lCT demand among Lhe DnS. I\everthde~~~ \ve adopted migraLion concepLi:l from

distributed DBS, e.g. the feasibility to deeply migrate complex objects [,I]. Due to a different

architecLure of FDnS vvhich also con~ider~ auionomy, differentiaied concepts are required.

11'01' example~ diiferent. data vi:::;ibilit.ies re:::;ult in variou:::; migration degree:::;.

The structure of this paper is a.:::; folio-v.,:::;: Sect.ion 2 li:::;t:::; requirement:::; for object. migration

among DBS according to the characteristics distribution, heterogeneity, and autonomy. A

corresponding architecture \vhich couples the I)KS for the migrat.ion process is derived In

Section :i. Section ,I introduces the migration concept of our approach and corresponding

migraiion funcLionality i~ developed in Sed ion 3. The paper i~ concluded in SecLion 6 and an

outlook on future activities is given.

2 Requirements

Dii:lLribution, heLerogencit):, and autonomy pose vanOUi:l requirements on objecL migraLion

among DBS. This section lists general coupling requirements (CR) and specific migration

requiremeni~ (1IR) for these ihree DnS characteri~iici:l. GeneraJ coupling requiremeni~ occur

because source and t.arget. I)KS must be coupled somehow for the migration process. 'I'hey

are abo valid for daLa acce~~ across DnS (but are noL compleLe for an.v kind of data accei:li:l).

In addition, \ve identify requirement.s :::;pecific for object. migration a.:::; a specific form of dat.a

access across DBS.

I)i:::.;tri bllt.ion

Data are distributed overmttltiplc databases. Some of them may be stored redundantly in

several dat.abase:::.; or :::.;plit over mlllt.iple database:::.;. So one real ,vorld entity i:::.; mapped t.o dat.a

of one or many databases. The same holds for meta data.' Distribution raises the following

req uiremen i~:

MRl: 1Iigration ~hall support both a movement of daia among daiaba.':les and a duplicaiion.

MR2: In case all object was already ~Lored redundanLl.y in source and LargeL ihen omiL data

tran:::.;fer during migration by default.

CR1: Contl'Dl of redundant dat.a acrms IlKS (as consequence of ~vllt2).

MR3: llat.a which is duplicat.ed during migration (fV1IU) sha.11 be either treated as replicas

with redundancy control or as independent copies without such control.

MR4: A migrated object must have its meta data as prerequisite in the target database. In

case of absence, ihe target ~chema has to be exiended.

MR5: Real world elltitie~ vviLh data spliL over multiple daiaba.ses can change iheir data

locat.ion eit.her for all their data or for :::.;ome of t.hem.

MR6: If the coupling :::.;ofhvare oilers tran:::.;parent access on mlllt.iple databaBes~ then ob-

ject migration has to preserve the real world entity at the coupling interface. "!either its

daia/relaLion~hips nor Lheir global vi~ibiliLy have io change b.y Lhe migraLion of an objed.

IIeierogenei Ly

SOllrce and target I)KS may dztJer in /wrrlwarf' or operating 8(~fhrare, In t.he data rnodd~ the

8cherrw ~yniax and ~emaniic~, a.s vvell <.i.S Lhe data.

CR2: Heterogeneous hardv.'are and operating soft\vare require the agreement on a common

data exchange.

CR3: IIeLerogeIleous daLa modds reqUIre a mapping among the daLa model dements, I.e.

between their data description elements and operations.

CR4: Heterogeneous schemata require a mapping among the schemata, i.e. among the meta

daia. Thereby noi only the syntax of ihe ~chemaLa i~ relevant but abo Lheir ~emaniic~.

