N

N
N

HAL

open science

An extensible approach to high-quality multilingual
typesetting

John Plaice, Yannis Haralambous, Chris Rowley

» To cite this version:

John Plaice, Yannis Haralambous, Chris Rowley. An extensible approach to high-quality multi-
lingual typesetting. Research Issues in Data Engineering: Multi-lingual Information Management,
IEEE; International Institute of Information Technology, Mar 2003, Hyderabad, India. pp.62-67.

hal-02112921

HAL Id: hal-02112921
https://hal.science/hal-02112921
Submitted on 27 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02112921
https://hal.archives-ouvertes.fr

" An extensible approach to
high-quality multilingual typesetting

John Plaice
School of Computer Science and Engineering
The University of New South Wales
UNSW SYDNEY NSW 2032, Australia
plaice@cse,unsw.edu.au

Yannis Haralambous
Département Informatique
Ecole Nationale Supérieure des Télécommunications de Bretagne
BP832, F-29285 Brest Cedex, France
Yannis.Haralambous@enst-bretagne. fr

Chris Rowley
Faculty of Mathematics and Computing
The Open University, UK
Milton Keynes MK7 6AA, United Kingdom

Abstract— We propose to create and study a new model for
the micro-typography part of antomated multilingual typesetting,
This new model will support quality typesetting for a number of
modern and ancient scripts.

The major innovations in the proposal are: the process is re-
fined into four phases, each dependent on a multidimensional tree-
structured context summarizing the current linguistic and cultural
environment. The four phases are: preparing the input stream for
typesetting; segmenting the stream into clusters (words); typeset-
ting these clusters; and then recombining the clusters into a type-
set text stream. The context is pervasive throughout the process;
the algorithms used in each phase are context-dependent, as are
the meanings of fundamental entities such as language, script, font
and character.

1. INTRODUCTION

We present in this paper the outline of a new approach to the
automation of some aspects of typesetting. Traditionally, type-
setting was defined thus “The production of printed matter by
computer, usually by producing a master copy for offset repro-
duction” [3] but we include a far greater range of cutput me-
dia in our view. One of the key innovations outlined here is to
consider each of language, script, font, and character as multj-
dimensional entities, as opposed to the current view, reiterated
at length in the Unicode standard [17], that they are discrete
and unchanging. As a result, typesetting will be undertaken in
a multidimensional context — formally, a point in a multidi-
mensional space — that summarizes the current linguistic and
cultural environment. This point of view, consistent with the
intensional programming approach explained in Sections II-B
and IV below, will efficiently support much greater variation in
the behavior of the typesetting engine. Moreover, this approach

C.A.Rowley@dopen.ac.uk

will allow the typesetter to be integrated with more general
text processing tools, such as spell-checkers, style-checkers,
content-checkers, transliterators, or translators (see also Mit-
telbach and Rowley [8]).

II. BACKGROUND
A. Computer Typesetting, TgX and

The first steps in computer typesetting took place in the
1950s, but it was not until 1982, when Donald Knuth introduced
TEX {5]. that it became possible to use computer software for
high-quality typesetting of, at least, English and mathematics,
as in his The Art of Computer Programming series.

In TigX’s very speedy character-level typesetter, characters in
the input file are transformed almost directly into glyphs in the
current font, and these glyphs are positioned side-by-side ‘on
the baseline’; the only small refinement of this transformation
process is that a font-specific finite-state automaton can be used
to change the glyphs used (typically by using ligatures) and
their horizontal placement (by kerning). The ‘words’ thus type-
set are then separated by a font-specific amount of stretchable
inter-word space {(glue) to form a stream (a horizontal list) that
is typically passed to TgX's paragraph maker. In the TEX model,
cach glyph is an object that has only width, height, and depth; a
similar box-and-glue model is also used for higher-level layout.

The §2 system [10], developed by the first two authors, is
a series of extensions to the TRX system that facilitate multi-
lingual typesetting. The 2 system has been used for typeset-
ting languages in the following scripts: Latin (including Gothic
and Gaelic), Greek, Cyrllic, Armenian, Georgian, Arabic,

mailto:Yannis.Haralambous@enst-bretagne.fr
mailto:C.A.Rowley@open.ac.uk

Hebrew, Syriac, Tifinagh, Japanese, Thai, Khmer, Devanagari
(for Hindi, Sanskrit), Malayalam and Tamil.

