Ersch.in: Proceedingg RIDE-DOM'95: fifth InternationalWorkshopon Researchssuesn Data
Engineering-Distributed®bjectManagement RIDE-DOM'95. [Editorial productionby Penny
Storms].- LosAlamitos,Calif. [u.a.] : IEEE ComputerSoc.Press,1995.- S.58-66.- ISBN
0-8186-7056-8

http://dx.doi.org/10.1109/RIDE.1995.378744

Functionality for Object Migration Among
Distributed, Heterogeneous, Autonomous DBS

Elke Radeke Marc H. Scholl
Cadlab University of Ulm
Cooperation Liniversity of Paderborn & SNI AG Faculty of Computer Science
Bahnholstr. 32, 33102 Paderborn, Germany 89069 Ulm, Germany
elke@eadlaly.de schall@informatik.ani-ulm.de
Abstract

In current enterprises, data is distributed over a multitude of heterogeneous, autonomous
dalabase systems. These systems are often isolated and an exchange ol data among them is
not easy. On the other hand, decreasing time-to-market periods and raising techniques like
Concurrent Engineering require good support in dynamic change of data location in various
granulorities. Data will not reside in the database sayatem of a project group or department all
the time but need to be moved or duplicated concurrently to others. To fulfill this industrial
requirement, we develop [unctionality enabling dillerent granularities of dala (object) migra-
tion among multiple database systems. The underlying architecture and concepts are being

derived [rom a requirement analysis and extend a [ederated DBS approach.

1 Introduction

Database gsystems are essential components of today’s information systems. For more than two
decades, different database systems have been built or acquired in the enterprises. Due to
various reasons they are distributed on several computers, support different data models, and
are dillicull il notl impossible to merge. The lechnical reason is thal no DBS is well appropriate
to all application domains, e.g. an electronic circuit database must provide fast access to
complex circuit diagrams for simulators and routers while a price database has to provide
fast access to individual records for billing applications. Moreover, it has economical reasons
because there are various DBS on the market supporting the same application domain but

dillering in service and price. Ollen there are also organizalional reasons when any department

1

Konstanze©Online-Publikations-Syste(KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-20140

http://nbn-resolving.de/urn:nbn:de:bsz:352-201409

can choose on its own a 13YBS without a global enterprise strategy. 50 enterprises live and will

live in a world of distributed, heterogeneous, and autonomous database systems.

During several vears, enterprises made huge investments for their various database systems:
many databaze tools and programs are gell-implemented or acquired and gigabyies ol dala are
stored in the databases. But in most enterprises, links among these distributed, heterogeneous,

and antonomous systems are missing or only in the minds of the DBS users.

Nevertheless, users and the whole enterprise will benefit from functionality enabling the
migration of data/objects among the various DBS:

o [t enhanceg the availadility of data, e.g. by replicating data., Techniques like Computer
Supported Cooperative Work (CSCW) [9] or Compuler Aided Concurrent Engineering
(CACHE) [2] are supported by making data of project groups or departments with a
specilic DBS available to others with dillerent DBS. These lechniques are becoming
important in enterprises in order to decrease time-to-market periods.

e |t supporta the migration of applicntions to other DBS by transferring their existing

data to the target DBS.

o A controlled reduction of the number of DBS is eased [12]. Legacy systems can be elimi-
naled or DBS supporting the same application domain may be combined in an enlerprise

and object migration serves for transferring still relevant data fo some remaining DBS.

Our approach provides data/object migration functionality in a software layer on top of the
multiple DBS. It extends the approach of a lederated database system (FDBS) with migration
capabilities. sers can dynamically transfer data of various granularities among the DBS of

all (,‘.HL(,‘,I'I)I'iS(,‘, Or ('D(Jp(‘l"dl,i()ll.

In contrast Lo galeway database systems ollering the importation ol loreign data [rom specilic
other DKBS, we enable the migration of objects among arbitrary database systems, no matter if
they possess a gateway feature or not. Additionally, the federation approach allows to globally
control the migrated objects, e.g. to guarantee data consistency between replicas, while most
gateway systems do not control redundancy between connected database systems. Hence, the
rizk [or data incongistency decreages. Since our approach may also prescryve global identity of
migrated objects, existing global FDBS applications do not have to be recoded when some
object moves [rom one DBS Lo another. On the other hand, galeway svstems do not provide
ohject identity apanning over all connected database systems.

Also tools supporting the migration [rom one isolaled database system Lo another [3, 10] arce

b

restricted to a given set of database systems, here only two. T'his makes object migration
across all databage systems quite difficult for an enterprise. It requires different migration
tools and, hence, often different techniques. In contrast, our FDDBS approach offers a uniform
object migration mechanism to migrate data among multiple database systems. Moreover,
real world entities that are split over mulliple DBS can be transferred ag a gingle object to
some DBS.

In some (howogeneous, non-antonomons) distributed database systems where a single DBS
is distributed over multiple sites (e.g. computers), there are also mechanisms to move or
replicate data [rom one site to another [11, 4]. But the purpose is dillerent 1o that in FDBS.
In distributed database systems, object migration is realized automatically according to access
statistics in order to speed up data access. Such an automatic change of object locality, in
general, is not desirahle for autonomous 13BS. It could eliminate objects from a DBS which are
still required by =ome of its local applications. Instead we allow to move, replicate, and copy
objecls on user demand among the DBS. Nevertheless, we adopted migration concepls [rom
distributed DBS, e.g. the feasibility to deeply migrate complex objects [1]. Due to a different
architecture of FDBS which also considers aulonomy, dillerentiated concepts are reguired.

l'or exam ple, different data visibilities result in various migration degrees.