MR7: If an objecL migrate~ beivveen Lwo heierogelleou~ DnS~ it require~ an equivaleni to iL~

l Ry scpamLing !.lIC propcTtics disLrihllLion and hdcmgcnciLy, .,vc only (:onsider data disLrihllLion OVCT rTl1J1-

lipk daLahascs in !.llis par"agraph bilL do no! mean disLribJJtion over dilTerenl hanhvare or operating sort wan:

which is often meant by distributed DllS.

coupling coupling

couplingcoupling

DBS1 DBS2

DBS3 DBS4

DBS1 DBS2 DBS4

coupling layer

DBS3

(1) (2)

Adapter

User/Tool User/ToolUser/Tool

Global Interface

...

User/Tool

External

Federation
 Kernel

Database Coupling

Adapter
...

Global−
 DB

DBS1 DBS2 DBSn

Ad
m

in
is

tra
tio

n
In

te
rfa

ce

DBS

(0111" OM 1" OQL), a.o. added by funct.ionalit.y for schema mapping (CI~4, CIW), global

redundancy identification, and object migration. It allows a uniform and transparent access

to data of all CDHS. Other int.erfaces are reali7,f~d (j':::; f'J;ffT1W.l ariaptfT8 on top of it.~ e.g. ap

plication specific interfaces.

1IcLa informaiion <J .. ':l vvcll as global data that do noL Illap Lo all,V DDS arc i:lLorcd in an auxiliary

database, the Global-DB.

By Lhe adTilini8lralion inieljiu,e, lhe FDBS is sLarled, slopped, iniLialized, and DBS arc cou

pled/decolJpled to/from the [I' I)HS. The federation. kern.el reali7.p:::; tasks slJch as query decolll

posiLion~ global Lrani:ladioll rna,nagcrncnL~ and global redundancy conirol (CR.l).

4 Concept for Object Migration

To support object migration among distributed, heterogeneous, autonomous DBS, we extend

the federaLion approach vviLlt COITc~ponding fundionaliLy. The migration is invoked via Lhe

global int.erface of t.he II'I)KS and is called "objecC migration becaufle \ve Ufle a canonical

objed-oriented daia model. n,\' object migraLion, objed~ can be migraied among arbitrary

corn ponent. dat.abase flYfltemfl.

The functionality for object migration 1ll FDBS is based on the migration framework we

developed in [1:3J. \Ve summarize brieIly iLi':) concepLi':) in Lhi~ i':)edion before deriving Lhe

migration functionality. Important characteristic is that compatibility to existing applications

which accei':)i':) the global/ex Lerna I interface of Lhe FDnS ii':) preserved, a change of data localiLy

by migration will be t.ransparent t.o them CvlIW).

4.1 Base Model

During object migration, the object's data attributes are transfered in a consistent state from

~ornl' source CDBS Lo a LargcL CDBS ('cIRS). The object's clas~ or an equivalenl clas~ is

required as prerequisit.e in t.he target. CIlHS for t.his (fv11<4, ~vllt7). Hy default, only single

objects are migrated so that relationships and related objects are not transfered. In this

paper~ \ve ext.end this by alflo conflidering relat.ionshipfl and related object.s during migration

optionally (Section ').2.2).

ExalTIple: An FDnS example conLaining Lwo salei':) daiaba .. ':le ~y~iems~ one for each i':)ale~ dis

trict, ,viii illufltrat.e object. migration for cust.omer dat.a (ll'ig. :3).

global
interfaceCustomer

 SalesDBS1 SalesDBS2

Article

no: 174
name: Meier
buy: art1

no: 174
name: Meier
buy: NULL

no: 174
name: Meier
buy: art1

Article CustomerCustomer

g1 g2 g3 g4 g5

l1

Global
objects

Local
objects

Global−DB CDBS1 CDBS2 CDBS3

g6 g7

g5: reduced fed. unique object
g6 reduced fed. multiple object
g7 reduced fed. union object

g2: federated unique object
g3: federated multiple object
g4 federated union object

CDBS4

g1: globally new object
l1: globally invisible object

Target
CDBS

Target
CDBS

Target
CDBS

Source
CDBS

Source
CDBS

B) A) C)

