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Abstract—Nonnegative matrix factorization (NMF) plays a
crucial role in machine learning and data mining, especially
for dimension reduction and component analysis. It is employed
widely in different fields such as information retrieval, image pro-
cessing, etc. After a decade of fast development, severe limitations
still remained in NMFs methods including high complexity in
instance inference, hard to control sparsity or to interpret the role
of latent components. To deal with these limitations, this paper
proposes a new formulation by adding simplicial constraints for
NMEF. Experimental results in comparison to other state-of-the-
art approaches are highly competitive.

I. INTRODUCTION

Many algorithms in data mining cannot deal with large
datasets because of their rawness, high dimension and complex
distribution. To deal with this situation, two fundamental
purposes have been raised in data processing: Transforming
the data into a lower dimension space and extracting latent
components and variables inside the datasets to represent data
[1]. Nonnegative matrix factorization (NMF) is one of the
most popular effective methods to pursue these two purposes.
Many datasets in various fields have been formed as matrices
with nonnegative values. NMF aims to factorize such a matrix
X into a product of two matrices, X ~ FG, where G
contains basic vectors in the new space and F' contains new
corresponding coefficients of data instances in X. In other
words, this factorization transforms data instances into new
space of basic vectors.

Many NMF methods have been developed in the last
decade by using divergence functions, constraints and regular-
izations. Initially, basic NMF [2] only allows approximating
the original nonnegative data by a product of two matrices.
By this approximation, each object is represented as a non-
subtractive combinations of nonnegative parts or basic vectors.
Following [2] many algorithms were proposed for different
divergence functions [3]. Currently, by adapting requirements
for data analysis problems and data types, many variants
of NMF are being developed. Also, various new divergence
functions are employed [4], and local constraints are added to
improve the quality of matrix decompositions, which preserve
the local features [S]. Sparse representation can be achieved by
adding sparseness constraints [6], [7]. In addition, some work
has implicitly or explicitly added orthogonality constraints

(81, [9].

Usually, NMF is solved by iterative multiplicative updating
algorithms. However, minimizing object functions does not
guarantee a unique solution. The existence of many local min-
ima solutions makes the algorithms suffering from rotational
ambiguities. If no prior information is known, the normaliza-
tion of rows in G or latent components will help to reduce
the effects of these ambiguities [10]. Particularly, if X ~ FG

is a solution, X ~ F[DgG'] = [FD¢|G’ is also a solution;
where D¢ = diag(||Gia|l, ", .., Grall, "), p € [0,00) and
G = DgG’. As aresult, the latent components are normalized
as basic vectors. Although this technique is advantageous to
optimize the objective functions, the role of basic vectors is
not easy to interpret directly via their coefficients.

In this work, we propose a new NMF formulation by
adding new prior information into NMF, in which each data
instance is a convex combination of the latent components.
In other words, each instance is a probabilistic distribution
over the latent components. By this way, we associate a
probabilistic model with the NMF problem. As a result, we
obtain more advantages than the previous formulations such as
easy interpretability, low complexity, convexity, sparsity, and
distributability and parallelability. We also develop effective
algorithms for the two most popular divergence functions:
squared Euclidean distance and KL-divergence [4].

II. NEwW FORMULATION

Mathematically, we can define the NMF problem as fol-
lows:

Definition 1 [NMF]: Given a dataset consisting of M N-
dimension vectors X = [X1,Xa,..., Xy € Ry N where
each vector presents a data instance. NMF seeks to de-
compose X into a product of two nonnegative factorizing
matrices F' and G, where F' = [Fy,...,Fy] € RfXK and
G = 1[Gy,....Gk] € RfXN are coefficient matrix and latent
component matrix, respectively, X ~ FG.