The structure of this paper is as follows: Section 2 lists requirements for object migration
among DBS according to the characteristics distribution, heterogeneity, and autonomy. A
corresponding architecture which couples the DBS for the migration process is derived in
Section 3. Section 4 introduces the migration concept of our approach and corresponding
migration [unctionality is developed in Seclion 3. The paper is concluded in Section 6 and an

outlook on future activities is given.

2 Requirements

Distribution, helerogeneity, and antonomy pose various regquirements on object migration
among DBS. This section lists general coupling requirements (CR) and specific migration
reguirements (MR) [or these three DBS characteristics. General coupling requirements oceur
hecause source and target 1DBS must be coupled somehow for the migration process. They
are also valid [or data access across DBS (but are notl complele for any kind of data access).
In addition, we identify requirements gpecific for object migration ag a specific form of data

access across DBS.

Yistribution

Data are distributed over multiple datebascs. Some of them may be stored redundantly in
several databases or aplit over multiple databases. So one real world entity is mapped to data
of one or many databases. The same holds for meta data.' Distribution raises the following
reguirerments:

MRI1: Migration shall support both a movement of data among dalabases and a duplication.

MR2: In cage an object was already stored redundantly in source and targel then omil data

transfer during migration by default.
CR1: Control of redundant data acrosa DBS (as consequence of MR2).

MR3: Data which is duplicated during migration (MR1) shall be either treated as replicas

with redundancy control or as independent copies without such control.

MRER4: A migrated object must have its meta data as prerequisite in the target database. In
case of absence, the target schema has to be extended.

MRS5: Real world entitiee with data split over multiple dalabases can change their data
location either for all their data or for some of them.

MR&: If the coupling software offers transparent access on multiple databases, then ob-
ject migration has to preserve the real world entity at the coupling interface. Neither its
dala/relationships nor their global visibilily have to change by the migralion ol an object.
[Tetlerogeneity

Source and target YBS may differ in hardware or operating software, in the data model, the

schema synlax and semantics, as woll ag the dala.

CR2: Heterogeneous hardware and operating software require the agreement on a common

data exchange.

CR3: Ileterogencous dala models require a mapping among the dala model clements, ic.

between their data description elements and operations.

CR4: Heterogeneous schemata require a mapping among the schemata, i.e. among the meta

dala. Thereby notl only the syntax of the schemala is relevant but also their semantics.

MRT: II an objecl migrates belween lwo helerogencous DBS, it requires an equivalent o its

"By scparaling ihe propertics distribulion and helerogencily, we only consider data distribution over mul-
tiple databascs in this paragraph bul do nol mean distribution over different hardware or operating sofltwarc
which 1= often meant by distributed D35S,

meta data in the target schema. If no such equivalent meta data is defined in the schema

mapping (see above), the target schema as well as the schema mappings have to be extended.

Autonomy

Database systems retain their separate and independent control. Each DBS determines its own
data representation and functionality, decides what is visible to other DBS, chooses when and
how to communicate with others, when to execute external operations and may abort external

operations if, for instance, local constraints are not met.

CR5: When the DBS chose different/heterogeneous kinds of data and functionality then this

heterogeneity has to be solved (see above).

CR6: The DBS have to notify what data is accessible and what functionality may be used.
CR7: The DBS have to agree on a common communication.

MRS8: Object migration has to leave consistent data in source and target DBS.

These requirements determine our architecture and concept for object migration among dis-

tributed, heterogeneous, autonomous DBS which are presented in the following sections.

3 Architecture for Coupling Multiple DBS

In order to migrate data among various DBS, the databases have to be coupled somehow.
There are two alternative architectures to achieve this (Fig. 1): (1) a coupling layer for each
DBS realizes the mapping to the others or (2) a single coupling layer with a canonical data
model maps to all DBS back and forth. In both alternatives, users can access the DBS directly

via its DBS interface or use the coupling layer in order to access data of multiple/other DBS.

(2

| coupling layer |
sde
DBS4

Figure 1: Alternative architectures:(1) point-to-point-connections, (2) canonical coupling layer

The first alternative requires n x (n — 1) mappings between DBS with n be the number of

DBS while the second alternative needs n mappings. But current enterprises have a multitude

of data management systems, so n is big (e.g. 20 for a department of an industrial project
partner [12]). Moreover their distribution, heterogeneity, and autonomy pose many tasks to
the mapping as we saw in the previous section, e.g. data model and schema transformation
as well as redundancy control. Therefore we chose the second alternative for our architecture

in order to decrease implementation effort and ease extensibility with further DBS.

Fig. 2 presents our architecture in more detail. It represents a federated database system
(FDBS) [15] preserving the autonomy of the distributed heterogeneous component database
systems (CDBS). In the following, we will show how this architecture fulfills the general
coupling requirements (CR) of the previous section. The migration requirements (MR) will

be considered in the subsequent section.

@ @ @ @
R
Global Interface

Federation
Kernel

Global
DB

Databastle Coupling wj
-

; ter

EBs s

Figure 2: FDBS architecture

[0
o
g
8
£
<
kel
©
=
@
£
£
]
<

The DBS adapters of the coupling layer realize a notified communication with the various
CDBS (CR2, CRT), e.g. with hierarchical, network, relational, and object-oriented DBS, or
file systems. Moreover they transform the heterogeneous data and operations into a canonical
data model (CR3, CR5). Our approach considers an object-oriented canonical data model
due to its expressive power [14]. Tt is based on the upcoming standard for object oriented
database systems, the ODMG object model [1] which provides concepts like objects, classes,
class inheritance, object identity. To ease the dynamic extension of the federation with new
DBS, there is a uniform layer (DB coupling) on top of the DBS adapters.

