
On Database Support for Multilingual Environments

A. Kumaran* Jayant R. Haritsa

Database Systems Laboratory
Indian Institute of Science
Bangalore 560012, INDIA

Abstract

Global e-Commerce and mass-outreach e-Govemance
programs have brought into sharp focus the need for
database systems to store and manipulate text data e@
ciently in a suite of natural languages. While some means of
storing and querying multilingual data are pmvided by all
current database systems, to the best ofour knowledge there
has been no prior study of theirfunctionality or eficiency in
this regard In this paper; we explore the multilingual sup-
port needed by the user community and what is currently
provided by the popular database systems to satisfy these
needs. Specifically, a comparison of multilingual features
supported by the database systems ispmvided against a set
of relevantparameters. Initial results f m m ourperformance
study indicate that serious lacunae exist in the performance
with respect to multilingual data. We pmpose a new data
type and associated database system architecture compo-
nents for making the performance of the database system
to be language independent. Results from our initial im-
plementation of the proposed methodology are encouraging
indicating the value of such an approach.

1. Introduction

popular database systems to satisfy the same. We define a
set of parameters in the multilingual arena and compare how
the popular database systems measure up with respect to
these parameters. We also provide some initial results from
our performance study, which indicate that serious lacunae
exist in performance with respect to handling of multilin-
gual data. We propose a new data type and enhancements
to the database architecture to handle multilingual character
sets efficiently and equitably.

The remainder of this paper is organized as follows: Sec-
tion 2 defines a set of requirements to be supported by the
databases with appropriate examples. Section 3 provides a
survey of database systems support for the above require-
ments and provides some preliminary results from our per-
formance experiments. Section 4 enumerates possible re-
search avenues for the database community to provide effi-
cient multilingual support for the users.

2. User Requirements for Multilingual Sup-
port in Database Systems

In this section we specify the requirements of users of
multilingual databases, with examples from typical appli-
cations.

2.1 Storage and Querying Requirement
The rapidly accelerating trend of globalization of busi- . . - -

nesses and the success of e-Govemance solutions require
data to be stored and manipulated in many different natural
languages. As the primary data repository for such applica-
tions, database systems need to be efficient with respect to
multilingual data. While all current commercial and open-
source database systems support some means of storing and
manipulating such data, to the best of our knowledge there
has been no prior study of their functionality or efficiency
in this regard. This paper explores the multilingual support
needed by the user community and the features provided by

Among the primary drivers for the need of multilingual
information is the phenomenal growth of the Internet and its
impact on global e-Commerce and e-Governance solutions
for mass outreach. The volume and usage of such systems
critically require the multilingual data to be stored and ma-
nipulated efficiently,

Consider Bhoomi [3], one such real-life e-Governance
system of the State of Kamataka in India. Bhoomi is a com-
puterized land records system storing about 20 million land
records of rural farmlands in the State. The data is stored
in the local language of the state, K a n d a , as the system 'Contact Author: k"maransds1.serc.iisc.emet.i"

0-7803-7868-7/03/$17.00 0 2003 EEE. 23

is intended to provide friendly access to the farmers of the
state. Efforts are underway in different states to develop
information systems along the lines of Bhoomi, in the re-
spective regional languages. Records from a hypothetical
national database that integrates information from all such
regional databases may resemble those in Figure 1.

Figure 1. Sample Records from a National Land
Records Database

The basic multilingual requirement is that the database
system must be capable of storing data in different lan-
guages. While in specific instances it may be necessary to
restrict the data stored in a column to a single language type,
it may not always be possible or desirable to make such re-
striction universal. In the example above, text strings in
different languages may he stored in the same column and
a multilingual string may contain characters from different
languages.

The data must be queryable using query strings in any
of the languages and SQL language primitives must sup-
port such requirements. The need for having query inter-
face itself in different languages is not specified as a re-
quirement and is left for individual user commnnities to
design and implement. The output of the query could he
multilingual and in such cases the presentation order must
be intuitive and as per conventions specified in those lan-
guages. From database point of view, proper sorting of mul-
tilingual strings as per local conventions is a necessity both
for proper user output and for internal database processing,
such as index building. The user interface issues are not
specified, as the database handles text strings in their log-
ical order [5] only. Formally, the Storage and Query re-
quirement may be stated as:

The storage and queryability of multilingual data
must be as intuitive as those in default database char-
acter set; the output must be presented as per the con-
ventions of the multilingual script.