We assume that each instance is a convex combination of
the latent components obtained by adding a new simplicial
constraint into NMF. Hence, we have:

Definition 2 [Simplicial NMF]: Simplicial NMF is NMF
where each instance X,, is a convex combination of the latent

K K
components X, = Y FnrGyr and Y Fp, =1 for all m.
k=1 k=1
By adding this new constraint, we have associated a
probabilistic model with NMF problem, in which each instance
is a probabilistic distribution over the latent components and
represented as a convex combination of latent components. In
other words, this convex combination provides explicitly the
extent of contribution of each latent component, while other
formulations of NMF do not have. Moreover, regarding to
geometry meaning, each instance is projected as a point on the
simplex of latent components. This projection is called instance
inference. As a result, we obtained significant properties:

e  Sparsity: Instance inference is casted as a convex
problem over the simplex of latent components by
adding the simplicial condition. Furthermore, we can



easily control the solution sparsity via greedy ap-
proximation algorithms such as Frank-Wolfe algo-
rithm [11].

e  Convexity: Obviously, inferring an instance is to find
an approximation of the convex combination that is a
convex optimization problem [11], [12], [13].

e Computation: The instance representation can be
considered as a projection on the simplex of the
latent components. Hence, the inference based on this
projection can be much faster than other formulations
because of the simplicial constraint added[11], [12].
In comparison to other formulations, this one has
significant computing advantages in the inference of
instances, while the learning step is the same with
the previous basic formulations because they solve the
same optimization problem.

o Interpretability: The new formulation gives a more
comprehensible interpretation of the important role
of coefficients. Particularly, each data instance is a
convex combination of the latent components, in
which the sum of coefficients always equals to 1
through NMF. Hence, the important role of the latent
components on instances can be concisely represented
via values of coefficients. Otherwise, for other formu-
lations, evaluating the contribution of components is
forceful because of the lack of constraints between
coefficients. Alternatively, a post-processing can be
employed to find out the role of the latent compo-
nents. However, it is independent and inconsistent with
learning NMF model.

e Distributability and parallelizability: NMF problem
contains two sub-problems: inference and learning, see
section IV. The learning problem is the same with
other formulations and can be solved by distributed
algorithms [14]. Meanwhile, the inference one of our
formulation can be solved by a much faster algorithm
comparing to the others’, and it can be parallelized
[12]. This favor is hard to be reached in other formu-
lations.

The cost function is specially determined on the used
divergence function. In this paper, we focus on solving this
problem with the two most popular divergence functions with
squared Euclidean distance and KL-divergence.

III. DIVERGENCE FUNCTIONS AND PROBLEMS

To control the quality of NMF, various cost functions are
employed. The cost functions f(X||FG) often contain two
parts: The first part is a divergence function that measures the
distance between original coordinates (X) and inverted coor-
dinates (F'G); and the second one is possibly regularizations
and constraints to control sparsity or orthogonality.

A. Divergence Functions

Recently, there are numerous divergence functions, includ-
ing squared Euclidean distance, KL-divergence, a-divergence,
[B-divergence, IS divergence, and Bregman divergence, etc. A
chosen divergence mainly depends on the data type and its

properties. The two most popular divergences are widely used
in numerous applications:

e Squared Euclidean distance: D(z|ly) = ||z — y||3 =
> — yi)2
e KL-divergence: D(z|ly) = >, xilogit — @i + yi,
where = and y are positive vectors.
B. sNMF Problems

With these divergence functions, we have two basic prob-
lems of simplicial NMF (sNMF):

e sNMF with squﬂz}Ired Euclidean distance
JXFG) = 2 D(Xom|[Fn )
where D(X,,||FnG) = || X — FnG|J3
e sNMF with KL-divergence
JXNFG) = 5 DX FnC)

N
> (Xomn-log [;(”g]

n=1

K
Xon + [FnGln); X, F,G > 0; > Fp = 1 for all
k=1

where D(X,,||FnG) =

m.