The major difference between the TgX model and the current
€t model is that, before glyph selection, the character stream
10 be typeset is segmented and processed by a series of filters,
each reading from standard input and writing to standard out-
put. Once all of the filters are applied, the stream is passed
to the standard TEX character-level typesetter. Filters have been
written for character set conversion, transliteration, morpholog-
ical analysis, spell-checking, and contextual analysis. In ad-
dition, a number of filters have been written for what we call
1.5-dimensional layout, used for scripts that are written hori-
zontally, but for which there is substantial vertical displacement
for proper placement of glyphs: examples where this is neces-
sary are typesetting Arabic, Indic and South-East Asian scripts,
typesetting mathematics, and stacking International Phonetic
Alphabet (IPA) diacritics,.

There are two current limitations to the use of {). First, be-
cause €2 is so versatile, it is difficult to define good high-level
interfaces that can be used without in-depth understanding of
the low-level system. Second, the output from applying sev-
eral filters is simply too low-level; the relationship between the
original input and the typeset output is simply too distant. If
one is only interested in the final visual Jayout, this is not so
much of a problem. However, we are increasingly interested in

the ability to be able to search through documents to find infor--

mation; we therefore need to be able to retain the link between
the original text and the typeset output, so that this information
can be placed in all generated documents.

B. Intensional Programming

Intensional programming [12] is an approach to computing
that supposes that there is 2 multidimensional context, and that
all programs are capable of adapting themselves to this context.
The context is pervasive, and can simultaneously affect the be-
havior of a program at the lowest, highest and middle layers.

When an intensional program is running, there is a current
context. 'This context is initialized upon launching the program
from the values of environment variables, from explicit parame-
ters, and possibly from active context servers. The cutrent con-
text can be modified during execution, either explicitly through
the program’s actions, or implicitly, through changes at an ac-
tive context server.

A context is a point in a multidimensional space, i.e., given
a dimension, the context will return a value for that dimension.
The simplest contexts are dictionaries (lists of attribute-value
pairs). A natural generalization is what will be used in this
paper: the values themselves can be versions, resulting in a
tree-structured context, The set of contexts is furnished with
a partial order C called a refinement relation.

For exémple, to describe Australian English, we could use
the context:

<gcript:<latins+
lang:<English;dialect:<Australians>»

where script and lang are called dimensions, and
lang:dialect a compound dimension. See Section IV for
more details.

During execution, the current context can be queried, dimen-
sion by dimension, and the program can adapt its behavior ac-
cordingly. In addition, if the programming language supports it,
then contextual conditional expressions and blocks can be de-
fined, in which the most relevant case, with respect to the cur-
rent context and according to the partial order, is chosen among
the different possibilities.

In addition, any entity can be defined in multipte versions. A
version is of the same structure as a context. Whenever an iden-
tifier designating an entity appears in an expression or a state-
ment, then the most relevant version of that entity, with respect
to the current context, is chosen. This is called the variant sub-
structure principle. The general approach is called intensional
versioning [14].

The ISE programming language {13] was the first language
combining both intensional programming and versioning. It
is based on the procedural scripting language Perl, and it has
greatly facilitated the creation of multidimensicnal Web pages.
Similar experimental work has been undertaken under the su-
pervision of the first anthor with C, C++, Java, and Eiffel. And,
when combined with a context server (see Paul Swoboda’s PhD
thesis [15]), it becomes possible for several documents or pro-
grams to be immersed in the same context.)

7
III. SIGNIFICANCE

The significance of high-quality highly automated multilin- -
gual typesetting cannot be overestimated, We know from Mar-
shall McLuhan’s work [6] just how important was the intro-
duction of metal type to European society. Typesetting was, in
some sense, the first industrial process, upon which all others

" were based, It was also the process that enabled the others,

since it allowed knowledge to spread rapidly across Europe. It
also facilitated the rise of national vernaculars and the subse-
quent creation of nation-states.

Today, with the development of the Internet and even more so
the Web, something different is occurring. We now have access
to online documents in hundreds of languages, using a muiti-
tude of scripts. At the same time, grandiose endeavors such
as the Million Book Project [7] (scanning of about 4% of the
books ever written) are being undertaken. Bit by bit, the world’s
collected writings are being made available, to everyone. And,
with miniaturization of storage, these writings will be available
not just online, but on our personal portabie devices.