2.2 Interuperability Requirement

The multilingual data stored in a database must be mean-
ingful for other systems as well. For example, the records

of the Land Records database shown in Figure 1 must be
available to other systems in a format that is recognizable
by those systems. Though proprietary formats may be spec-
ified and fine tuned for the requirements of specific appli-
cations usually the interoperability suffers, and hence such
proprietary formats must not exist in an increasingly multi-
lingual world, at least not at the interface level. Formally,
the Intemperability requirement may he stated as:

The multilingual data must be stored in such a for-
mat that it is interchangeable with other information
systems transparently.

2.3 Language Independence Requirement

We expect that global e-businesses such as Amzon.com
would be providing customized service to their customers
in the regional languages in due come. Given that under
such customization, the pages need to be generated with
multilingual data dynamically at the access time, the sys-
tems must be equally efficient in any of the languages of
choice. The prime requirement here is that a user should
not be hampered by the language of his or her choice; that
is, the performance of the database for two languages must
be identical, if the size of the repertoires are the similar.
Though efficiency is a well accepted fact, we state it explic-
itly as follows:

Access and processing of the multilingual data
must be efficient and independent of the type of lan-
guage stored and processed.

2.4 Lexical Processing Requirement

While [inlequality of textual infonnation is well under-
stood within a single script, we strongly believe that equiv-
alence across languages also must be supported. Consider
the following requirement of Govemment of India: A citi-
zen of India is required to file a Tax Return only if he has
both a land registration and a telephone subscription in his
name (This simple case is culled out of a real and more
complex requirement). Such people who satisfy both re-
quirements can be enumerated by joining the records from
the Land Records database shown in Figure 1 with records
from the Telephone Subscriber database, which is usually
in English, as shown in Figure 2.

The query to get the potential tax-payers needs to
join multilingual name attributes from the Land Records
database with English name attributes from Telephone Suh-
scriber database (and join perhaps other salient demo-
graphic attributes not shown here), as shown below:

Select T.FirstName,T.LastName,T.Address
From Land L, Telephone T
Where L.FirstName = T.FirstName

and L.LastName = T.LastName;

24

http://Amzon.com

Figure 2. Sample Records from Telephone Sub-
scriber Database

Such need to integrate data from diverse character sets
is amplified further when one considers international orga-
nizations such as Interpol or UNESCO, which handle data
in anylall of the world's languages. We refer to such cross-
script joins as Lexical Joins. Clearly, such comparison re-
quires a notion of equivalence between characters from dif-
ferent scripts. We specify such a Lexical Join requirement
as follows:

Character strings in different scripts may need to
be compared using pre-defined lexical mappings be-
tween the characters of those scripts.

2.5 Linguistic Processing Requirement

Joining on attributes containing data from different lan-
guages need not be restricted to lexical level only, but may
be extended to meaning of individual data items as well.
Suppose, in the above example, identification of poten-
tial tax payers require comparison of an additional demo-
graphic attribute, Gender. The values for such attribute'may
be specified differently in different languages (and hence
neither equal nor equivalent lexically), but they are all
equivalent linguistically to one of {Male, Female}. In such
cases, matching of data requires a linguistically enhanced
join operator, which may match data items across languages
using linguistic resources such as Dictionaries or Thesauri.

We refer to such cross-language joins on meanings of at-
tributes as Linguistic Joins. The requirement for Linguistic
Join may be formally stated as:

Data values from different languages may need to
be compared using pre-defined linguistic mapping be-
tween words or phrases of different languages.

However, we would like to emphasize here that linguistic
processing is a fertile discipline on its own. We propose the
integration of such linguistic technologies with databases to
serve the needs of the users. The specification of exact re-
quirements for such integration is open-ended and is beyond
the scope of this paper. However, we recognize that such in-
tegration of Linguistic and Database technoiogies will hap-
pen in due course and the simple Linguisric Join operator
outlined here may be a first step in that direction.