IV. ALGORITHMS

For solving sNMF, we employ iterative multiplicative up-
dates like EM algorithm, which is presented in Algorithm 1.
This algorithm contains two main steps: one for finding F
when fixing G and the other for finding G when fixing F.
In the first step, we find a set F' = {f,,}M_,, each of f,,
is a probabilistic representation of data instances {,, }M_;.
Hence, this step can be seen as inference step and the process
is called as inference. In the other step called learning step,
the latent components are acquired by minimizing D(X ||FG)
when fixing F.

Algorithm 1 Nonnegative Matrix Factorization

Input: Data matrix X = {z,,}}_, € RY*" and K.
Output: Coefficients F' = {f,,}*_, and latent components
G ={g}i,
1: Select randomly K components from ) data instances
2: repeat
3: Inference step: Fix G to find F' by minimizing
F(F) = J(XI[FG) ;
4: Learning step: Fix F' to find G by minimizing
f(G) = J(X[|FG) ;
5 if (convergence condition is satisfied) then
6: break;
7
8

end if
- until False

A. Algorithms for sNMF with Squared Euclidean Distance
1. Inference Algorithm:
Remark 1. The inference of data instances F' in a new space of

latent components by minimizing J(X ||FG) can be conducted
independently.



In this step, we need to minimize

M M
J(XHFG) = Z D(XmHFmG) = 21 HXm - FmGH%

m=1

Hence, since X and G are fixed in this step, minimizing
J(X||FG) is equivalent to minimizing ||X,, — F,,G|[3 for
each data instance m, which is performed independently by
Algorithm 2.

Remark 2. Inferring each data instance is equivalent to solv-
ing a convex optimization problem or a least square problem
with simplicial condition.

When set z = X, and f = F,,, the inference will become
minimizing:

N K K
J(LCHfG) = ;({L‘j — kzl fk:ij)2 where Z fk =1

k=1
This is a least square problem adding a simplicial constraint.

Moreover, adding the convex constraints leads to the exis-
tence of sparse solutions and it can avoid over-fitting problems.
Specially, the convex constraints enable greedy algorithms,
which is derived from Frank-Wolfe algorithm [11], in order
to control directly and effectively sparsity of solutions, see
more details in Algorithm 2.

Algorithm 2 Inference for data instance x

Input: Data instance x and latent components G = {g;, } < |
Output: New coefficient f minimizing h = ||z — fG||3

1: Choose component gj, closest to x

2:Set f=0; fr=1,and r =z — gi

3: repeat

4: Select k& = argmz’nke{an}[%]k
5. Select a =7(gr — 2)T/|lgr — /|3
6: a = maz(min(l,a), —1

7: a =maz(a,—(1 — a)fi)

8: if (¢ == 0) then

9: break;

10: end if

11: Setr=2—ag,— (1 —a)(z—r)

122 Set f=(1—a)f and f, = fr +«
13: until False

2. Learning Algorithm

Remark 3. Learning components G by minimizing J(X ||FG)
can be conducted independently in each column.

We also have J(X||[FG) = S0 (| Xen — FGapll3.
Hence, minimizing J(X||FG) is equivalent to minimizing
|| Xen — FGenl||3 independently in each column n since X
and F' are fixed. Therefore, we can independently learn column

coordinates of the latent components by solving nonnegative
least-squares constraints problem [15].

B. Algorithms for sNMF with KL-divergence
1. Inference Algorithm

In the inference step, we need to find new coordinates

{fm}M_,. Equivalent to the case for Euclidean distance, the
inference in this divergence can be conducted independently
for each data instance X,,. Moreover, inferring each data
instance in K L-divergence is also solving a convex optimiza-
tion problem with simplicial constraints and sparse properties
like for Euclidean distance. In comparison to Algorithm 2,
Algorithm 3 is more complicated because we cannot estimate
directly the value «. Hence, o is seeked by binary search
because h(«a) is a continuous quadratic function.