Target
CDBS

Target
CDBS

Target
CDBS

1) 2) 3)

known hom existing IlKS, e.g. COMIC [7] and COCOO.'i [II]. In lillKS, they require an

object migration if the classes are mapped to different CDBS during schema integration. Al

though an lillKS approach, namely O*SQI. [8], includes class change operat.ions, the underly

ing object migration was not elaborated. vVe fill this gap by specifying class change operations

in Lcrrn~ of our object migration diIIlCll~ioll~. \Vhile Lhci:)c operations allow a transparent ob

ject migration, they restrict on the operation primitives absolute movement / replication, on

the migration degree globally compleLe alld~ moreover, require i:lpcciIic Lypc/da,,':)i:) mappings.

Therefore \vp add fxplicitmigration operations \vhich enable the specification of all migration

dirncll~ioll~ (abo conIigllrablc) but in rnoi:lL casc~ do noL allovv transparent object migraLion.

Hot.h implicit. and explicit. operations together result. in a flexible object migration mpchanifltll.

In t.he follmving, \ve :::;pecify t.he migration operation:..:; and pxtend the global interface \vith

corresponding functionality. For each operation, a programming language independent spec

iIicaLion i~ presented in the specification notation IDL u~ed by OD:J.ilG [1J. Then its u~age

is illustrated by an example for a C++ binding which extends the ODMG C++ OML by

cOITe~ponding meLhods.

5.1.1 Implicit Migration Operations

Implicit migration operations change the objects class. They implicitly invoke an object

migration for Llwi:)e ca .. ':)es where i:)ource and LargeL da .. ':)i:) arc mapped to different CDnS. \Ve

require t.hat. both clCl':::;fles are defined in the application schema (federated/ext.ernal schema

according to the ,5 level sdlema architecLure of [L5]) and have a common superclass. During

object migrat.ion all common data of both classefl are tranflferred from the object from sOlJrce

class to target class. Attributes of the target class with no corresponding in the source class

are init.ialieed with default values (e.g. I\UI.L).

Example: A~~urnc a, univlT~ily FDBS conlains a SludcnlDBS and ErnployccDBS (Fig. 7).

The federated schema has a class StIlrient mapped to a local cla~s/type in Student.llKS,

a clas~ Employee mapped to ElnployeeDnS~ and their ~uperclas~ Person. A global

application can change the clClSfl of a fltudent object to Fmp/oyee~ e.g. becaufle the st.udent

ends his study and starts work as university employee. Because the two classes are

mapped to different CllKS , implicit.ly amigrat.ion ofthe personal dat.a from St.lJdentllKS

to E mployeeDBS is required. At the global interface nothing changes, the person only

change~ Lhe semantic for the university, global idenLiLy remaini:) Lhe i:)ame. IIence existing

11

Student Employee

EmployeeDBSStudentDBS

global
interface

Student
class

Employee
class

ne\v stlldent. assistance~ bllt. for global applications the st.udent ret.ains global identity

and is visible as a single person at the global interface although he is stored in both

StudentllKS and b;mployeellKS. fvimeover, the 1·'llKS may gIJ3.I'antee the eonsd.cney

between the replicates.

The follovving code demoni':)Lratei':) the Ui':)e of the operaLioni':) for the C++ binding:

//absolute movement of a student into class
any_student = Student [matr_no == 0815J;
any_student->shift (Employee);

Employee
//object selection
//object movement

//a student is added into class Employee but remains also in Student
another_student = Student [matr_no == 4712J;
another_student->add (Employee);

Both implicit migration operations are transparent, i.e. the user has to specify neither source

nor target CDnS. nut implicit migration operation~ do not ~upport all luples of migraLion

dimensions. They require that sOllrce and t.arget. claBs are diiferent.~ map to diiferent. CI)KS,

and have a common i':)uperda.':)i':).