Data are accessed in the FDBS either locally by the DBS interfaces of the autonomous DBS

or globally via the global interface. Latter one is an extension of the ODMG C++ interfaces

(0D, OML, OQL), a.o. added by functionality for schema mapping (CR4, CR6), global
redundancy identification, and object migration. It allows a uniform and transparent access
to data of all CDBS. Other interfaces are realized as external adapters on top of it, e.g. ap-
plication specific interfaces.

Meta informaltion as well ag global data that do not map to any DBS are stored in an anxiliary
database, the Global-DB.

By the administralion inlerface, 1he FDBS is started, stopped, initialized, and DBS are cou-
pled /decoupled to/from the I'DBS. The federation kernel realizes tasks such as query decom-

position, global transaclion management, and global redundancy control (CR1).

4 Concept for Object Migration

To support object migration among distributed, heterogeneous, autonomous DBS, we extend
Lthe [ederation approach with corregponding [unclionalily. The migration is invoked via the
global interface of the I'DBS and is called "object™ migration because we use a canonical
objecl-oriented data model. By object migralion, objects can be migraled among arbitrary
component database systems.

The functionality for object migration in FDBS is based on the migration framework we
developed in [13]. We summarize brielly ils concepls in this section before deriving the
migration functionality. Important characteristic is that compatibility to existing applications
which access the global/external interface of the FDBS is preserved, a change of data locality

by migration will be transparent to them {MIR6).

4.1 Base Model

During object migration, the object’s data attributes are transfered in a consistent state from
zome source CDBS to a target CDBS (MRS&). The object’s class or an equivalent class is
required as prerequisite in the target CDBS for this (MR4, MRT). By default, only single
objects are migrated so that relationships and related objects are not transfered. In this
paper, we extend this by also considering relationships and related objects during migration

optionally (Section 5.2.2).

Example: An FDBS example conlaining lwo sales dalabage systems, one [or cach sales dis-

trict, will illustrate object migration for customer data (1%g. 3).

] lobal
Article Customer i%terface
puay d

SalesDBSH1 SalesDBS2

Figure 3: Object migration among database systems of an FDBS

The customer object is of global class Customer which was mapped during schema
transformation 1:1 to the local class Customer of SalesDBS1 and SalesDBS2. It has two
data attributes name and no as well as relationships to some article object representing
the bought article. Previously, the customer was associated to sales district 1 and
all his data attributes and relationships were stored in SalesDBSI. When he moves
to another town associated with the second sales district, his attributes name and no
are transfered from SalesDBS1 to SalesDBS2 during object migration. The class of
the object, Customer, need not be migrated because an equivalent local class exists in
SalesDBS2.2 Related objects are not migrated by default so that the objects relationship
will not be visible in the target CDBS. However, at the global interface it remains
accessible and object migration is transparent to the global applications. In case a
migration operation transfers the customer object to the target CDBS and afterwards
deletes the customer together with its relationship (referential integrity), the relationship

becomes an inter-database relationship and is stored in the Global-DB.

4.2 Migration Dimensions

In order to differentiate "how” an object is migrated and what data are considered during

object migration, there are three orthogonal dimensions:
Object Kind
An analysis of the assignment between globally accessible objects and local CDBS objects

resulted in the following object kinds within an FDBS (Fig. 4):

1. Globally new: global object not assigned to a CDBS object but stored in Global-DB

2. Globally invisible: local object of some CDBS not assigned to any global object

2Class migration is treated as a separate issue which is out of the scope of this paper.

3. Federated: global object assigned to some local objects without filtering data

(a) unique: assigned to exactly one local object of a CDBS
(b) multiple: assigned to equivalent local objects of multiple CDBS
(c) union: composed of local objects of multiple CDBS/Global-DB (may overlap)
4. Reduced federated: similar to federated objects with subclasses (a) unique, (b) multiple,
(¢) union, but filtering is allowed (see filter processor in [15]). Thus not all data is visible

in the global object of at least one assigned local object.

gl

sll)ti)é)‘;ls g1: globally new object
11: globally invisible object
g2: federated unique object
g3: federated multiple object
g4 federated union object

Local

objects g5: reduced fed. unique object
g6 reduced fed. multiple object
g7 reduced fed. union object

Global-DB CDBS1 CDBS2 CDBS3 CDBS4

Figure 4: Object kinds in an FDBS

Migration Degree

The second dimension for object migration specifies how much of a global object shall be
migrated (MR 5). It contains the following alternatives:
A) Partial: All globally visible data of a global object stored in a given source CDBS is
migrated to a target CDBS.

B) Locally complete: For a global object, both globally visible and invisible data are mi-
grated from a given source CDBS to a target CDBS.

C) Globally complete: All globally visible data of a global object is migrated from all CDBS
to a target CDBS.

A) C)
arget ource arget
CDBS CDBS CDBS

Figure 5: Migration degrees: A) partial, B) locally complete, C) globally complete

Operation Primitive

The third dimension defines how an object migrates and offers as alternatives (MR1, MR3):
9

1) Absolute movement: Objects are transferred into the target and deleted in the source

CDBS. Global identity of the object remains the same at the global interface.