However, making these works available is not sufficient.
They still need to be printed, whether it be on a screen, in a
bound paper volume, or on some future substrate. But we are
not yet at a point where we can automatically reproduce the
quality of books typeset in the nineteenth century, particularly
for the non-Latin scripts. In fact, the problem is harder, because
we now need real-time printing of documents from the Web.

In India, this problem is of utmost importance. India has two
national languages (Hindi and English), one recognized mother
language (Sanskrit), and 14 official languages, each with its
own script. In addition, there are approximately 200 minority
langnages. Clearly, a better, more general approach to multilin-
gual typesetting is needed, one that promises ease of use with
high quality.

More prosaic areas, such as the formatting of legal docu-
ments and business forms, also have a need for high quality
typographic design in a range of languages and here high levels
of automation are often paramount due to the high volume of
material and the essential need for clarity and accuracy. Less
conventionally, safety critical systems need very high quality
typographic designs as has been shown by the screen fonts and
layout requirements for the new British air traffic contro] sys-
tem. y

IV. STRUCTURING THE CONTEXT

As was stated in Section II-B, we use the same notation to
designate versions of entities and to designate contexts. This
section has three subsections. First, we define versions and the
refinement relation. Then, we define version binders, which
hold versioned entities. Finally, we define version operaiors,
which are used 1o change from version to version. In the fol-
lowing section, we will show how all of these are te be used.

A. Versions and Refinement

Let {(Si, l;,-)}z, be a collection of sets of ground values, each
with its own partial order. Let § = U;S;. Then the set of ver-
sions V (3 V) over S is given by the following syntax:

V ou= 0)A|Q}{B;L) - 4y
B = ¢lalwly .-]
L u= 0l d:V+L (3

where d,v € S,
There are three special versions:
o P is the empty version (also called vanilla);
o A is the minimally defined version, just more defined than
the empty one;
o {1 is the maximally defined version, more defined than all
other versions,
The normal case is that there is a base value B, along with a
version list {L for short), which is a set of dimension-version
pairs. We write dL for the set of dimensions of L.
A sequence of dimensions is called a compound dimension.
It can be used as a path into a version. Formally:

D=-|d:D 4)

If V is a version, V(D) is the subtree of V' whose root is
tgached by following the path 7 from the root of V.

V() = V 3)
(B;d:V' + Ly (d:D) = V'(D) (6)

. As with versions, there are three special base values:
o « is the empry base value;
o « i3 the minimally defined base value, just more defined
than the empty base value;
= w is the maximally defined base value, more defined than
all others.
The normal case is that a base value is simply a scalar.

To the set V, we add an equivalence relation =, and a refine-
ment relation . We begin with the equivalence relation:

0 = (01) 6]
A = {(o0) (%)
O— <w;Zd:Q> {9)

dES
d:p = ¢, am
d:V+d:V = d:(V+V') (1)
B+ {BL) = (BL+L) (12)
L+®, = L (13
L+L = L (4
L+ = /4L (15)
L+ I+ = (L+LH)+L" (16)

Therefore ® and A are notational conveniences, while £ cannot
be reduced. The + operator is idempotent, commutative, and
associative,

We now give the partial order over the base values:

eC B (17)
BLCB (13)
BCw 19)
s

vo, 1 €5 v Lim @1)
vp 1y

The last rule states that if vy and v; belong to the same set $;
and are comparable according to the partial order C;, then that
order is subsumed for refinement purposes,

Now we can define the partial order over entire versions:

pCcv (22)
) (23)

V£0
ATV 24)

Vo=W
VeLW; @

VW CV
dVoCad:V, 26)
0LCL @n

LCL L,CL

Lo+ L) € L+ 1 @5
ByC B LpClLy 29)

{Bo; Lo} C (By; L}

Rule 28 ensures that the + operator defines the least upper
bound of two versions.

B. Version Domains and Version Binders

When doing intensional programming, we work with sets of
versions, called version domains, written V. There is one oper-
ation on version domains, namely the best-fir. Given a version
domain V of existing versions and a requested version ¥ q, the
best-fit version is defined by:

besty (V, Vieg) = max{V € V | V C Vioq} 30
If the maximum does not exist, there is no best-fit version.

