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Abstract—Networks are typically embedded in non-
homogeneous areas and different parts/regions of the network
may therefore be at risk from different types of disasters. This
non-homogeneity leads to difficulties in protecting the network
against (the risk of) disasters. Network operators need to be
able to integrate predictions on possible future disaster events
in the planning of their network operation. Especially the
(future) availability of network links is crucial in configuring
network connections, since the requested availability of network
connections is stipulated in Service Level Agreements and must
be satisfied, even under the threat of disasters. In this paper, we
propose (1) a novel model to characterize disaster areas, with
occurrences of each type of disaster represented by a temporal
distribution (e.g., Poisson process), and (2) two metrics, namely
a betweenness-centrality metric for network regions and an
impact metric that indicates the magnitude of the threat posed
by disasters within a network region during a given time period.

I. INTRODUCTION

Modern telecommunication networks deliver a multitude of
high-speed network services via connections that are config-
ured over optical networks. The availability of a connection
depends on the availability of the links constituting its as-
signed end-to-end path. Links can fail in the event of natural
disasters [1] (e.g., earthquakes, hurricanes or tsunamis) or
anthropogenic disasters [2] (e.g., anchor drags/drops, sabo-
tage or terrorist attacks). Such disasters often affect different
network regions differently, be it in terms of impact level,
probability of occurrence, or the size of its area-of-effect. In
the absence of proper service compensating measures, link
failures degrade and interrupt connections, possibly leading
to monetary penalties to network operators due to breached
Service Level Agreements (SLAs), where an SLA is a contract
between the network operator and a client. Even a single link
failure can be disastrous, since the failure may trigger the
failure of multiple connections that each carry a huge amount
of data. It is estimated that losses due to service downtime can
range between $25,000 to $150,000 per hour [3].

Different network regions tend to be at risk from different
types of disasters, as illustrated in Fig. 1, since disaster events
often occur in specific geographic areas. For instance, the West
Coast of the United States is more vulnerable to earthquakes,
while the East Coast of the United States is more vulnerable
to hurricanes [4]. Similarly, ninety percent of the world’s
earthquakes occur along the Pacific Ring of Fire [5]. Hence,
network operators must utilize any spatial information on
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Fig. 1. Example of different disaster vulnerabilities.

their network regions in ensuring that their connections are
as reliable as possible. A higher level of disaster resiliency
should be provided to network regions with higher disaster
risks, e.g., a higher level of duct armoring for submarine cables
that cross areas where sharks bites are prominent. Different
network regions also tend to have different importance to the
network operation, based on the centrality of the network
region. The concept of centrality [6] is often used in the
field of Network Science to typify important nodes or links
in the network, but the concept has not been extended to
network regions. In the context of this paper, the betweenness
centrality of a network region is defined and considered in
terms of the number of shortest paths (between all nodes) that
pass through the network region, via any links that cross the
network region. Network regions with higher centrality value
should be provided with more disaster resiliency measures
compared to network regions with lower centrality value.

Our main contributions in this paper are organized as
follows. In Section II, we develop a model for representing
disaster areas, with the occurrences of each disaster type
characterized by a probability distribution (we use the Poisson
distribution, but the principle extends to other distributions as
well), and we formulate the computation of link availability
within a time period, based on the temporal distribution
of possible disaster events. In Section III, we propose two
metrics, namely (1) a regional betweenness centrality metric
to represent the importance of a network region in terms of the
number of shortest paths (between all nodes) that pass through
the network region, and (2) a disaster-risk impact metric to
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Fig. 2. Approximating the boundary of a disaster area.
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Fig. 3. Overlapping disaster areas.

reflect the magnitude of the threat posed by disasters within
a network region. We analyze the effect of link density and
disaster area size on the betweenness centrality of network
regions in Section IV, and conclude the paper in Section V.

II. MODELING OF DISASTER AREAS

A disaster area implies a subset of the network area, in
which all of the links (and consequently nodes) that cross the
area will likely fail in the event of the disaster. Note that we
model the area that is prone to a certain type of disasters
(e.g., the Pacific Ring of Fire) and not the exact shape of the
area that will be destroyed by a single pending disaster, which
is nearly impossible to predict. Unlike in [7], [8], where the
disaster area is considered bounded by a confined shape, we
model the boundary of the disaster area using a non-unilateral
simple closed polygon within the two-dimensional Cartesian
plane. In the case of an irregularly shaped area, the accuracy of
the polygon in representing the area often increases with more
line segments defining the polygon. Fig. 2 shows an example
of a disaster area that is represented by our model.