2) Replication: Objects are transferred to the target CDBS but not deleted in the source
CDBS. The duplicates have the same global object identity and the FDBS may guarantee

data consistency between them [16].

3) Independent copy: Objects are also duplicated to the target CDBS, but get a different

global object identity. Data consistency is not guaranteed between the duplicates.

arget
CDBS

Figure 6: Operation Primitives: 1) absolute movement, 2) replication, 3) independent copy

The three migration dimensions determine the various capabilities of the object migration
functionality specified in the next section. Thereby an important combination of migration
dimensions allows a reduction of redundancy across DBS: if some object was already stored
redundantly in source and target CDBS, i.e. is a (reduced) federated multiple/union object,
the operation primitive ’absolute movement’ will remove the data in the source DBS and will
not duplicate it into the target again (MR 2). Also operation primitive 'replication’ will not

duplicate the data but will retain it in the source CDBS.

5 Interface Functions for Object Migration

We provide the users/administrators with a set of generic operations to invoke object migra-
tion via the global interface of an FDBS. Their formal semantic is defined by the migration
dimensions. We offer both base operations for migrating single objects and advanced oper-
ations to migrate multiple objects at once. This functionality supports an enterprise with

dynamic migration of data in various granularities.

5.1 Base Operations

We distinguish two kinds of migration operations: implicit and explicit. Implicit migration

operations enable object migration by changing an objects class. These operations are already

10

known from existing DBS, e.g. COMIC [7] and COCOON [17]. In IFDBS, they require an
object migration if the classes are mapped to different CDBS during schema integration. Al-
though an I'DBS approach, namely O*SQL [8], includes class change operations, the underly-
ing object migration was not elaborated. We fill this gap by specifving class change operations
in Lermg of our object migralion dimensions. While these operations allow a transparend ob-
ject migration, they restrict on the operation primitives absolute movement / replication, on
the migration degree globally complete and, morcover, require specilic lype/class mappings.
Therefore we add explicit migration operations which enable the specification of all migration
dimensions (also confligurable) butl in most cases do not allow transparent object migration.

Both implicit and explicit operations together result in a flexible object migration mechaniam.

In the following, we specity the migration operations and extend the global interface with
corresponding functionality., For each operation, a programming language independent. spec-
ilication is presented in the specilication notation IDL used by ODMG [1]. Then its usage
ig illustrated by an example for a C++4 binding which extends the ODMG C++ OML by

corresponding methods.

5.1.1 Tmplicit Migration Operations

Implicit migration operations change the objects class. Theyv implicitly invoke an object
migralion lor those cases where source and largel clags are mapped Lo dillerent CDBS. We
require that both classes are defined in the application schema (federated /external schema
according to the 5 level schema architecture of [15]) and have a common superclass. During
ohject migration all common data of both classes are transferred from the object from source
class to target class. Attributes of the target clage with no corresponding in the source class

are initialized with default values (e.g. NULL).

Example: Assume a universily FDBS contains a StudentDBS and EmployeeDDBS (Fig. 7).
The federated schema has a class Student mapped to a local class/type in Student!IBS,
a clasge Employvee mapped to TimployeeDDBS, and their superclass Person. A global
application can change the class of a student object to Employee, e.g. because the student,
ends his study and starts work as university employee. Because the two classes are
mapped to different CDBS, implicitly a migration of the personal data from Student)BS
to EmploveeDBS is required. At the global interface nothing changes, the person only

changes Lhe semantic for the nniversity, global idenlity remaing the same. [ence existing

11

global applications accessing that person do not have to be recoded.

global
interface

StudentDBS EmployeeDBS

Figure 7: Example for implicit migration

At the global interface, we offer two implicit migration operations with the following specifi-

cation given in the programming language independent notation of ODMG:

shift (o:Object, new_class:Class_ID)

moves an object from one class to another class.

add (o:Object, new_class:Class_ID)

allows to associate an object to an additional class.

The migration dimensions are specified for the implicit migration operations as follows: The
migration dimension operation primitive is fixed by the selected operation: ’shift’ means ab-
solute movement and ’add’ replication. The operation primitive "independent copy” cannot
be realized by class-change-operations because they retain object identity. The object kind is
implicitly known by the specified object, i.e. by its object transformation information (map-
ping from FDBS-global object identifier to CDBS-local identifier). The migration degree is
fixed as globally complete, i.e. all globally visible data of the object stored in arbitrary CDBS
is migrated to that/those CDBS where the target class is mapped to.

Example: To illustrate the use of the implicit migration operations, again we regard the
university FDBS example. If a student, created by a local immatriculation application
of StudentDBS, at some point of time terminates study and starts work as an employee
in his university, a global management application may change the semantics of the
person. It moves the student from class Student to Employee by the implicit migration
operation shift.

In case a student starts work as a student assistant for the university, a global manage-
ment application may replicate the student’s data from class Student to Employee by

the migration operation add. Thus, local applications of EmployeeDBS also regard the

12

new student assistance, but for global applications the student retains global identity

and is vigible as a single person at the global interface although he is stored in both

StudentDBS and Employee DBS. Moreover, the ['IYBS may guarantee the consistency

between the replicates.

The [ollowing code demonstrates the uge of the operations for the CH++4 binding:
//absolute movement of a student into class Employee

any_student = Student [matr_no == 0815]; //object selection
any_student->shift (Employee);: //ecbject movement

//a student is added into class Employee but remains also in Student
another_student = Student [matr_no == 4712];
another_student->add (Employee);

Both implicit migration operations are transparent, i.e. the user has to specify neither source
nor targel CDBS. But implicil migration operations do notl support all tuples of migration
dimengions. 'T'hey require that source and target class are different, map to different CDBS,

and have a common superclass.