Typically, we will be versioning something, an object of
some type. This is done using version binders, simply
{V, object) pairs. Version binder domains V), then become
functions mapping versions to objects. The best-fit object in
a verston binder domain is given by:

besto{ Vi, Vieq) = Va{besty(dom Vi, Vieq)) 31

C. Version Operators

Version operators allow one to selectively modify versions.
Their syntax is similar to that of versions.

Vop = V { [PopQ Bop§ Lop] (32)
Fp == -—— | € (33)
By == —|B (34)
Lop = By, | d:Vap+ Lop (35)

A version operator is applied to a version to transform it into
another version. (It can also be used to transform a version
operator into another; see below.) The — operator removes the
current base value, while the —— operator in F,; is used to
clear all dimensions not explicitly listed at that level.

Now we give the semantics for V'V, the application of
version operator Vo, to version 1V

oW = W (36)
QV,p, = error 37
(B L) [=~; Bop; Lap] = (38)

(Bi NI — 6Loy)) [6; Bops Lop)
- (B; L) [EQBO])': Lup] = <(B Bop)?(L Lop)) (3N

The general case consists of replacing the base value and re-
placing the version list. First, the base value:

B- = ¢ E)]
BgB = B (41)
Now, the version list:
L®, = L 42
(d:V+ LY (d:Vop+ Lop) = (43)
d:(V Vop) + (L Lop)
L(d:Vop+Lop) = (44)

d: (0 Vip) + (L Lop), d 6L

Version operators can alse be applied to version operators.
There are two cases:

[Pop;Bopo;LOPU] l& B‘)PI;Lopl] =
[Pop; (Bapg Bop,); (Lopg Lﬂpl)]

(45)

[Pop; Bopo; Lopo] i'"_; Bopl; Lopl] =
[”_3 (Bopg Bopy i ((Lopo\(‘sLopo — 6Lopy)) Lopz)]

Now that we have given the formal syntax and semantics of
versions, version binders, and version operations, we can move
on to typesetting.

(46)

V. THE FOUR PHASES OF TYPESETTING

At its most basic level, a micro-typesetier is a function that
transforms a stream of characters to a stream of positioned
glyphs. In our new medel, micro-typesetting is split into four
separate phases: preparation, segmentation, micro-typesetting
and recombination. Since each of these phases is dependent on
the context, we can write the process, using C++ syntax, as:

strean<Glyphs
micro_typeset (stream«<Char> input,
Version context) {
stream<Chars> prepared =
input.apply(otp_list.best(context));
stream<Cluster> segmerited =
segmenter.best (context) {prepared) ;
stream«<TypesetCluster> typeset =
clusterset.best (context} {segmented) ;
stream<Glyph> recombined =
recombine.best (context) {typeset);
return recombined;

}

where function . best (context) means that the most relevant
version of function, with respect to context, is selected. Below,
we examine each of the phases in detail.

A. Preparation

stream<Char> prepared =
input.apply{otp_list.best (context}):

The preparation phase in this new approach is similar to the
current situation in the €} system. At all times, there is an active
2 Translation Processing List (2TP-list). This list consists of
individual) Translation Processes (¥TP"s), each of which is a
filter reading from standard input to standard output. What is
new is that the whole process will become context-dependent.
First, the most relevant {2TP-list, with respect to the context and
using the refinement relation over contexts, will be the one that
is active. Second, once chosen, it can test the current context
and adapt its behavior, by selectively turning on or off, or even
replacing, individual QTP’s,

The preparation phase will work entirely on characters, i.e. at
the information exchange level but it will allow additional typo-
graphic information to be added to the character stream, so that
the following phases can use the extra have information to pro-
duce better typography.

B. Segmentation

stream<Cluster> segmented =
segmenter.best (context) (prepared} ;

The segmentation phase splits the stream of characters into
clusters of characters; typically, segmentation is used for word
detection. In English, word detection is a trivial problem, and
segmentation just means recognizing ‘white space’ such as the
blank character, Unicode U+020. By contrast, in Thai, where
there is normally ne word-delimiter in the character stream
(blanks are traditionally only used as sentence-delimiters), it
is impossible to do any form of automatic processing unless a
sophisticated morphological analyzer is being used to calcuiate
word and syllable boundaries, In many Germanic and Slavic
languages, it is also necessary to find the division of compound
words into their building blocks. These processes are closely
related to finding word-division points so this should be incor-
porated into this part of the process (a very different approach
to that of TgX). The choice of segmenter is thus clearly seen to
be context-dependent.