5.1.2 Explicit Migration Operations

By explicit migration operations all combinations of migration dimensions are supported. In

general~ t.hey represent. non-transparent operations~ but \ve \vill also figure Ollt. some special

cases in this section which work transparently.

INe offer an explicit migration operation for each operation primitive, i.e. for absolute move-

ment~ replicaLion, and independenL copy. Each of Lhem requirei':) as input an objecL lo be

migrated as "\vell aB source and target schema. The object. then is migrated from the CI)KS

corre~ponding to the ~ource schema to the CDnS a .. ':)i':)ociated with Lhe LargeL sdlema.

ExalTIple: A~ an example which ab~oluLdy require~ explicit migraLion operation~ and Vi/ill not

do with implicit. migrat.ion operations we use the sales II' I)HS (T'ig. 8) where customers

arc scored in lwo CDBS Sall'sDBSl and SalesDBS2 depending in which sall's dislrict

the person live. \Vhen a cllst.omer moves into anot.her sales district its data has t.o

be migrated into the other sales DBS. This cannot be realized by implicit migration

operations because only a single global class exist.s for customer. Inst.ead some explicit

migration operations are required \vith source and target as input. Source and target

are ~peciIied uniquely in termi':) of Lheir associaLed ~chemaLa.

Sales1DBS Sales2DBS

CustomerCustomer

Customer

sign ilKS), for production (I'roductionllKS), and two for sale (SalesllKSI, SalesllKS2).

Csing a C++ binding of the explicit migration operations, objects are transferred as

follmVfl among t.he dat.abaBP system:.:.;:

obj2=obj->copy (SaleslLocalSchema,Sales2LocalSchema)j
fleopyof 'obj' from SalesDBSl to SalesDBS2 with

Illocally complete migration degree

obj->replicate (ProductionExport,SaleslExport);

I/object replication ~olith partial migration degree

obj->move (CACEGlobalScherna,Global-DBExport)j
Ilabsolute movement 107ith globally complete migration
Iidegree to Global-DB

COllIigura,iioll of Explicit lvIigraLion Opcra,iioll~

In general : Lhe migraiion operations arc noi transparent bccaui:lc Lhe,Y require locaLion infor-

mation for the flOIJrce and target, schema. This if) not tranflparent for the !rnver t.hree schema

levels of Sheth and Larson's schema architecture. But we allow also to configure this infor-

mat.ion. Therefore~ t.he user statically specifies Rome parameters \vhich can be left out in the

dynamic calls of the explicit migration operations. The following configurations are possible:

Fixed Source

IVhen migralion shall be done from a single CDI3S, e.g. if lhis CDI3S is planned lo be elim

inated from the FDBS, then the user can configure a fixed source. This is invoked by the

follovving FDI3S operation:

fix_migratiol1_source (source: schemaJD)

Fixed Target

When migration is realir,ed const.antly to a single CllKS this CllKS can be configured as fixed

target. For example, if data shall be transferred from some legacy DBS to a DBS of new

databCl.:::;e t.ech nology.

A target is fixed by the following FDBS operation:

fix_migratiOlLtarget (target: Schema-' D)

Fixed Source and Target

If both ~Ollrcc and target CDDS arc conIigllnxL the explicit migration operations are COIll-

pletely transparent. They do not require any CDBS parameter.

11'01' some special combinations of object kind and migra,tion degree \ve provide also transpar-

ent access, althoul';h only a target CDBS is confil';ured: Partial or locally complete migration

to a fixed CI)HS for global ne\v~ federated and reduced federated unique objects:

The source CDBS is unique and implicitly known for these object kinds and the tarl';et CDBS

if:' eonIigured.