3 Current Support for Multilingual Data in
Databases

We start this section with some background information
that may be needed to understand the multilingual issues.
Next, a brief outline of the suppoa specified in the SQL
standards for processing of multilingual data is provided.
For comparing popular database systems, we chose a set of
parameters that are relevant and highlight the support pro-
vided by each database system for this suite of parameters.
Subsequently, we provide a summary of how the require-
ments outlined in Section 2 are satisfied by the database
systems considered. We conclude the section with some
sample results from our multilingual performance experi-
ments.

3.1 Background Concepts

In this sub-section, we provide some basic concepts in
encoding lexical data. An informed reader may skip this
section and go directly to Section 3.2.

3.1.1 Character Set and Encoding

A Charader is thought of as the smallest component of
written language that has a semantic value. The set of all the
characters in a language is called a Repertoire. A Churac-
fer Encoding assigns a unique value to each of the charac-
ters in a repertoire. There are several well-known encoding,
such as ASCII. ISCII [I], ISO-8859 171 and Unicode [SI,
that form the basis for storage and interchange of text data
among computer systems. While ISO-8859 based character
sets are the most widely used currently, Unicode is becom-
ing a defacto standard for global interchange of information.

3.1.2 Unicode Encoding

Unicode [5] is a universal character encoding standard
that allows storage of characters from any known alpha-
bet or ideographic system, derived from the IS010646 stan-
dard [8], called Universal Character Set or UCS - 2. UCS-
2 provides a unique 2-byte code for every character, no
matter what the platform, programming environment or lan-
guage. Unicode has allocated encoding for every character
along the same lines as UCS-2. The encoding are maoged
in Character Blocks, which encodes contiguously the char-
acters of a given repertoire, typically characters in a single
script. The characters from a code block may support multi-
ple languages, but usually a single language may be served
by a single code block only. Unicode also specifies 3 differ-
entbyteencoding(UTF-8,UTF-16andUTF-32) to
store the same character codes, but in a byte, word or double
word oriented formats. Each of these encoding are equiva-
lent and can be transformed in to each other by simple, fast

25

bit-wise operations. A vendor is free to choose any of the
above three encodings to he fully compliant with Unicode.

Figure 3. Sample Encoding in Various Formats

Figure 3 illustrates character representation of equivalent
multilexical strings in ASCII and Unicode encodings. It
should be noted that the UTF-8 encoding preserves ASCII
encoding, while tripling the size of Indic strings from their
proprietary ISCII encoding. The UTF-16 encoding doubles
the size of data for both ASCII and ISCII strings.

3.2 What does the SQL Standard offer?

Until the SQL-92 [12] standard, there was not much sup-
port specified in relational databases for languages other
than English, which was assumed as a default. However,
in late eighties the need for supporting multiple character
sets was recognized and specifications were introduced in
the standard to overcome this deficiency.

In the multilingual arena, the SQL-92 Standard supports
the specification of a data type to store multilingual charac-
ters, called NATIONAL CHAR (also referred to as NChar)
that is very similar to character data type but wide enough
to hold multilingual data. A table column may be spec-
ified as an NChar type and characters from any national
character set may be stored in such a column. Also, since
the national character set may sort differently from default
database character set, the SQL standard allows the specifi-
cation of collarion sequences to correctly sort and index the
data. Significantly, the format of storage of national charac-
ter set is left unspecified, and the database vendors are free
to choose any format for storage. Specifications are also
provided for restricting a NChar column to store characters
only from a specified repertoire. The standard specifies that
comparison of two NCha strings is valid only with respect
to a repertoire and considers comparison across repertoires
as binary comparison, with the assumption that comparison
of characters across repertoires is meaningless.

Finally, even the recently released SQL standard - called
SQL: 1999 [13], has not gone beyond SQL-92 in the area of
multilingualism.

3.3 What do Popular Databases offer?

In the academic and research community, a few propri-
etary multilingual database systems have been developed
and deployed, such as 191 and [I 11. While these systems are
extensive in their lexical and linguistic capabilities, their ap-
plicability is limited to specific domains. Therefore, in this
paper, we focus primarily on the popular general purpose
database systems, such as Oracle 9i (9.0.1), Microsoft SQL
Server 2000 (8.00.194), IBM DB2 Universal Server (7.1.0)
and MySQL (4.0.3-Beta).