C. Cluster typesetting

stream<TypesetCluster> typeset =
clusterset.best (context) (segmented) ;

During the typesetting phase, a cluster engine processes a char-
acter cluster, taking into account the current context including
language and font information, and produces the typeset out-
put — a sequence of positioned glyphs. In many cases, such
as when hyphenation or some other form of cluster-breaking
is allowed, there will be multiple possible typeset results, and
all of these possibilities must be output. When dealing with
complex scripts or with fonts allowing great versatility (as with
Adobe Type 3 fonts), numerous different cluster engines will
be needed: these will be selected and their behaviour will be
fine-tuned according to the context.

D. Recombiration

stream<Glyph> recombined =
recombine.best {context} (typeset);

The final phase, before calling a higher-level formatting process
such as a paragrapher, is the recombination phase. Here, the
typeset clusters are placed next to each other. For simple text,
such as the English in this proposal, this simply means placing
a fixed stretchable space between typeset words. In situations
such as Thai and some styles of Arabic typesetting, kerning
would take place between words. Once again, the recombiner’s
behavior is context-dependent.

V1. EXAMPLES

Given the sophistication of the four-phase process, and that
the choice of segmenter, cluster engine and recombiner are all
context-dependent, and that the actions of each of these, once
they are chosen, also depends on the context, this new model
of typesetting engine is potentially much more powerful than
anything previously proposed or implemented. We intend to
testan * ' Tate it on, at least, the following scripts:

e Latin, Greek and Cyrillic, 1PA: left-to-right, discrete
glyphs, numercus diacritics, stacked vertically, above or
below the base letters, widespread hyphenation;

» Hebrew: right-to-left, discrete glyphs, optional use of di-
acritics (vowels and breathing marks), which are stacked
horizontally below base letter;

o Arabic, Naskh style: right-to-left, contiguous giyphs, con-
textually shaped, numerous ligatures, optional use of di-
acritics (vowels and breathing marks), placed in 1.5-
"dimensions, above and below;

e Indic scripts: left-to-right, 1.5-dimensional layout of clus-
ters, numerous ligatures, applied selectively according to
linguistic and stylistic criteria,

o Chinese, Japanese: vertical or left-to-right, often on fixed
grid, with annotations to the right or above the main se-
quence of text, automatic word recognition — Chinese and
Japanese words use one or more characters, but these are
not visually apparent — needed for any form of analysis;

o Egyptian hieroglyphics: mixed left-to-right and right-to-
left, 1.5-dimensional layout,

Once the basic typesetting is validated, then further experi-
ments, viewing language as a multidimensional entity, will be
undertaken. Already with (2, we have typeset Spanish with both
the Hebrew and Latin scripts; Berber with the Tifinagh, Arabic
and Latin scripts; Arabic with Arabic, Hebrew, Syriac, Latin
and even Arabized Latin (Latin script with a few additional
glyphs reminiscent of the Arabic script). The Arabic script can
be rendered in Naskh or Nastaliq or many other styles. Japanese
can be typeset with or without furigana, little annotations above
the kanji (the Chinese characters) to facilitate pronunciation.

The objective is to incorporate solutions to all such problems,
currently solved in an ad hoc manner, into our framework; each
time, the key is to correctly summarize the context. With this
key, then the choice of segmenters, clusters engines and recom-
biners to build, and of how they are built, is clarified; never-
theless, these algorithms may remain complex, because of the
inherent complexity of the problems they are solving.

VII. CONCLUSIONS

If the model that we propose to develop is successful, then
we will be able to produce, with relative ease, high-quality doc-
uments in many different languages and scripts.

Furthermore, this new approach of contexts can be used to
improve macro-typesetting as well as micro-typesetting. The
third author, in his role as a leader of the I£TgX3 Project, has
worked with closely related ideas in the context of Mittelbach’s
templates for higher-level formatting processes [2]. Here the
particular instance of a template object that is used to format a
document element will depend on a context that is derived from
both the logical position of that element in the structured doc-

.ument and from the formatting of the physically surrounding

objects in the formatted document. Collaboration between the
current authors and other members of the ISTEX3 team will lead
to many new interfaces that give access to the new functionality.

Other examples of the importance of such a structured con-
text in document processing can be found in work by the third
author with Frank Mittelbach [9].