J.ligralion ()alls Considering Conjiguralion

If migration source and/or tarl';et is configured for an FDBS then this information can be

left oui for Lhe d,ynamie calb of Lhe migraLion operaLionf:'. For conIigured information Lhe

user can :::;pecify default values~ e.g. the constant II'IX~:,I). Such default parameters can also be

generaied by ihe conIiguration informaLion for f:'ome language bindingf:' and do not have to be

mentioned in the operation call. In the C++ binding~ for instance, default parameter:::; can be

generated for the last parameters. If the target CDBS is configured, the user can leave this

l(l,f)t parameter for hi:::; operation calls at all. In C(l,f)e both source and target are fixed then no

CDBS has to be given so that the calls of explicit migration operations become transparent.

Also for the f:'pecial Lranf:'parent case of parLial or loeall,y compleLe migration Lo a Iixed CDnS

for I';lobal new, federated and reduced federated unique objects where the source CDBS is

impliciLl,y known Lhif:' parameter can be leLl,

To enhance Ilexibility, we allovv both io Uf:'e the conIigured information and Lo overwrite

it for :::;pecific migration calls. Therefore the configuration is not re:::;tricted to the absolute

source/tarl';et but can determine a frequent source/tarl';et, too. If a user leaves out some

l(l,f)t parameters~ the configured information is taken. In C(l,f)e he specifies some source and/or

tarl';et in his operation call this is valid for the mil';ration.

Example: AsslJme in the CACb>I'I)KS SalesilKSI and SalesllKS2 shall be combined t.o a

single DBS (SalesDBS2) because both sales districts became a single one. Then Sales-

I) HS-l is specified (l,f) fixed :::;ource for migration operations and Sale:::;I)HS2 (l,f) fixed target.

The following code using a C++ binding shows the confil';uration as well as dynamic

migraiion calls considering Lhe conIiguralion ref:'p. ovenvriLing Lhe conIiguration tem-

porarily.

//Configuration of source and target
fix_migration_source (Sales1Local);
fix_migration_target (Sales2Local);

//migration call using configured source and target

Hi

II (generated as default parameters)
obj->move ()j Ilabsolute movement from SalesDBSl to SalesDBS2

l/tolith locally complete migration degree

Iloven7rite the source but use the configured target
obj->replicate (ProductionLocal);

Ilreplication from ProductionDBS to SalesDBS2

Iloven7rite the target but use the configured source
obj->copy (FIXED, ProductionLocal);

Ilcopy from SalesDBSl to ProductionDBS

I I oven7ri te both source and target
obj2 = obj->copy (DesignExport, ProductionExport);

Ilcopy from DesignDBS to ProductionDBS

5,2 Advanced Operations for Migrating Multiple Objects at Once

\Vhile ,ve rest.ricted on the migrat.ion of single object.s in the previouR Rection~ here ,ve ext.end

the functionality to mil';rate object sets and object graphs (objects with related objects)

invoked by a Ringle operat.ion oft.he global II'I)KS int.erface. ThuR t.he user:::; can apply advanced

mil';ration operations and do not have to self-implement them. The advanced functionality is

reali:t:ed once in Lhe ~y~tem and mans' u~eri:l can bencIit from it. :J.iloreover, Lhei:le mulLi-objecL-

operations can be mapped to most DBS more efficiently than multiple single-object-operations

invoked by the Ui:ler. They require, in general~ le~~ DnS calls.

Analogoui:ll.y to the ba .. ':le functionaliL.y~ we specify each operation in the programming language

independent manner fir:::;t and then illust.rate it.s u:::;age for a C++ binding. '(' heir formal

semantics is defined by a mappinl'; to the base operations. Since the specification and mapping

of the advanced shift. and add operations <1':::; \vell as the advanced move and replicat.e operationR

are analogously~ we specify them in comn10n.

5.2.1 Migration of Object Sets

In order t.o migrate a specified set of objectR, "ve allow to apply the implicit. and explicit

migration operations abo on objecL ~d.s. It impliei:l an iLerative execution of object migraLion

for all object:::; given in t.he object set (11'ig. 9). Thi:::; allow:::; t.o firRt query Rome object:::; uRing

comfortable query operations and then migrate the selected objects.