Predicting disaster events is happening frequently already,
e.g. think of tsunami early warning systems, extreme weather
predictions, or intelligence from national security agencies.
Utilizing such disaster prediction data is possible via an
integrated network-warning system, as proposed in [9]. Some
future disaster events can also be estimated based on the stud-
ies of earlier disaster events. We consider that the occurrence
of a disaster within a disaster area di can be characterized
by a Poisson process Poisson(λdi), where the rate λdi > 0
of disaster occurrences depends on the nature of the disaster
(other probability distributions could be used as well). For
instance, a flood may occur once every 100 years on average
for a given area di. While different manifestations of a type of

a disaster in a certain disaster area (e.g., floods in a flood-prone
area) may be different, in the planning process a worst-case
scenario is assumed, where any manifestation of a type of
disaster would take out the complete corresponding disaster
area. The Poisson process has long been used to characterize
the occurrence of various types of disasters, such as hurricanes
[10] and earthquakes [11], [12]. We assume that in the event
of a disaster, all the links that cross the disaster area will fail.

We consider that disaster events occur independently of
one another and that a disaster area corresponds to a single
type of disaster. di can therefore refer to both the (possibly
scattered [13]) disaster area as well as the type of disaster. A
specific network region may be vulnerable to multiple types
of disasters, which means that disaster areas may overlap (as
shown in Fig. 3). The Poisson process X(t) representing the
failure event of a link (u, v) ∈ L, due to the occurrence of at
least one type of disaster di ∈ D′ (where D′ ⊆ D is the set
of disasters that overlap with link (u, v)), is

X(t) = Poisson

( ∑
di∈D′

(λdi)

)
(1)

Disaster-Aware Link Availability (DALA) problem: Given
are a network G comprising a set N of |N | nodes and a set L
of |L| links, a set D of |D| types of disasters that can occur
within the geographic plane in which G is embedded, and a
time period τ . Each type of disaster di ∈ D is characterized
by a Poisson process Poisson(λdi). Each link (u, v) ∈ L
connects nodes u and v, and crosses the disaster areas within
the set D′uv ⊆ D. Compute the availability of each link
(u, v) ∈ L within the time period τ , with respect to D′uv ⊆ D.

We propose Algorithm 1 for finding the set of disaster areas
D′uv ⊂ D that overlap with link (u, v). Link (u, v) fails in the
event of any disaster in D′uv ⊆ D. The algorithm utilizes
the R-tree (a depth-balanced data structure for organizing ob-
jects using bounded rectangles) [14] and minimum bounding
rectangles (the smallest rectangle that encloses an area) for
eliminating the need of naively checking whether each link and
each disaster area are overlapping (thus leading to significant
savings of running time, as in [15]). The probability that link
(u, v) fails (Pruv(τ)) within a time period τ is equal to the
probability that a least one type of disaster di ∈ D′uv occurs
within the time period τ . The selection of τ is particularly
important in planning the network ahead, e.g., a 5-10-years
plan. The probability that at least one type of disaster di ∈ D′uv
will be observed during the specific time period τ can be
described as Pr [X(τ) ≥ 1]. Hence, the probability that link
(u, v) will fail at least once during time period τ is

Pruv(τ) = Pr [X(τ) ≥ 1]

= 1− e
−

( ∑
di∈D′uv

(λdi
)

)
τ

(2)

Auv(τ) = 1− Pruv(τ) (3)

By computing the corresponding Pruv(τ) for each link
(u, v) ∈ L, we can assign each link with an availability value



Auv(τ) (a value between zero to one), which represents the
probability that link (u, v) is free from the impact of disasters
during the time period (τ). The information of link availability
is useful for computing availability-based shortest paths [16].

III. RISK ASSESSMENT OF NETWORK REGIONS

In this section, we generalize the concept of betweenness
centrality [6] as a metric for the betweenness centrality of
a network region, and also propose another metric referred
to as the risk impact (R) to assess the probabilistic impact
of disaster events within the network region to the network
operation as a whole, with respect to betweenness centrality
of the network region and the temporal distribution of the
disasters overlapping with the network region.

The betweenness centrality of a network region will rep-
resent the importance of the region in the network operation.
We consider the betweenness centrality of a network region in
terms of the number of shortest paths (between all nodes) that
pass through the region, via any links that cross the region. The
failure of a network region with higher betweenness centrality
can thus have a more adverse effect on the network operation,
compared to network regions with lower betweenness central-
ity. By being able to compare network regions of different
shapes and sizes in terms of their betweenness centrality,
network regions with higher centrality value can be provided
with higher disaster resiliency measures, compared to network
regions with lower centrality value. Considering centrality of
network regions is more useful when vulnerability is combated
in terms of regions, instead of based on the node/link centrality
as conducted in [17]. Since protection costs may vary (e.g.,
due to municipality costs, or proximity from land for undersea
links), it might be important to focus on protecting higher-
valued network regions.