Another example of dependence on this visual context oc-
curs in the use of Adobe Type 3 fonts, which are designed so
that glyphs can be generated differently upon each rendering
(see [1] for a discussion of a number of effects). On another
level, the Open-Type standard [11], jointly developed by Adobe
and Microsoft, allows for many different kinds of parameters —
beyond the basic three of width, height, and depth —, multiple
baselines, and a much richer notion of ligature. Our new engine
for micro-typography will provide new capabilities, adaptable
to new kinds of parameters, and increased control. Thus we
shall be able to provide a simple high-level interface that takes
advantage of new developments in font technologies.

In addition, the full-scale introduction of context will even al-
low reconsideration of the very contexts of glyph and character.
In the second auther’s article on the relationship between the
two [4], it is clear that glyphs and characters are not absolutes,
but, rather, fluid from one context to another.

At another level, the existing 2 and ISIEX systems have al-
ready influenced the specifications of XML [18] (how to deal
with multiple character sets), SVG [16] (the text model) and
XSL [19] (the model for printing in multiple-directions and the
concept of formatiing objects). The success of this project and
of our further research in typesetting will lead directly to addi-
tional enhancements to XSL and SVG, by providing, for exam-
ple, specifications for XSL formatting objects to support high-
quality typography and a text model that better supports glyph
specification.

Finally, this proposed model should be understood as the
preparation for a much more ambitious project, that will deal
not just with low-level typesetting but also general problems
of document structuring and layout for demanding typographic
designs in a highly automated environment. Detailed discussion
along these lines has already been initiated between the £ and
IATiEX 3 projects, which look forward to these wider horizons.

[1

—

2]

K]

[}

14

=

[5

—

6

iy

7
(8

18]

[10]

(11}
{12}

(13]

[14]

[15]

[16]

(1
118)

119

REFERENCES

Jacques André. Création de fontes en typographie numérigue [Creating
fonts for digital typography]. Documents d’habilitation, IRISA+IFSIC,
Rennes, 1993,

David Carlisle, Frank Mittelbach and Chris Rowley. New interfaces for
IATEX class design, 1999,

http://www, latex-project.org/papers/tug99.pdf
Computer Typesetting.
http://www.xrefer.com/entry/441575

Yannis Haralambous. Unicode et typographie : un amour impos-
sible [Unicede and typography: an impossible couple). Documents
rumériques 1:1, 2002,

Donald Knuth. Computers and Typeserting. 5 volumes, Addison-Wesley,
1986.

Marshall McLuhan. The Guvenberg Galaxy: The Making of Typographic
Man. University of Toronto Press, 1962,

Million Book Project. http://zeeb.library.cmu.edu/
Libraries/LIT/Projects/1MBooks . html

Frank Mittelbach and Chris Rowley, 1996. Application-independent rep-
resentation of text for document processing.

http: //www.latex-project.org/papers/unicodeb.pdf
Frank Mitielbach and Chris Rowley. Language information in structured
documents, 1997,
htip://www.latex-project.org/papers/language-
tug®?-paper-revised.pdf

Omega Typesetting and Document Processing System.

hitp: //omega.cse.unsw.edu.au

OpenType. http://www.opentype.org

John Plaice and Joey Paquet. Introduction to intensional programming. In
Intensional Programming I, World-Scientific, Singapore, 1996,

John Plaice, Paul Swoboda and Ammar Alammar. Building intensiopal
communities using shared contexts. In Distributed Communities on the
Web, LNCS 1830:55-64, Springer- Verlag, 2000.

John Plaice and William W. Wadge. A new approach to version control.
1EEE-TSE 19(3):268-276, 1993.

Paul Swoboda. A Formalization and Implementation of Distributed Inten-
sional Programming. PhD Thesis, The University of New South Wales,
Sydney, Australia, 2003.

Extensible Markup Language (XML).
http://www.w3c.org/Graphics/Sve

Unicode Home Page. http://www.unicode org

Extensible Markup Langoage {(XML).

http://www.w3c.org/ XML

The Extensible Stylesheet Language (XSL).
http://www.w3c.org/Style/XsSL

http://wWw.latex-project.org/papers/tu999.pdf
http://wWw.xrefer.com/entry/441575
http://reeb.library.cmu.edu
http://www.latex-project.org/papers/unicode5.pdf
http://uWW.latex-project.org/papers/language
http://omega.cse.unsw.edu.au
http://uWW.w3c.org/XML