The specification of these operations as well as their mappinl'; to the base operations is given

in the following. Therefore the ad vanced ~hin and add a.s well a.s the advanced move and

Global
interface

Target CDBS

migrate

object
 set

Source CDBS

Global
interface

Target CDBS

migrate

Source CDBS

object
 set

'-) 1'011 FACH 0 E 08:

shift/add (0, new_class);

fCC)l! ,,"'ACH rdatiolIship l' of 0 fulfilling the restrictions IT

FOR EACH obj E 1': IF obj E os: seLrel (0, obj, r, CDRS'_of_new_class);

move/replicate-seLwith_rel (os:set<Object>, source:SchemaJ D, target:SchemaJ D, rr: Rei Restriction)

'-) 1'011 FACH 0 E 08:

moue/replicate (0, source, target);

FOR KtCII reia/ionship l' oI 0 Illljilling the restrielions IT

FOR EACH obj E r: IF obj E os: seuel (0, obj, r, target);

copy-seLwith_rel (os:set<Object>, os_copy:set<Object>, source:SchemaJD , target:SchemaJD,

rr: Rei Restriction)

'-) 1'011 FACH obi E os:

copy (obi. 'IU::' UU) uj, 80U,{'Cr::,. lmyel);

FOR EACH relationship l' of 0 ful.filling the restrictions 1'1'

1"011 FA CH ohi E 1': II' ohi E 08: seLrd (0, ohi, 1': tarqet):

Example: The following example migrates the two married customers Adam and Eve from

SalesDBSl lo Sall'sDBS2 when lhey move lown, Thereby il lransfers lheir rdationship

ma,rriecLv/ith as \vell. The C++ binding lJflPS const.ants to :::;pecify relat.ionship kinds:

INCL_RELATE ror rdall'-rda.lionships, INCLCONTAIK for conlain-rdationships, and

INCI,_ln: LAT~:_COI\TAL\j for both, It can be ea~ily extended 1'01' further relationship

kinds by offering additional constants,

//selecting both customer Objects (with no = 1011 and no = 1012)
obj_set = Customer {no == 1011 I I no == 1012};

illocally complete absolute movement of their data incl. the relationships
obj_set->rnove_set (Sales1LocalScherna, Sales2LocalScherna, INCL_RELATE);

An import.ant restriction of this kind of migration is that object sets (in general) only contain

objedl':(of a single clasl':(. Therefore only relaLion~ltips are considered aIIlong objedl':(of one

class. In t.he next. section \ve int.roduce funct.ions "\vhich migrate arbitrary relationships.

20

Source CDBS Target CDBS

Global
interfacemigrate

move/replicate_graph (o:Object, source:SchemaJD, target:SchemaJD, rr:ReIRestriction, deep:lnteger)

Y 'ITwvr::/replicale (0,. SOUrcf,',. larye!);

II' deep> 0

FOR EACH relationship r of a falfilling the restrictions rr

1"011 FA CH obi E r:

move/replicate_graph (obj, soarce, target, rr, deep-i);

seLrel (o, ob), r, tmyel);

copy_graph (o:Object, o_copy:Object, source:SchemaJD, target:SchemaJD, rr:ReIRestriction,

deep:lnteger)

y copy (0, o_copy. source, taryel),:

FOR KtCII T-eialiollship r oI 0 Illijilling the restrielions TT

1"011 FA CH obi E r:

copy_graph (obj, tmp_obj, source, target, rr, deep-i);

scLrd (0, obi, r , tarqfl);

Koic thaL the implicit operationi':) can only con~idcr objects of a single da .. ':)i:) ~incc they dcIinc

a fix source class, But in contrast to the object set operations of the previous section: the

user migraici:) onl,\' related objects by ~pccir.ving a ~inglc starting object.