Algorithm 3 Inference for data instance x

Input: Data instance = and latent components G = {gk}szl
Output: New coefficient f minimizing

N

= Z(xnlogi[f(;]n -

n=1

h(f) Ty + [fGln)

Choose component g closest to x

Set fi =0; fr,=1

repeat
Select k = argminie{ll_K}[g—’}]k
Select v = argmingepoh(age + (1 — a) fG)
Set f=(1—«)f and fr = fr + «

until Convergence condition satisfied

N Ry

2. Learning Algorithm

Equivalent to Euclidean distance, learning components can
be conducted separately in each column because J(X||FG) =
SN D(Xen||[FGan), and X and F are fixed.

n=1
In this step, to approximate the solution (,,, we have
M Xonm
D(X"LHFGOTL) - Z X’mn lOg Fm.(/;.n _X'rrL'rL+F7noGO’rL~

m=1

Hence, minimizing D(Xe,||FGey) is equivalent to mini-
mizing
M
D Xonn 10gFpeGen (1)

m=1

h(Glna ceey Gkn) == FmoGon -

Moreover, based on Josen’s inequality for the concave
function log and non-negative coefficients F,1, ..., Fi,; with
S Fouk = 1, we have

logFmoGOn = lOg Z]}C(ZI kaGkn < Z?:l ka: log(Gkn)

Then: hGiny ooy Gin) < W (Giny ooy Gin)

= Zﬁle 5:1 Frkgkn — Z%:l Xmn 22{:1 Frlog(Grn)-

Ggn is approximated by minimizing h'(G1n, ..., Ggn):

on' SM X
=0 Gpp = Lum=1“"mn (2)
aGk’ﬂ 271’\”/1:1 ka

Fortunately, in the learning step for K L-divergence, we can
directly approximate the solution. Although this is only an ap-
proximate solution, it is really effective for K L-divergence and
this technique has been employed in numerous applications.



V. THEORETICAL ANALYSIS

As discussed above, the main difference between our
algorithms and the others is in the inference step because we
need to solve the same optimization problem in the learning
step. Hence, we will only consider the complexity of inference,
sparsity, and distributability and parallelizability.

A. Complexity

1. Complexity for sNMF with Squared Euclidean Distance

Theorem 1. Consider Algorithm 2 to infer a data instance hav-
ing N-dimension by K latent components with L iterations.
Then its complexity is O(L[K.S(N) + NJ), where S(N) is
a function estimate the number of non-zero elements in latent
components and S(N) < N.

Proof: In the Algorithm 2, for each iteration, we have:

o =2(fG - X)G"

Hence: [g—’f’]k =2(fG — X)gl =2rgl

Therefore, the complexity of finding out the best coeffi-
cient k: O(K.S(N)). In addition, the complexity of estimat-
ing a is O(N). Overall, the complexity for L iterations is
O(LIK.S(N) + NJ) [ |

2. Complexity for sNMF with K L-divergence

Theorem 2. Consider Algorithm 3 to infer a data instance hav-
ing N-dimension by K latent components with L iterations.
Then, its complexity is O(L[K.S(N) + N.log 1]).

Proof: In the Algorithm 3, for each iteration, we have:
g7 = (1 —2./(fG))G"

T T
where 1 =(1,...,1) and z./y = (171’ s U—j\v’) € RV,

Hence: [g—'f’]k = (1-2./fG)g}, and therefore, the com-
plexity of finding out the best coefficient k is O(K.S(N)). In
addition, the complexity of estimating a € [0, 1] is O(N log 1)
where € is a small positive quantity for the required precision,
because we use binary search algorithm. Overall, the complex-
ity for L iterations is O(L[K.S(N) + N log 1]) |

The inference complexities are competitive with NMF
using Fuclidean distance having O(M.N?) [13] and much
better than other formulations with K L-divergence because we
can not estimate directly solutions of inference and gradient
methods does not work on this divergence [16].