In the following sub-section, we specify a variety of pa-
rameters to evaluate multilingual support and assess how
these databases measure up on these parameters. Only the
parameters that directly impact database processing are se-
lected for comparison. We would like to emphasize that
issues such as IntemationaIizationlLocalization that refer
to the process of making a piece of software portable and
customisable across languages and LuyoutlRendering that
deal with display of multilingual text for the user interfaces
are not considered, as these do not impact database pro-
cessing. However, they share some common resources with
databases, such as Locale.

3.3.1

While the 8-bit ISO-8859 based character sets are the de-
fault character sets in most database systems, the main is-
sue with them is that their width is not sufficient to store
multilingual data. However, most database systems have
taken either Unicode or UCS-2 as the storage format for
implementing NChar data type. While Oracle 9i and DB2
have allowed user specification of NChar as one of U P - 8
or UTF-16, SQL Server stores NChar as UCS-2. The open-
source MySQL plans to add support for Unicode, though
this feature is not available as yet.

While Unicode achieves a much-needed standardization
for interoperability, there may be undesirable side effects
resulting from improper user choice of the storage format
for NChar. Those databases t h a allow UTI-8 format may
offer a better space efficiency for data that is dominated by
ASCII-based scripts, whereas the same UTF-8 format may
triple the size of the database for data that is predominantly
in Indic scripts. The UTF-16 encoding doubles the size of
the database in both the cases. The increased space directly
translates to increased system cost and also has adverse im-
pact on the query performance. However, the storage size
also depends on whether the database system uses the speci-
fied format for the storage or has implemented some intemal
optimizations.

Storage Format of Multilingual Data

26

3.3.2 Collation Sequences

The Collation sequence is fundamental to most database op-
erations, such as comparison, sorting and indexing. Uni-
code consortium has specified the semantics of comparing
two Unicode strings in [6]. Briefly, this collation algorithm
makes use of three levels of sorting, based on the base char-
acters, base character plus the diacritical marks or the com-
bination of the base characters, diacritical marks and the
case of the lener. The collation algorithm also provides sup-
port for additional comparison levels that can be specified
by users. If no sort sequence is specified for a multilingual
column, the sort order is taken to be binary.

All the commercial databases support Unicode colla-
tions along with all three levels of comparison. Oracle
has about 50 predefined collations while DB2 has about
40 pre-defined collations. However, users must use only
one of these predefined collations. SQL Server uses colla-
tions defined in the underlying Windows OS, thus providing
a tighter integration with other language handling compo-
nents ofthe system. MySQL has pre-definedabout 23 colla-
tions and also allows users to define new collations through
source-code changes. While flexible, this approach requires
source knowledge and expertise and may lead to potential
inconsistencies. Oracle and DBZ also support multilingual
sorts, which allow sorts of a mixed language strings from a
limited set of languages. Though user-specified collations
are allowed in SQL standards, no commercial database sys-
tems has implemented this feature.

3.3.3 Multilingual Data Indexing

Collation sequences are used to build indexes on specific at-
tributes. All the databases support indices on multilingual
data using one of the predefined collation sequences. Or-
acle and DB2 allow multiple indices on the same column
using different collations allowing the same data to be pro-
cessed with different language conventions. It is not clear
from ourreading whether SQL Server supports multiple in-
dices.

3.3.4 Lexical / Linguistic Query processing

When we consider query processing with language data the
differences between Database Systems that focus on repre-
sentation and efficient manipulation and Natural Language
Processing that focuses on semantic content, are brought
into focus. However, these disciplines are complementary
to each other and may symbiotically provide enhanced ser-
vice to the users in Internet era.

Query processing in multilingual environments could
vary from being a simple string matching (in different
scripts) to a complex semantic query, by considering or-
thogonal variations of transliteration or translation of query

and stored data, semantic or thematic querying, and cross-
language retrieval using richer linguistic resources such as
Wordnet [2].