ExalTIple: A~~urnc for our CACE FDDS thaL customers arc migrated together with all arLi

cles they bought.. That means \vhen a customer moves t.mvn into another flalpf) district

both hi~ personal data and his related arLidc~ arc migrated between the salei':) daLabase

systems. Then \ve only have to specify t.he customer object and invoke recur:::;ive migra-

tion of all related objects of type Article,

/ /locally complete absolute movement of customer c l-7ith all his articles
c->move_graph (SaleslLocaISchema, Sales2LocalSchema, Article);

t\../Ioreover~ a de:::;ign object of l)e:::;ignl)HS composed of multiple part:::; \vhich them:::;elve:::;

contain parts etc, can be easily transferred to the ProductionDBS usinl'; a sinl';le op-

erat.ion. Such complex objects frequent.ly occur in engineering areas and hence object

graph migration I';ives good support in Concurrent Enl';ineering where these data are

exchanged among DDS.

//partial independent copy of a complex design object with ALL its components
d->copy_graph (DesignExport, ProductionExport, INCL_CONTAIN)j

6 Conclusion

Hased on a requirement. an al y:..:;i:..:; , \ve presented an archit.ecture and concept:..:; for migrating

objects among distributed, heterogeneous, and autonomous DBS. Kew functionality is incor-

po rated into the cho:..:;en architect.ure of federated dat.abase syst.em:..:;. It allo\vs to migrate dat.a

among DBS in various granularities dynamically. INe introduced migration operations and

pre~enLed a C++ binding which seamlei:li:ll.Y extends the OD~,'1G ~tandard. The operaLioni:l

allow to (a) implicitly migrate objects by changing their class or (b) explicitly migrate objects

from one DDS Lo another. "VVhile the fonner arc tran~parenL, but only ~upport few migraLion

case:..:;~ the latter :..:;upport a wide area of object migration reque:..:;t:..:;~ but. do not allow a tran:..:;

parenL migration in mOi:lL ca .. ':les. Together. they oIfer a Ilexible objecL migration functionaliLy.

\Vhile base operation:..:; allow t.o move~ replicate~ or copy single object:..:; acro:..:;:..:; I)HS~ advanced

operations enable the migration of whole object sets or object graphs with a single operation.

INe already validated the need for object migration by some industrial project cooperations

where in palticular the coupling and ~tep\\'ii:le reduction of the multiple existing DDS vvas

requested [12]. Currently, we are developing an FDBS which couples primarily relational

database sysLerm (Entire, Oracle), object-orienied daLabase SYSll'IllS (Sifrarne-O'cIS), and

file systems (Unix). It will be extended by fllrther ilKS adapters. e.g. considering specific

data(ba.se) systeIlli:l of our indui:lLrial projecL partIU .. 'r~. In order Lo fuUm Lhe industrial require

ment.s~ t.he [I'[)HS will also incorporate object. migrat.ion funct.ionality.

References

[lJ CATELL, H ,C ,C, The ub:ltd dul"u"st 'l"ndunl: ODMG '.93, Morgan Kaufmann Publisher, 1991,

[2J CHAPPELL, C., STCVE"fSOK, C. Gonwllwl Eagmttlmg: The ivI",kfl Oppurlamly. OVUH.
1992.

[:)J D'-\ I.,~;, R. Database migration: keeping a steady COllrse. /Jatobo8f Programming ond f}fsign ·~-1(4),

pages :111 :18. HJ~JIl.

['1J DOLLLVIOHE . .T .. KASCIME"fTO, C., XU. W, fine grained object migration, In P,OC. Irll'l
ll'orksfwp on. Distributed Object Almwgcment (Edm.onton. Canada), pages 181-186, 1992.

[5J European Comput.er :rvianufact.urcs Associat.ion (EC~,fA). Standard ecma-149: Port.able common
tool environment: Abbtracl. specifica.tion, versioll 1.0, HJ90.

[nJ EVE::.l'" , S. Cr(lph Algorilhrns. Computer Science Pre::;b, 1979.