In addition, for the learning step with K L-divergence, we
employ an approximate algorithm with low complexity:

Theorem 3. Let consider to learn new latent components after
inferring coefficients of data instances. Then, its complexity is
O(M[S(N) + S(K))).

Proof: This theorem is implied from formula 2 ]

2. Convergence Guarantee of Inference
Based on [11], we have

Theorem 4. Let f be a twice differentiable convex function
over simplex /\ and denote Cy; = supy .cajely,=)(y —
2).72f(@).(y — 2)T. After 1 iterations, the Frank-Wolfe algo-
rithm will find an approximate solution x; with at most (1+1)
non-zeros coefficients which satisfy

mazzen f(w) = f(z) < 15

From this theorem, we have the following remarks:

e  Convergence rate of inference is linear and the good-
ness of solutions is bounded, which are crucial in
applications.

e Inference depends mostly on complexity of f and </ f.

e  We can tradeoff easily between sparsity and quality
of solutions by stop finding new latent components
to optimize the cost function. This property is valid
for real applications, which the number of non-zero
coefficients is limited.

B. Sparsity

Recently, sparse solutions receive much interests in ma-
chine learning by its abilities of improving accuracy and saving
storage with low complexity. To obtain sparse solutions, most
previous works employed different regularizations such as [,
and [ ones. However, they are limited in controlling sparsity
level of solutions. In other words, the number of non-zero
coefficients in solutions is unpredictable.

Unlike previous approaches, we have imposed a greedy
algorithm, e.g., Frank-Wolfe algorithm, which can control
severely the solution’s sparsity. From Algorithms 2 and 3,
the number of non-zero coefficients can be restricted by do
not employing new latent components to optimize the cost
function, when the number of non-zeros ones reaches to
the limitation. Moreover, the preference of selecting the best
latent components to optimize allows our algorithm to achieve
more sparse solutions than other algorithms while keeping the
optimality of solution.

C. Distributability and Parallelizability

From Algorithms 2 and 3, we have several remarks:

e Inference of data instances can be distributed undoubt-
edly over machines. This is important for designing
distributed algorithms.

e  Running time of inference depends mostly on finding
the best latent component. Furthermore, computing
the partial derivative for each latent component is
separated totally. As a result, this computation can
be paralleled. Hence, we can reduce effectively the
responding time in real applications.
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Fig. 1. Latent components with K = 25 for digit database

Moreover, regarding to learning algorithms, the learning
algorithm for K L-divergence is absolutely fast and can be dis-
tributed easily. For Euclidean distance, distributed algorithms
in [14] can be employed.

VI. EXPERIMENTS

This section investigates the effectiveness of our approach
and algorithms for two divergence functions with Euclidean
distance and KL-divergence by four criteria: interpretabil-
ity, sparsity of solutions, performance in classification tasks
and loss information measure. More particularly, our al-
gorithm for Euclidean distance is compared to NMF [3],
spNMF [17], oNMF[8], and cNMF [18], while the other
one with KL-divergence is compared to kI-NMF[3], local
non-negative matrix factorization (locNMF)[5], convolutional
NMF(conNMF) [19], and Nonsmooth Nonnegative Matrix
Factorization (nsNMF)[7]. The implemented codes are at
http://www.ee.columbia.edu/ grindlay/code.html.

In this investigation, we use two typical databases of
images and text. The digit dataset has 4000 random-
selected samples from http://yann.lecun.com/exdb/mnist/, and
4327 labeled spam emails are all downloaded from
http://csmining.org/index.php/spam-email-datasets-.html. For
the email dataset, after normalizing data such as numbers
turning into number term and plural noun into single noun, we
compute tf-idf (http://en.wikipedia.org/wiki/Tf-idf) for 32906
distinct terms as convenient features for data instances. We
have compared our approach with other related approaches
using Euclidean distance for the image dataset and K L-
divergence for the text dataset. The obtained results are highly
competitive.

