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Péter Babarczi, Ferenc Mogyorósi, and Alija Pašić
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Abstract—In virtual Software-Defined Networks (vSDN) –
where multiple tenants share the same physical SDN topology
– control plane resilience has utmost importance. Although
previous network hypervisor placement methods were able to
provide single link and hypervisor failure resilience with short
control paths, the placement had to be frequently adjusted if the
vSDN requests changed dynamically. In this paper we propose
two approaches which follow an intelligent design principle, i.e.,
besides maximizing acceptance ratio of current vSDN requests
they also prepare the placement for the future. Our first method
uses a representative request set and the network flexibility
metric to maximize preparedness to unknown failures and traffic
changes. Our second approach proposes a self-adjusting control
plane, where for each new request set a single hypervisor instance
and its corresponding control path might be migrated to a
new location. We conduct thorough simulations to investigate
the performance of the approaches, and demonstrate that they
significantly outperform previous methods from the literature.

Index Terms—preparedness, intelligent algorithms, virtual
software-defined networks, resilient hypervisor placement

I. INTRODUCTION

Owing to the continuously increasing complexity of com-
munication networks, rapid recovery from failures is only
possible through automated mechanisms which doesn’t require
human interaction. In a self-driving operation the network
continuously measures its key parameters, analyzes them and
invokes the necessary control actions in response to changes
in the environment to drive itself into a “well-prepared”
stable state. In order to enable rapid evaluation of complex
scenarios and thus, ultra-fast reaction to a wide-variety of
environmental changes, the used mechanisms should be as
general as possible, operate without using any control plane
messages, and most importantly, they should be intelligent.

In biology intelligence is often recognized as the ability of
an organism to adapt to the environment through observing
it, learning from these observations and making a decision
to survive. Those plants and animals who are prepared and
can react to more challenges will have better chance to
live. Several mathematical models were proposed to quantify
such intelligence in engineering as well. In [1] it is defined
as a physical force which drives the system into a state
with maximal entropy to maximize its future freedom of
action1. Similarly, the information-theoretic tool-set of em-
powerment [2] models the intelligence as the channel capacity

1Which definition agrees with the quote attributed to Stephen Hawking:
“Intelligence is the ability to adapt to change.”

between an agent’s sensors and actuators, where a state with
higher empowerment value – i.e., with more reaction options
– is preferred. This metric was successfully applied both in
robotics [3] and in communication networks [4].

Based on the above definitions the meaning of intelligence
boils down to the following two objectives:

(i) adapt to the current environment as well as possible;
(ii) being prepared for the unseen future with maximizing

the number of reaction options.
In the former case we need to continuously react to every
change which is impossible in a dynamic environment, while
the latter requires a huge number of future changes to be con-
sidered which might lead to the intractability of the problem.

In this paper we apply these design objectives on the
resilient control plane design of virtual Software-Defined
Networks (vSDN), where each switch-to-controller path of
a vSDN request must traverse a hypervisor instance, which
ensures security and separation functions of different tenants.
First, we propose an intelligent hypervisor placement algo-
rithm which not only provides an optimal single-link failure
resilient allocation for the current set of demands [5], but also
allocates a backup hypervisor for each switch against hyper-
visor failures [6]. As a significant improvement on [6] our
novel approach selects a placement with maximum flexibility,
i.e., with the maximum number of possible reactions to fulfill
Objective (ii). Therefore, with a careful design frequent re-
configurations can be avoided. Second, we propose a self-
adjusting approach to investigate Objective (i), where after
each change a single hypervisor instance can be migrated to
a new location, thus, continuously adapting the network to
the optimal state without disrupting the current operation. We
demonstrate the benefits of both approaches in our simulations.

The rest of the paper is organized as follows. Section II
summarizes the related work on metrics to measure prepared-
ness and on self-adjusting algorithms. We formulate the vSDN
placement and control plane design problem in Section III. Our
intelligent placement algorithm and self-adjusting hypervisor
migration strategy are proposed in Section IV and Section V,
respectively. Our simulations results are presented in Sec-
tion VI, while the paper is concluded in Section VII.