All the lexical and linguistic query processing require
varying amounts of linguistic processing; since no linguistic
processing is specified in SQL standards, each vendor has
taken their own approach for handling such queries, mak-
ing comparison between them difficult. MySQL bas a very
rudimentary support for natural language queries, but plans
to add linguistic processing to the server. SQL Server pro-
vides linguistic analysis and querying in a handful of lan-
guages. DB2 has integrated with normal SQL, text pro-
cessing features that offer a rich set of linguistic features
for qoery processing. Features include linguistic indexing
of data using morphological and other linguistic analysis
tools and retrieval using semantic matching of query key-
words. Oracle’s Text Server Option provides a similar set
of features, enhanced by rich indexing schemes. However,
these advanced capabilities are limited to documents in only
a handful of languages - primarily Western European and a
few East Asian languages. However, each vendor has plans
to add more languages in the future versions.

3.35 Summary of Multilingual Support by Commer-
cial Systems

The comparison of features discussed in the preceding sec-
tions is summarized in Table 1. Keeping in mind those re-
quirements that are specified in Section 2, we observe that in
general all the database systems have implemented equiva-
lent support for multilingual Storage and Querying require-
ment using a wide NChar format and NChar predicates that
are equivalent to Char predicates. The commercial database
systems support Unicode or UCS-2 for Intemperability re-
quirement, while MySQL bas promised support for Uni-
code soon. The question of how efficient the database sys-
tems are in supporting multilingualism - the Language In-
dependence requirement, is explored in the Section 3.4.

The support for Lexical Processing is not available in any
of the database systems yet, as all have assumed that com-
parison across scripts is meaningless. We explore this re-
quirement in our research agenda in Section 4. Support for
the Linguistic processing requirement is not uniform among
the databases, due to the fact that SQL Standards have not
specified guidelines on these features yet. However, a rich
set of features are provided by all commercial databases for
linguistic querying of underlying data, though such capabil-
ities are currently restricted to a handful of languages.

3.4 Multilingual Performance Analysis

To quantify the performance of the database systems
with respect to handling of multilingual text data, we con-
ducted a set of experiments on a popular database system

21

Database Oracle% Microsoft IBM
Internet Server SQL Sewer2000 Universal Server

with two different data sets; the first data set contained data
in ASCII and the second contained equivalent Unicode data
in Indic scripts in the popular UTF-8 encoding. Data sets of
about 240 MB size were generated using a modified TPC-H
data generator and loaded onto the database system under
study. The tests were run on a standard Pentium 1.7GHz
machine with 512MB memory. Carefully chosen queries
that approximate the performance of standard relational op-
erators were nm. Qpical experiment involved measuring
running time for equivalent queries involving integers (for
establishing a baseline), Char and NChar text. A sample
of run times from our initial experiments with one of the
database systems is provided in Table 2. Space-wise, we
observed that the storage needed for NChar data is nearly
twice that of equivalent Char data.

M Y ~ Q L

Relational
Overator

Integer Char NChar Operator
Data Data Data Slowdown

Table 2. Performance of Relational Operators

L
(Sec) (Sec) (Sec) (Char vs NChar)

Tablescan 8 9 26 188%
Index Scan 0.11 0.12 0.33 165%

Join 27 97 171 76%

We observe that under default parameters for the ma-
chine, OS and the database, the multilingual queries are
significantly slower, as shown in Table 2. Clearly, such in-
efficiencies in the basic relational operators are bound to
affect overall query performance. Further, what is more

womsome is the fact that we observe that the optimizer is
not correctly estimating such slowdown, which could po-
tentially have a major impact on query performance by al-
lowing inefficient plans to be selected.

4 A Research Proposal for Multilingual Sup-
port in Databases

So far in the paper, we have highlighted the requirements
from the user community and the support provided by the
popular database systems, vis-a-vis multilingual data. All
gaps between the two must be addressed by the database
research community and in the remainder of this paper
we discuss three important research issues that need to
be addressed for wider adoption of multilingual databases:
lexical and linguistic feature enhancements in databases,
benchmark suites for feature and performance analysis, and
database architecture components for efficient suppart for
multilingual data.

4.1 Lexical and Linguistic Features

41.1 Lezieal Jodn Operator

As per SQL-92 standard, comparison of two strings is con-
sidered to be meaningful only if they are from the same
repertoire. Since NCbar does not contain the repertoire in-
formation the comparison of two NChar strings is primarily
considered as a binary comparison. Clearly, this restriction

28

has an impact on Lexical Pmcessing Requirement given in
Section 2.