5.1.2 Explicit Migration Operations

By explicit migration operations all combinations of migration dimensions are supported. In
general, they represent non-transparent operations, but we will also figure out some special

cases in this section which work transparently.

We offer an explicit migration operation for each operation primitive, i.e. for absolute move-
ment, replication, and independent copy. Fach ol them requireg as inpul an object 1o be
migrated as well as source and target schema. T'he object then is migrated from the CDBS

corregponding to the source schema to the CDBS associaled with the targel schema.

Example: Asan example which absgolulely requires explicit migralion operalions and will not
do with implicit migration operations we use the sales ['DBS (I7ig. 8) where customers
are stored in lwo CDBS SalesDBS1 and SalesDBS2 depending in which sales district
the person live. When a customer moves into another sales district its data has to
be migrated into the other sales DBS. This cannot be realized by implicit migration
operations because only a single global class exists for customer. Instead some explicit
migration operations are required with source and target as input. Source and target

are specilied uniguely in terms of their associated scherala.

13

Q Customer

SalesTDBS Sales2DBS

Figure 8: Example for explicit migration

The specification of the explicit migration operations is as follows:

move (o:Object, source:Schema_ID, target:Schema_ID)
moves the object o from the CDBS corresponding to source to that of target with the migra-

tion degree defined implicitly by the schemata.

replicate (0:Object, source:Schema_ID, target:Schema_ID)
duplicates object o from the CDBS corresponding to source to that of target with the migra-

tion degree defined implicitly by the schemata and manages both as replicas.

copy (o:Object, o_copy:Object, source:Schema_ID, target:Schema_ID)
duplicates object o from the CDBS corresponding to source to a new global object stored
in the CDBS corresponding to target. The migration degree is defined implicitly by the

schemata.

The migration dimensions determine these operations as follows: The operation primitive
is uniquely mapped to one explicit migration operation. The given object, again, specifies
the migration dimension object kind. The source schema implicitly defines the migration
degree: according to the five-level schema architecture of [15] this means: the specification of
a local or component schema corresponds to a locally complete migration, an export schema
defines partial migration degree, and a federated or external schema specify globally complete
migration degree. Moreover, the target schema specifies uniquely the target CDBS. For this, a
local, component, or export schema can be given because each of them is uniquely associated
with one CDBS. Source and target schema are specified by an identifier which is generated

by the FDBS for each schema of the FDBS schema layers.

Example In order to illustrate the use of the explicit migration operations, we extend the
sales FDBS by considering DBS of further enterprise areas becoming now an FDBS for
Concurrent Engineering (CACE-FDBS). It contains database systems for design (De-

14

signIBS), for production (ProductionIBS), and two for gale (SalesIBS1, Salesl)B52).
Using a CH—+ binding of the explicit migration operations, objects are transferred as
follows among the database systema:

obj2=obj->copy (SaleslLocalSchema,Sales2LocalSchema);

//copy of ’obj’ from SalesDBS1 to SalesDBS2 with
//locally complete migration degree

cbj->replicate (PreducticnExport,SalesiExport);
//object replication with partial migration degree

obj—>move (CACEGlobalSchema,Global—DBExport) 3

//absolute movement with glebally complete migration
//degree to Global-DB

Conliguration ol Explicit Migralion Operations

In general, the migralion operations are nol transparenl because they require location infor-
mation for the source and target schema. 'I'his is not transparent for the lower three schema,
levels of Sheth and Larson’s schema architecture. But we allow also to configure this infor-
mation. T'herefore, the user statically specifies some parameters which can be left out in the

dvnamic calls of the explicit migration operations. The following configurations are possible;
Fized Source

When migration shall be dene [rom a gingle CDBS, o.g. il this CDBS is planned te be clim-
inated from the FDBS, then the user can configure a fixed source. This is invoked by the

[ollowing FDBS operation:
fix_migration _source (source: schema_|D)
Fized Target
When migration is realized constantly to a single CDBS this CDBS can be configured as fixed
target. For example, if data shall be transferred from some legacy DBS to a DBS of new

database technology.

A target is fixed by the following FDBS operation:
fix migration target (target:Schema_|D)
Fized Source and Target

II' both gource and target CDBS are conligured, the explicil migralion operations are com-

pletely transparent. They do not require any CDBS parameter.

l'or some special combinations of abject kind and migration degree we provide also transpar-
ent access, although only a target CDBS is configured: Partial or locally complete migration
to a fixed CDBS for global new, federated and reduced federated unique objecta:

The source CDBS is unique and implicitly known for these object kinds and the target CDBS
iz conlignred.

Migration Calls Considering Configuralion

If migration source and/or target is configured for an FDBS then this information can be
left oul [or the dynamic calls of the migration operalions. For conligured information the
user can specify default values, e.g. the constant KIXED. Such default parameters can also be
generaled by the conliguration information [or some language bindings and do not have to be
mentioned in the operation call. In the C++ binding, for instance, default parameters can be
generated for the last parameters. If the target CDBS is configured, the user can leave this
last parameter for his operation calls at all. In case hoth source and target are fixed then no
CDBS has to be given so that the calls of explicit migration operations become transparent,
Also lor the special transparent case ol partial or locally complele migration lo a lixed CDBS
for global new, federated and reduced federated unique objects where the source CCDBS is

implicitly known thiz parameter can be lell.