Betweenness Centrality of Network Region (BCNR) prob-
lem: Given are a network G of a set N of |N | nodes and a set
L of |L| links, and a network region r that is embedded within
the geographic plane of G. Each link (u, v) ∈ L connects
nodes u and v, and a set of links L′ ⊆ L crosses network
region r. Find the betweenness centrality of the network region
r.

We use the notion of shortest path loosely in this paper, i.e.,
the shortest path can be used to represent the least-distance
path, the path with the minimal energy consumption, the
most reliable path, and many more depending on the defined
link weight. Hence, the interpretation of the network region
betweenness will vary depending on the defined link weight.
Nevertheless, different network regions will have different
network importance based on their betweenness centrality
values. The failure of links within a network region with high
betweenness centrality will significantly and negatively affect
the network operation, since a high number of shortest paths
will be unavailable, thus increasing the lower bound of the
best operational condition available to the network operators
(since the replacement/backup path [16] is often suboptimal
compared to the assigned initial/primary path).

Algorithm 1 Finding Disaster Areas Overlapping With Links
1: populate an R-tree Y with all the minimum bounding

rectangles MBRdi of each disaster area di ∈ D
2: for each link (u, v) ∈ L
3: find the set D′uv ∈ Y that overlaps the minimum

bounding rectangle MBRuv of link (u, v)
4: for each disaster area di ∈ D′uv
5: if link (u, v) does not overlap with disaster area di
6: remove di from D′uv

Algorithm 2 Finding Links Overlapping a Network Region
1: populate an R-tree Y with all the minimum bounding

rectangles MBRuv of each link (u, v) ∈ L
2: find the set Or ∈ Y that overlaps with the minimum

bounding rectangle MBRr of network region r
3: for each link (u, v) ∈ Or
4: if link (u, v) does not overlap network region r
5: remove (u, v) from Or

Br =
∑

s∈N,t∈N,s6=t,s6∈On
r ,t6∈On

r

σst(Or)

σst
(4)

B′r =
2Br

(|N | − |Onr |)(|N | − |Onr | − 1)
(5)

We compute the betweenness centrality Br of a network
region r using Equation 4, where the computation of Br is
derived analogously to the computation of group betweenness
centrality [18], σst is the total number of shortest paths from
node s to node t, Or is the set of links that cross the network
region r, σst(Or) is the total number of shortest paths from
node s to node t that traverse any links that cross the network
region r, and Onr is the set of nodes that reside within the
network region r. We also ensure that neither node s nor node t
is within the inspected network region during the computation,
and that each undirected shortest path is only counted once in
the computation. We find Or using Algorithm 2. We can also
compute the normalized betweenness centrality (B′r) using
Equation 5, such that its value lies between zero and one,
by dividing the value by the total number of node pairs from
the set of nodes that are not within the network region r.

While [8] finds the most vulnerable network region of
predefined size, they assume that the risk profiles of all
possible network regions are similar, while we argue that a
small network region with a high centrality and high disaster
occurrence rate can lead to worse impact on network operation
than a larger region with a lower centrality and lower disaster
occurrence rate. Different network regions have different risk
impact, since beside the network region size, the risk also
depends on the network region unavailability (due to disasters)
and the number of shortest paths that traverse any links
crossing the network region. [19] used the loss per unit time
of the network operator as an indicator of the losses due in the
event of a disaster, for a predefined set of network connections.
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Fig. 4. Effect of the network link density on the betweenness centrality of network regions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Region Size

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 B

e
tw

e
e
n
n
e
ss

 C
e
n
tr

a
lit

y link density = 0.25

link density = 0.50

link density = 0.75

(a) Waxman topologies

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Region Size

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 B

e
tw

e
e
n
n
e
ss

 C
e
n
tr

a
lit

y link density = 0.25

link density = 0.50

link density = 0.75
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Fig. 5. Effect of the region size on the betweenness centrality of network regions.

Risk Assessment of Network Region (RANR) problem: Given
are a network G of a set N of |N | nodes and a set L of |L|
links, a set D of |D| types of disasters that can occur within the
geographic plane into which G is embedded, a network region
r that fully overlaps with a set of disasters D′ ⊆ D, and a time
period τ . Each type of disaster di ∈ D is characterized by a
Poisson process Poisson(λdi). Each link (u, v) ∈ L connects
nodes u and v, and may cross the disaster areas within the set
D′uv ⊆ D. Compute the risk that the disasters D pose to the
network region r within the time period τ .

Rr(τ) = BrPrr(τ) = Br

(
1− e

−

( ∑
di∈D′

(λdi
)

)
τ)

(6)

We consider the disaster impact in terms of the num-
ber of affected shortest paths (via the regional betweenness
centrality), such that our metric does not depend on the
current/predicted traffic matrix utilized in the network, since
these traffic matrices do change in time, while the links that
compose the shortest paths between the network nodes remain
the same as long as the network topology and link weights
remain unchanged. The risk impact (Rr) of a network region r
for a time period (τ ) can be computed using Equation 6, where

Prr(τ) is the probability that at least one type of disaster
occurs during the time period τ within the network region r.