Equality comparison of strings from different languages
makes sense for proper nouns,, though we recognize that
such comparisons may be limited to strings from languages
within an equivalent set of languages. While the definition
of the equivalence sets of languages and equivalence of in-
dividual characters in a given pair of languages are left to
linguists, we maintain that such equivalence once defined,
may be used for lexical joining of data.

We believe that there is value to such lexical comparisons
and suggest that SQL extensions may be defined for such
comparisons; further, we recommend that it be included in
the future SQL standards.

4.1.2 Lingual J d n Operator

The lexical matching capabilities of database systems using
Lexical Join may be extended further to matching on mean-
ing of attributes as well. We propose another new join oper-
ator, tentatively called Lingual Join, to match on semantic
values of attributes using generic, multi-purpose linguistic
resources, such as WordNet [2]. The necessaty linguistic re-
sources that map equivalent concepts between pairs of lan-
guages must be defined by linguists and be taken as input
for implementing Lingual Join operators.

Given that the linguistic resources such as WordNet need
to be modeled as dense graphs, storing them in relational
database systems parallels the well-known efforts in the
area of mapping of data between XML and relational for-
mats as illustrated in [15]. Further, availability of such rich
linguistic resources in multiple languages in the database
systems may be useful for linguistic researchers as well.

4.2 Performance Benchmarks

Though traditionally the databases are used for large
amounts of enterprise data, multilingual text is becoming
a major component of the database storage today. While
several benchmarks such as TPC benchmarks [4], are avail-
able for comparing performances of databases with respect
to traditional data, none exists for measuring efficiency of
databases with respect to multilingual data, to our knowl-
edge. It is our belief that such performance differentials as
highlighted in Table 2 will exist in most database systems,
though the extent of such deviations is unknown at this time.

All such observations point to the need for a well-
accepted and well-trusted framework for comparing differ-
ent database systems, to aid the users in selecting an ap-
propriate database system for their needs. Such a bench-
mark should test overall functionality and performance of
the database systems and performance of crucial system
components such as Query Optimizer.

4.3 A Proposed Data type - LChar

Our initial analysis of performance results suggests that
the differences in performance are primarily attributable to
the increased storage needed for multilingual data. While
Unicode provides interoperability, it has an adverse effect
on storage. Hence, it is essential to find a way of reducing
the storage space needed without compromising Unicode
standards.

We outline here our approach to reduce the space over-
heads for Unicode strings that is consistent with Unicode
standards. We propose a new data type - LChar, which
stores a given Unicode string as two pieces internally; the
first piece storing the code block of the string as the meta
data for the the second piece that stores the offsets for every
character in to the code block. This approach stems from
our observation that while most Unicode code blocks con-
tain less than 256 characters (thus requiring only one byte
for storage of the offset), the default 2-byte representation
is used for storing each character in UTF-16. Given that a
data item is most likely to be in a single language, the bits
encoding the code block are merely repeated for each and
every character that is a part of the text string. The corre-
sponding Unicode string may be generated on demand at
memory speeds, by combining the meta-data (code block
information) with the data string (offsets), using a simple
and efficient bit-wise operation.

4.4 A €'&posed Database Architecture for Multi-
lingual Environments

Assembling all the pieces above, we propose a set of
database architecture components for efficient processing of
multilingual data, as shown in Figure 4. Our proposals are
highlighted by shaded boxes in the figure.

We propose that the new data type defined above -
LChar, be implemented as the storage format for multi-
lingual characters. Such an implementation would be effi-
cient storage-wise and would also satisfy the Language In-
dependence requirement. To support LChar data type, the
following changes to the database architecture are needed:
Database catalog must he enhanced to model LChar data
type and proper schemes must be devised to efficiently store
and process the split representation of LChar strings. The
query processing module must implement changes to Parser
to take into account the enhanced SQL syntax and for con-
verting input Unicode strings to LChar strings. The Opti-
mizer and Code Generator must be modified to take into
account the mapping of the user query to an internal query
that handles the split image of LChar strings for a given
Unicode string. Changes must be made in optimizer mod-
ules to model the costs associated with new LChar data type
accurately, to aid the proper query plan selection. Further,

29

i i
Buffer / File
Manager

Figure 4. Architecture

optimizer mis-estimate of queries with NChar data type is a
major weak point that we found in our initial experiments.
Buffer and File management modules in the core of the
database server must be enhanced with the new LChar data
type, by implementing efficient bit-wise operations to con-
vert strings between Unicode and LChar. Semantics of con-
versions between LChar and. other database data types must
be defined, though we expect them to be very similar to
those of Unicode based data type.