[7J 1(;\CHf:L, G .. fi.illlf:Kf:, b:., Hb:I.H:\lGA, W. COMIC - A step toward flltme data models.
Cadlab-HeporL ;1/92, 1992.

[8J LIT\Ve,L \V. O*SQL: a language for multidatabasc interoperability. In Fmc. IFIP-DS'5 S'cman.
tiu; of /nteroperablp l)atobo8f SY8tfJ1U; (/,orl1F, A1J8tmliaj, pages 114-1:):),1992.

[9J M,\fiCiI, Il., flOCK, G. Groupware: ,)Ojtll'(JTF for Computer-Supported Coopemtil'e Work. In:b:
Computer Society Pret)s, HJ92.

[HIJ MEICn., A .. DIPPOLD, n.. :Vligration and co-exdence of heterogeneous daLabases: practical
sollltions for changing into the relational database technology (in german). /njol'motik-Spektl'lJm

1/i(3), pages 1G7 Inl;' 1992.

[l1J OSZl;, IVLT., VALDUmCZ, P. Principle, uJ D"triuultcl Dalauc"e Sy,ltnl>. Prentice Hall Pub
lishing, 1991.

[12J H.AI)EI(E, K, SCHOLI.., rv1.H. Federation and steFivise redllction ofdatahase systems. In Pro(;.

lsi Inl'[COrl! on AppliwLioru::> of Dalabwjf!j (1/adslerw, Sv)txitn), HJ~H.

[1:1J HADEKE, E., SCHOLL, IvLIL framev'iork for object. migration in federated database system::;.
In Fmc. In.t'l Conf on Fomllcl mu! Distributed Dotabosc S'ystcms (-1ustin, U8..-1), 1994.

[14J S!\ l:n:Hl F., CilSTf:U,!\\lOS M., Gil flCI A-SO I,ACO M. Suitability of data models 8" canonical
models [or federated datab""es. 8IcMOD RECORD !20(U pagestttR, 1991.

[HiJ SHETH, A., LAHSON, J. federated databa.~e sy::;tems for managing disLribuLed, heterogeneous.
and autonomous databases. jlC~'1 Computing Surveys 22(3), pages 183-236,1990.

[16J SRI)JIDHI. H.N. }Ianagement of redundant data in interoperable environments. In Fmc. 2nd
Inl'l H"orkshop on Irllt)'opt)'(lu'll'lly in jIullidalauast SysLf'rns (l--c'Ifrma, Auslria), pages 2:1G 2:19,
1993.

[17J TRESCH, :rvi. Dynamic evolution in object databases (in german). PhD thesis, University of
Ulm: Germany . b'i~b. 1994.

Contents

1 Introduction

2 Requirements

3 Architecture for Coupling Multiple DBS

4 Concept for Object Migration

4.1 Kase .vlodel

4.2 \'ligration Dimensions

5 Interface Functions for Object Migration

.5 .1 Dasc Operations

'>.1.1 Implicit Migration Operations.

'>.1.2 Explicit Migration Operations.

'>.2 Advanced Operations for :cIigrating :cIultiple Objects at Once

5.2.1 Migration of Object. Sets

5.2.2 Object Set rVligration Considering It.elatiotlshipfl

5.2.:3 I (pel] rRive \'ligration of Object C raphs

6 Conclusion

1

3

5

7

7

8

10

10

11

1:1

17

17

19

21

23

	Text1: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-201409
	Text2: Ersch. in: Proceedings / RIDE-DOM '95 : fifth International Workshop on Research Issues in Data Engineering-Distributed Object Management / RIDE-DOM '95. [Editorial production by Penny Storms]. - Los Alamitos, Calif. [u.a.] : IEEE Computer Soc. Press, 1995. - S. 58-66. - ISBN 0-8186-7056-8http://dx.doi.org/10.1109/RIDE.1995.378744