To enhance lexibility, we allow both 1o use the conligured information and lo overwrite
it for apecific migration calls. Therefore the configuration is not restricted to the absolute
source/target but can determine a frequent source/target, too. If a user leaves out some
last parameters, the configured information is taken. In case he specifies some source and/or

target in his operation call this iz valid for the migration.

Example: Assume in the CACE-I'DBS SalesDDBS1 and SaleslYBS2 shall be combined to a
gingle DBS (SalesDBS2) because both sales districts became a single one. Then Sales-
YBST is specified as fixed source for migration operations and Sales|YBS2 as fixed target.
The following code using a C++ binding shows the configuration as well ag dynamic
migration calls considering the conliguration resp. overwriling the conliguration tem-
porarily.

//Configuration of source and target

fix_migration_source (Salesilocal);
fix_migration_target (SalesZLocal);

//migration call using configured source and target

16

// (generated as default parameters)
ocbj—>move (); //absolute movement from SalesDBS1 to SalesDBS2
//with locally complete migration degree

//overwrite the source but use the configured target
obj—>replicate (PreductionLocal};
//replication from ProductionDBES to SalesDBS2

//overwrite the target but use the configured source
obj-»copy (FIXED, ProductionLocal);
//copy from SalesDBS1 to ProductionDBS

//overwrite both source and target
cbj2 = obj->copy (DesignExport, ProductionExport);
//copy from DesignDBS to ProductionDBS

5.2 Advanced Operations for Migrating Multiple Objects at Once

While we restricted on the migration of single objects in the previous section, here we extend
the functionality to migrate object sets and object graphs (objects with related objects)
invoked by a single operation of the global I'IDBS interface. T'hus the users can apply advanced
migration operations and do not have to self-implement them. The advanced functionality is
realized once in Lhe system and many users can benelit [rom it. Morcover, Lthese mulli-object-
operations can be mapped to most DBS more efficiently than multiple single-ob ject-operations
invaked by the user. They reguire, in general, less DBS calls.

Analogously Lo the base [unetionalily, we specily cach operation in the programming language
independent manner first and then illustrate its usage for a C++ binding. Their formal
semantics is defined by a mapping to the bage operations. Since the specification and mapping
of the advanced shift and add operations ag well as the advanced move and replicate operations

are analogously, we specify them in common.

5.2.1 Migration of Object Sets

In order to migrate a specified set of objects, we allow to apply the implicit and explicit
migralion operations alse on abject sets. It implies an ilerative execution of object migralion
for all ohjects given in the ohject set (I7ig. 9). This allows to firat query some objects using

comfortable query operations and then migrate the selected objects.

The specification of these operations as well as their mapping to the base operations is given

in the [ollowing. Therelore the advanced shill and add ag well as the advanced move and

17

Global

migrate """ interface

Source CDBS Target CDBS

Figure 9: Migration of an object set with a single global operation

replicate operation are specified in common due to their analogous definition and mapping to

the base operations.

shift/add_set (os:set<Object>, new_class:Class_ID)

— FOR FACH obj € os: shift/add (obj, new_class);

move/replicate_set (os:set<Object>, source:Schema_ID, target:Schema_ID)

— FOR FACH obj € os: move/replicate (obj, source, target);

copyset (os:set<Object>, os_copy:set<Object>, source:Schema_ID, target:Schema_ID)

— FOR FACH obj € os:

copy (obj, new_obj, source, target); insert(new_obj, os_copy);

As mentioned in Section 5.1, source and/or target CDBS can be configured for the advanced

explicit migration operations move, replicate, and copy.

Example The following example illustrates the use of the operations for object-set migration
in a C4++ binding. It demonstrates how an article assortment can be dynamically
changed between the two sales districts. Article data that was experimentally introduced
in the test district 1 and successfully adopted after a year can be easily duplicated into

SalesDBS2.

//selecting article objects with creation-date 1994
obj_set = Article {creation-date == 1994};

//locally complete replication of all in 1994 newly and successfully

//introduced articles
obj_set->move_set (SalesilLocalSchema, Sales2LocalSchema);

18

As in the object migration base model, we do not transfer relationships of the objects by

default. But this is extended in the following section.

5.2.2 Object Set Migration Considering Relationships

To migrate a specified set of objects together with their relationships among another, we
extend the previous operations with an additional parameter. So not only isolated objects

but whole data structures can be transferred among the CDBS (Fig. 10).

Global

migrate P interface

Source CDBS Target CDBS

Figure 10: Migration of an object set including the relationships among another

Relationships to be considered during the migration can be restricted by the user. He can
limit (1) the relationship kind (2) can specify a specific relationship. A restriction on some
relationship kinds is ingenious if the canonical data model of the FDBS offers multiple rela-
tionship kinds. For example, COMIC [7] offers general relationships (called relate) and part-of
relationships (contain) while PCTE [5] distinguishes five predefined relationship kinds and al-
lows users to specify some further kinds. Then only relationships of the user-specified kind
are considered. It can also be limited on specific relationships by mentioning its attribute
name.

The migration operation transfers iteratively each object of the object set together with rela-

tionships to other objects of the set with the given relationship (kinds).