Most importantly, the database engine must be modified
to store the lexical resources to implement Lezical Join.
The mapping tables between pairs of languages must be
stored in main memory for efficient access, as we expect
the mapping tables to have a small footprint.

We propose wider adoption of linguistic technologies
and implementation of Linguistic Join, using linguistic
resources. Resources such as WordNet 1141 may be use-
ful in comparing meanings of words in different languages,
if a proper synset mapping is available between WordNets
of different languages. The availability of such resources
in different languages will help to make implementation of
linguistic operators possible.

5 Conclusion

In this paper we presented a set of requirements from
the user community for multilingual database systems and
justified the same with examples from typical e-Commerce
and e-Governance solutions. We provided a survey of the
support offered by popular database systems to satisfy such
requirements. We find that the database systems have taken
a near uniform approach in supporting storage and querying
requirements by supporting Unicode or UCS-2. However,

wide gaps exist in the performance aspect, as suggested by
our preliminary experiments with a popular database. Se-
rious space overheads and differences in the performance
of standard database operators working on equivalent data
sets in Char and NChar underscore the need for a compre-
hensive performance study and performance improvements.
Funher, we see that some of the requirements of user com-
munity to merge data lexically and linguistically from dif-
ferent languages is not satisfiable by current SQL standards.

We propose a comprehensive solution to satisfy these
needs by adding a new data type as well as new processing
components to the basic database architecture. We suggest
that the new operators outlined here be considered for in-
clusion in the future versions of SQL standards as a uniform
mechanism to combine multilingual data. We are currently
engaged in a comprehensive study of all the issues raised in
this paper and full details of our results will be made avail-
able in [lo].

References

[I] hnp://tdil.mit.gov.in.
121 http://www.cogsci.princeton.edu/wn.
[3] h t t p : / h . revdept-01 .ka,: nic. in/Bhoomi/Home. html.
[41 htrp://www.tpc.org.
[SI http:/h.unicode.org.
[61 M. Davis. Unicode collation algorithm. Unicode Consor-

tium Technical Report, 2001.
171 [SO. ISOlIEC 8859 Information Processing - &bit Single-

Byte Graphic Coded Character Sets. lSO/lEC 88S9-
151999, 1999.

[SI ISO. ISO/IEC 10646-1:2000, Information Technology -
Universal Multiple-octet Coded Character Set (UCS) - p m
1: Architecture and Basic Multilingual Plane. ISO/IEC
10646-1:2000,2000.

[9] R. King and A. Morfeq Bayan: An Arabic Text Database
Management System. Proceedings of the 1990 ACM SIG-
MOD lnfemntional Conference on Management of Data,
1990.

Bridging the Digital
Divide Between Database and Linguistic Technologies.
lISc/Database Systems Lab Technical Report (forthcoming),
2003.

[I l l C. Lu and K. Lee. A Multilingual Database Management
System for Ideographic Languages. Chinese University of
Hong Kong Technical Report, 1992.

[I21 I. Melton and A. R. Simon. Understanding the New SQL: A
Complete Guide. Morgan Kaufmann, San Francisco, Cali-
fornia, 1993.

[13] J. Melton and A. R. Simon. SQL 1999: Understanding Re-
lational Language Components. Morgan Kaufmann, San
Francisco, California, 2001.

[I41 G. A. Miller. Wordnet: A Lexical Database. Communica-
tionsoftheACM, 38:11:3941, 1995.

[I51 J. Shanmugasundaram er al. Relational Databases for
Querying XML Documents: Limitations and Opportunities.
Proceedings of the 25th V W B Conference, 1999.

[IO] A. Kumaran and J. R. Haritsa.

30

http://www.cogsci.princeton.edu/wn
http:/h
http://htrp://www.tpc.org
http:/h.unicode.org