IV. ANALYSIS

We analyze the effect of the network link density and region
size on the regional betweenness centrality for randomly
generated Waxman [20] and Erdős-Rényi [21] topologies. The
Waxman graph is frequently used for representing spatial
networks, e.g. optical networks [22], due to its unique property
of decaying link existence over distance. In both topologies,
|N | = 50 nodes are placed uniformly at random coordinates in
the network area. In our scenario, the link weight corresponds
to the Euclidean distance between each of its adjacent nodes
(other weights may also be used, as discussed earlier in Section
III). In the Waxman topology, the link existence is reflected by
ie
−`uv
ja , where `uv is the Euclidean distance between nodes u

and v, and a is the maximum Euclidean distance between any
nodes. Higher i leads to higher link densities, and lower j leads
to shorter links. We set j to 0.5. We consider only connected
graphs, such that there is at least one path between each
node. No self-loops or parallel links are allowed. We generate
rectangular regions of predefined size for our simulation (other
area types may also be used, as discussed earlier in Section
II). Simulations were conducted on an Intel(R) Core i7-4600U
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Fig. 6. Case-by-case observations of the betweenness centrality of network regions.

2.1GHz machine of 16GB RAM memory. Simulation results
were averaged over a thousand runs.

As illustrated in Fig. 4, the normalized betweenness cen-
trality of network regions with fixed size decreases, for both
Waxman and Erdős-Rényi topologies, as the network link
density increases. In this instance, we vary parameter i of the
Waxman topologies to get the corresponding link existence
probability. When the link density is small, the chance that
a network region will encompass links that function as part
of the shortest paths is higher. However, as the link density
increases the decrease does not become so apparent anymore,
since the number of links is high. The same trend is observed
under different network region sizes, where Fig. 5 shows that
the normalized betweenness centrality of the network regions
increases, for both Waxman and Erdős-Rényi topologies, with
the increase of the network region size. When the size of the
network region is larger, more links and shortest paths will
cross the network region. The occurrence of a disaster event
within the network region will then affect all the links within
the network region. The same trend is observed under different
network link densities, although, as shown earlier in Fig. 4, an
increase in link density decreases the normalized betweenness
centrality of the network regions.

Based on these observations, unlike conventional node/link
betweenness centrality that varies based on the network link
density, both network link density and the region size play a
role in determining the regional betweenness centrality. Fig. 6

shows the normalized betweenness centrality of a hundred ran-
domly positioned network regions of various size for network
link density of 0.25 and 0.75. In this sense, on a case-by-case
basis, a larger network region may not necessarily have larger
betweenness centrality value compared to a smaller network
region, nor do network regions in a network with smaller link
density necessarily have higher centrality value compared to
network regions in a network with higher link density. The
network link density, region size and position of the network
region are important in determining the regional betweenness
centrality. Hence, in some cases, it might be more beneficial
for the network operator to increase the robustness of a smaller
network region against the threat of disaster occurrences, since
the region carries a more vital role to the network operations
compared to other larger, but less important, network regions.

From Fig. 7, the risk impact of network regions increases,
for both Waxman and Erdős-Rényi topologies, as the region
unavailability increases (where the unavailability of network
regions can be derived from the occurrence distribution of
disasters that overlap the network region). The unavailability
of a network region implies that at least a single disaster occurs
within the time period in the network region. The same trend
is observed under different network region sizes. However,
as mentioned earlier, on a case-to-case basis, the network
density and position of the network region also play a role
in determining the risk impact of a network region.
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Fig. 7. Effect of the region unavailability on the risk impact of network regions.

V. CONCLUSION

We have proposed a model for representing the area-of-
effect of disasters with different shapes and sizes, with each
type of disaster characterized by a probability distribution over
a certain disaster area. We subsequently computed the link
availability within a time period with respect to the frequency
distribution of the possible disasters. We have also proposed
metrics referred to as region betweenness centrality and the
region risk impact. The latter indicates the probabilistic failure
impact of a network region on the whole network operation,
due to possible disaster events within the network region,
with respect to the number of expected affected shortest paths
and the temporal distribution of the disasters. We also show
that, on a case-by-case basis, a larger network region may not
necessarily have larger betweenness centrality value compared
to a smaller network region. Nor do network regions in a
network with smaller link density necessarily have higher
betweenness centrality value compared to network regions
in a network with higher link density. For future work, our
framework for modeling network regions can also be extended
to cover different temporal distributions. Instead of considering
disasters as independent to each other, future work could also
consider dependent disasters.
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