A. Interpretation

In conducting experiments for the digit dataset, we have
run with different parameters K € {10, 15, 20, 25, 30, 35, 40}.
We realize that approaches begin finding out part-based repre-
sentation of data instances from K = 25. Figure VI-A shows
latent components of NMF [2] and sSNMF with K = 25 for the
digit dataset. Obviously, latent components of SNMF are small
part curves of digits, while ones of Lee 2001’s NMF VI-A also
gives a part-based representation but they are bigger curves.
The result leads to conclusion that our approach found out a
better part-based representation for data instances. Moreover,
when factorizing matrices is comleted, SNMF’s coefficients are
in [0,1] with sum equal to 1, so they can represent the role
of latent components in instances, while coefficients in other
formulations does not. They are nonnegative numbers, which
only represent the measure of basic vectors.

Sparsity(%)

60

50 —o—NMF

40 ~{—oNMF

30 - spNMF
20 /\)_b___——/v\//v —é— cNMF

sNMF
10

0 & e

10 15 20 25 30 35 40 K

Fig. 2. Sparsity of new coefficients for Euclidean distance with K = 30
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100
=== NMF
80 -
=== conNMF
60
locNMF
40 4 nsNMF
20 sNMF
0 1A A A} A A} A A} K
5 10 15 20 25 30 35
Fig. 3. Sparsity of new coefficients for K L-divergence with K = 30

B. Sparse Representation

In order to compare the sparsity of solutions, we compute
the percentage of zero coefficients

number of zero coef ficients % 100
number of coef ficients

The results are highly competitive with other methods.
For Euclidean distance, although our algorithm’s sparsity is
only less than cNMF [18] (Figure 2), it has lower information
loss and higher performance in classification. In addition,
especially for KL-divergence, our approach retains the best
sparse solutions (Figure 3), while it still has the best result
for the other measures.

C. Performance for classification

Classification quality is one of measures that evaluates
our method’s effectiveness as NMF is often considered as a
dimension redution technique used widely in classification. In
this experiment, we use Random Forest!, a robust algorithm for
classification. Observing Figures 4 and 5, our method is one
of methods with the lowest errors in testing. For Euclidean
distance and the digit dataset, the result of our method is
very close to the best method oNMF [8]. Meanwhile, for K L-
divergence and spam dataset, our approach obtains the lowest
misclassification with K = 15 and K = 35.

inaccuracy (%)
25.00

=== NMF
20.00

= oNMF

15.00 spNMF

=== cNMF

10.00
SNMF

5.00
10 15 20 25 30 35 40 K

Fig. 4. Inaccuracy for Digit Classification
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Fig. 6. Information Loss for Squared Euclidean Distance with K = 30

D. Information Loss and Convergence Speed

For dimension reduction, information loss criterion is one
of the most important measure. From observing Figures 5
and 6, our approach has the lowest information loss.

In addition, convergence speed is a significant measure to
evaluate updating algorithms because algorithms having more
iterations require more computation and also time for loading
data. We can realize easily from Figures 5 and 6 that our
algorithm has the fast convergence speed while it gains the
best optimized solutions with at the least number of iterations.

VII. CONCLUSION

In this paper, we have proposed a new formulation for
NMF, simplicial nonnegative matrix factorization (sNMF).
This formulation considers NMF as component analysis, in
which each data instance is modeled as a convex combination
of latent components. Two algorithms derived from Frank-
Wolfe algorithm are designed for the two most popular diver-
gence functions with Euclidean and K L-divergence, to control
directly and effectively sparsity of solutions. We theoretically
proved that our algorithms have low complexity in inference,
sparsity, and distributability and parallelizability. Our exper-
imental evaluation showed the effectiveness of our approach
via significant criteria such as interpretability, sparsity, perfor-
mance in classification task and information loss. Our obtained
results are highly competitive with state-of-the-art approaches.
In future research, we will deeper analyze our algorithms,
apply them to other divergence functions and also conduct
testing on other datasets to compare with other formualtions.