In the following we present the specification of the operations. For migrating the relationships
we introduce an internal operation set_rel which transfers an attribute representing a rela-
tionship into the target: set_rel (01:0Object, 02:0Object, r:Relationship, target:CDBS_ID);

establishes a relationship rin CDBS target between the objects ol and o2.

shift/add_set_with_rel (os:set<Object>, new_class:Class_ID, rr:RelRestriction)

19

— FOR FACH o € os:
shift/add (o, new_class);
FOR HACH relationship r of o fulfilling the restrictions rr
FOR EACH obj € r: IF obj € os: set_rel (0, obj, v, CDBS_of_ncw_class);

move/replicate_set_with_rel (os:set< Object>>, source:Schema_ID, target:Schema_ID, rr:RelRestriction)

— FOR KACH o € os:
move/replicate (o, source, target);
FOR DACIH velalionship v of o [ulfilling the restrictions rr
FOR EACH obj € v: IF obj € os: sctrel (o0, 0bj, r, target);
copy_set_with_rel (os:set<Object:>, os_copy:set<Object>>, source:Schema_|D, target:Schema_ID,

rr:RelRestriction)

— IFOR FACH obj & os:
copy (oby. new_oby, source, largel);
msert (new_obj, os_copy);
FOR EACH relationship r of o fulfilling the restrictions rr
FOR FACH obj € r: II obj € os: setrel (o, obj, r, target);

Example: The following example migrates the two married customers Adam and Eve from
SalesDBS1 1o SaleeDBS2 when they move town. Thereby it translers their relationship
married_with as well. The C+4 binding uses constants fo apecify relationship kinds:
INCL _RELATE [or relate-relationships, INCL_.CONTAIN [or contain-relationships, and
INCL_RELATE_CONTAIN for both. It can be easily extended for further relationship
kinds by offering additional constants.

//selecting both customer objects (with no = 1011 and no = 1012)
obj_set = Customer {no == 1011 || no == 1012};

//locally complete absolute movement of their data incl. the relationships
obj_set->move_szet (SaleslilocalSchema, Sales2LocalSchema, INCL_RELATE);

An important restriction of this kind of migration is that object sets (in general) only contain
objecle of a single clage. Therelore only relalionships are considered among objecls ol one

class. In the next section we introduce functions which migrate arbitrary relationships.

5.2.3 Recursive Migration of Object Graphs

The migration of object graphs can be used to migrate a data structure composed of arbitrary
related objects at once (Fig. 11). In contrast to the operations of the previous section which
migrate object sets together with their relationships, here only a single object has to be
specified and recursively all related objects, their related objects and so on can be migrated.

Furthermore relationships between objects of different classes can be transferred.

Global

i t JUUCEETERN A
migrate . interface

o0 60 é o
\/ \/
Source CDBS Target CDBS

Figure 11: Migration of an object graph with a single global operation

During object migration, the specified object and recursively all objects related to it, their
related objects, etc. are transferred to the target together with their relationships. The
relationships to be considered can also be limited. Since objects of arbitrary class can be
in an object graph, the user can limit not only (1) the relationship kinds and (2) the the
relationship, but also (3) types/classes of the related objects. By an optional parameter,
the recursion level can be fixed so that related objects are only migrated up to this depth.
Migration degree and operation primitive are defined only once and are valid for all objects
of the object graph. For graph traversal and cycle recognition in the object graph, general
graph algorithms [6] can be taken.

The operations for migrating object graphs are specified as follows:

shift/add_graph (o:Object, new_class:Class_ID, rr:RelRestriction, deep:Integer)

— shift/add (o, new_class);
IF deep > 0
FOR FACH relationship r of o fulfilling the restrictions rr
FOR FACH obj € r A class of 0obj = source_class:
shift/add_graph (obj, new_class, rr, deep-1);

21

set_rel (o, obj, r, CLIBS_of-new_class);

move/replicate_graph {o:Object, source:Schema_ID, target:Schema_ID, rr:RelRestriction, deep:Integer)

< moee/replicate (o, source, largel);
H deep = 0
FOR EACH relationship r of o fulfilling the restrictions rr
FOR HACH obj € r:
move /replicate_graph {(obj, source, target, rr, deep-1);
sel_rel (o, obj, v, largel);
copy_graph (o:Object, o copy:Object, source:Schema_|D, target:Schema ID, rr:RelRestriction,

deep:Integer)

— copy (0, o_copy, source, largel);
 deep > 0
FOR DACIH relalionship v of o [ulfilling the restricltions rr
PO EACH obj € r:
copy_graph (obj, tmp_obj, source, target, rr, deep-1);
sef_rel {0, oby, v, torget);
Note thal the implicil operalions can only consider objects of a single class since they deline
a fix source class. But in contrast to the object set operations of the previous section, the

user migrales only related objecls by specilyving a single starling object.

Example: Assume lor our CACE FDDBS thal customers are migrated together wilth all arti-
cles they bought. 'I'hat means when a customer moves town into another sales district
hoth his personal data and his related articles are migrated between the sales database
systems. I'hen we only have to specify the customer object and invoke recursive migra-

tion of all related objects of type Article.

//locally complete absolute movement of customer ¢ with all his articles
c—>move_graph (SalesilocalSchema, SalesZLocalSchema, Article);

Moreover, a design object of DesignIBS composed of multiple parts which themszelves
contain parts etc. can be easily transferred to the ProductionDBS using a single op-
eration. Such complex ohjects frequently occur in engineering areas and hence object
graph migration gives good support in Concurrent Engineering where these data are

exchanged among DBS.