ACKNOWLEDGEMENT

This work is partially sponsored by 322 Scholarship from
Vietnam Ministry of Education and Training, and by Asian
Office of Aerospace R&D under agreement number FA2386-
13-1-4046.

Thttp://cran.r-project.org/web/packages/randomForest/

Fig. 7.

(1]

(2]

(3]

(4]

(5]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

errors
3.00E+06

2.80E+06 - === kI-NMF

2.60E+06 i conNMF

2.40E+06 locNMF

2206406 % > nsNME

2.00E+06 SNMF

1.80E+06 : e
- e
1.60+06 iteration

123456 7 8 910111213 14151617 18 19 20

Information Loss for K L—divergence with K = 30

REFERENCES

Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A
comprehensive review,” Knowledge and Data Engineering, IEEE Trans-
actions on, vol. 25, no. 6, pp. 1336-1353, 2013.

D. Lee, H. Seung et al., “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788-791, 1999.

D. Seung and L. Lee, “Algorithms for non-negative matrix factoriza-
tion,” Advances in neural information processing systems, vol. 13, pp.
556-562, 2001.

Z.-Y. Zhang, “Divergence functions of non negative matrix factoriza-
tion: A comparison study,” Communications in Statistics-Simulation and
Computation, vol. 40, no. 10, pp. 1594-1612, 2011.

S. Z. Li, X. W. Hou, H. J. Zhang, and Q. S. Cheng, “Learning
spatially localized, parts-based representation,” in Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, vol. 1. 1EEE, 2001, pp. 1-207.

P. O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004.

A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and
R. D. Pascual-Marqui, “Nonsmooth nonnegative matrix factorization
(nsnmf),” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 28, no. 3, pp. 403—415, 2006.

S. Choi, “Algorithms for orthogonal nonnegative matrix factorization,”
in Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference on.
IEEE, 2008, pp. 1828-1832.

H. Li, T. Adal, W. Wang, D. Emge, and A. Cichocki, “Non-negative
matrix factorization with orthogonality constraints and its application to
raman spectroscopy,” The Journal of VLSI Signal Processing Systems
for Signal, Image, and Video Technology, vol. 48, no. 1-2, pp. 83-97,
2007.

A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way
data analysis and blind source separation. Wiley, 2009.

K. L. Clarkson, “Coresets, sparse greedy approximation, and the frank-
wolfe algorithm,” ACM Transactions on Algorithms (TALG), vol. 6,
no. 4, p. 63, 2010.

S. Boyd, “Alternating direction method of multipliers,” in Talk at NIPS
Workshop on Optimization and Machine Learning, 2011.
S. Boyd and L. Vandenberghe, Convex optimization.
university press, 2004.

C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” Ad-
vances in neural information processing systems, vol. 19, p. 281, 2007.

Cambridge

C. L. Lawson and R. J. Hanson, Solving least squares problems. SIAM,
1974, vol. 161.

Z. Yang, H. Zhang, Z. Yuan, and E. Oja, “Kullback-leibler divergence
for nonnegative matrix factorization,” Artificial Neural Networks and
Machine Learning—ICANN 2011, pp. 250-257, 2011.

M. N. Schmidt, J. Larsen, and F.-T. Hsiao, “Wind noise reduction
using non-negative sparse coding,” in Machine Learning for Signal
Processing, 2007 IEEE Workshop on. 1EEE, 2007, pp. 431-436.

C. Ding, T. Li, and M. Jordan, “Convex and semi-nonnegative matrix
factorizations,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 32, no. 1, pp. 45-55, 2010.

P. Smaragdis, “Non-negative matrix factor deconvolution; extraction
of multiple sound sources from monophonic inputs,” in Independent
Component Analysis and Blind Signal Separation. Springer, 2004, pp.
494-499.