//partial independent copy of a complex design object with ALL its components
d->copy_graph (DesignExport, ProductionExport, INCL_CONTAIN);

6 Conclusion

Based on a requirement analysis, we presented an architecture and concepts for migrating
objects among distributed, heterogeneous, and autonomous DBS. New functionality is incor-
porated into the chosen architecture of federated database systema. It allows to migrate data
among DBS in various granularities dynamically, We introduced migration operations and
presented a C+4 binding which scamlessly extends the ODMG standard. The operalions
allow to (a) implicitly migrate objects by changing their clags or (b) explicitly migrate objects
[rom one DBS (o another. While the former are {ransparent, but only support lew migration
cases, the latter support a wide area of object migration requests, but do not allow a trans-
parent migration in most cases. Together, they oller a llexible object migration [unclionalily.
While base operations allow to move, replicate, or copy single objecta acrods DBS, advanced

operations enable the migration of whole object sets or object graphs with a single operation.

We already validated the need for object migration by some industrial project cooperations
where in particular the coupling and stepwige reduction ol the multiple existing DBS was
requested [12]. Currently, we are developing an FDBS which couples primarily relational
dalabase systems (Entire, Oracle), object-oriented dalabase systems (Siframe-OMS), and
file systems (Unix). It will be extended by further DBS adapters, e.g. considering specific
data(base) systems ol our industrial project partners. In order to [ullill the industrial require-

ments, the ['1IBS will also incorporate object migration functionality.

References

[1] CATTLL, R.G.G. The object dalabase standard: ODMC93. Morgan Kaulinann Publisher, 1994,

[2] CITAPPLLL, €., STEVENSON, €. Concurrent Bagineering: The Markel Opporiunily. OVUM,
1992,

[3] DALE, R. Dlatahase migration: keeping a steady course. Database Programming and Design 34),
pages 1 38, 1990.

[1 DOLLIMORL, J., NASCIMENTO, €., XU, W. T'iue grained object migration. In Proc. Int'l
Workshop on Distributed Object Management {Edmonton, Canada), pages 181186, 1992,

[6] Europcan Computer Manufactures Association (ECMA). Standard cema-149: Portable common
tool environmment: Absiract specification, version 1.0, 1990,

[6] EVEN, S. Graph Algorithms. Compuler Science Press, 1979,

[7]

[11]
[12]

[13]

KACHEL, G., RADEKE, E.,, HEIJENGA, W. COMIC - A step toward future data models.
Cadlab-Report 3792, 1992,

LITWIN, W. O*SQL: a language for multidatabasc interoperability, In Proc. IFIP-DS5 Scman-
tics of Interoperable Database Systems (Lorne, Australia), pages 114-133, 1992

MARCA, ., BOCK, G. Groupware: Software for Computer-Supported Cooperative Work. |EEE
Clompuler Sociely Press, 1992,

MEIER, A., DIPPOLD, R. Migration and co-existence ol helerogeneous dalabases; praclical
solutions for changing into the relational darabase technology (in german). Informatib-Spektrum,
15(3), pages 1567 166, 1992,

(")SZI:, M.T., VALDURILZ, P. Principles of Dislribuled Dolabase Systems. Prenlice ITall Pub-
lishing, 1991,

RADEKE, E., SCHOLIL, M.H. Federation and stepwise reduction of datahase systems. In Proe.

1st Int'l Conf. on Applicalions of Dalabases {Vadslena, Sweden}, 1994,

RADEKE, L., SCIIOLL, M.II. ramework [or object migration in lederated dalabase systemns.
In Proc. Int'l Conf. on Pavallel and Distributed Datebase Systems (Austin, USA), 1994,

SALUIOR F., CASTELLANOS M., GARCIA-SOLACO M. Suitability of data models as canonical
models [or lederaled databases. SICMOD RECORD 20(4), pages 411 48, 1991,

SIIETTI, A., LARSON, J. Tederated database systems for managing distributed, heterogeneous,

and autonomous databases. ACM Computing Surveys 22(3). pages 183-236, 1990,

SRINIDHI, HN. Managecment of redundant data in intcroperable environments. In Proc. Znd
Int’l Workshop on Interoperabilily in Mullidulabase Systems (Vienna, Auslriu), pages 236 239,
1993.

TRESCH, M. Dynamic cvelution in object databases (in german). PhD thesis, University of
LlTm, Germany . Feb. 1994,

Contents

1 Introduction

2 Requirements

3 Architecture for Coupling Multiple DBS

4 Concept for Object Migration
41 Base Model 2 2 5 5 ¢ 5 s s v s s s g e @ma s 5 2 F 3 5 E 890 E S S B E B

4.2 Migration 1Xmensions o o i o e i e e e e e e e e e e e e e

5 Interface Functions for Object Migration
Bl Base Oporalions < » « « v 2 0 o s awmmme 5 8 & % 5 ¥ v v @ 3 5 5 A se s B
5.1.1 ILmplicit Migration Operations o o v v v v v v v o v v e e
5.1.2 Explicit Migration Operations. o0 v v it v e
5.2 Advanced Operations for Migrating Multiple Objects at Once
521 Migration of Object Sets . o . o o0 0 00000 L Lo

5.2.2 Object Set Migration Considering Relationships

5.2.3 Recursive Migration of Object Graphs 0. o0 oo oL

6 Conclusion

(8
|

10

10

11

13

17

21

23

	Text1: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-201409
	Text2: Ersch. in: Proceedings / RIDE-DOM '95 : fifth International Workshop on Research Issues in Data Engineering-Distributed Object Management / RIDE-DOM '95. [Editorial production by Penny Storms]. - Los Alamitos, Calif. [u.a.] : IEEE Computer Soc. Press, 1995. - S. 58-66. - ISBN 0-8186-7056-8

http://dx.doi.org/10.1109/RIDE.1995.378744