II. BACKGROUND AND RELATED WORK

This section is devoted to give a brief overview of dif-
ferent design concepts to maximize preparedness, focusing
on their application to vSDNs. Section II-A introduces two



possible metrics which were proposed to measure the freedom
of action. Section II-B introduces examples of self-driving
operation in networks leveraging self-adjusting data structures.

A. Potential and Realization: Empowerment versus Flexibility

Although a huge number of available options is necessary
for an intelligent algorithm design, in most cases it is not
sufficient to provide network preparedness. Empowerment
measures the potential influence a network has on its en-
vironment. Better actuators mean more ways to change the
environment by the agent, while with better sensors more
action outcomes can be perceived. In communication networks
where actions are discrete (e.g., number of flows routed or
number of links reconfigured [4]), the empowerment metric
simplifies to the (logarithm of) unique reachable states, thus,
maximizes available reaction options. However, empowerment
does not measure whether this potential can be realized or
not within a given cost and time constraint [2], [4], which
has utmost importance in order to avoid any interruption in
the provided service, e.g., a failure in the optical-layer must
be restored before the IP-layer senses the disruption and the
routing algorithm starts reconfiguration.

Therefore, the network flexibility metric was proposed [7],
[8] to measure this responsiveness of the system to a given
set of environment changes. Dynamic controller placement
was investigated in [9], and the authors showed how often
changes in the traffic pattern require controller migration in
order to minimize average control path latency. It was argued
that – counter-intuitively – using more controller instances not
necessarily leads to a more flexible network. In [10] flexibility
of different hypervisor migration strategies was investigated
against disaster alerts, and different architectures were ana-
lyzed depending on the disaster’s time scale. However, no pre-
allocated backup control paths or hypervisors were calculated.
Furthermore, flexibility cost models for network function
migration [11] was investigated in [12], but the specifics of
resilient vSDNs were not considered in their model either.

B. Self-Adjusting Network Operation

Distributed self-adjusting tree networks were proposed
in [13] which can dynamically adapt the topology in response
to changes in the traffic pattern by leveraging the potential of
state-of-the-art hardware technologies, e.g., free-space optics
in data centers or optical circuit switches in wide-area net-
works. Based on the idea of self-adjusting binary search tree
(splay-tree) data structures [14], in communication networks
frequent communication pairs are brought closer to each other
by reconfiguring edges; thus, the routing cost is significantly
reduced. Furthermore, for general (non-tree) topologies an
empowerment-based model was proposed in [4], and shown
that more requests can be routed if edge reconfigurations are
possible. Clearly, the efficiency of these approaches highly
depend on the cost of reconfiguration versus the routing cost.

Besides network topology adaptation, self-adjusting data
structures – self-adjusting lists [15] to be specific – can be
used for packet classification in communication networks [16].

However, in packet classification the extra constraints of rule
priorities (i.e., partially ordered list) have to be fulfilled as
well. The idea is to move the frequently accessed match-action
rules to the top of the routing table (until possible without
violating the partial order), thus, packet classification speed
can be improved for demand matrices with high traffic locality.

III. RESILIENT HYPERVISOR PLACEMENT PROBLEM

Here we formulate the problem of resilient control plane
design (i.e., controller and hypervisor placement) for vSDNs.
We assume that control traffic has priority over data traffic,
thus, similarly to previous approaches [5], [6] no link capacity
constraints are considered in the model. As the proposed algo-
rithms extend the single-link and hypervisor failure resilient
static latency-aware resilient hypervisor placement problem
(SHPP) [6], first we shortly summarize it in Section III-A.
In order to improve SHPP, we extend the original model to
a multi-objective optimization by minimizing the maximum
number of virtual switches served by hypervisors and vSDN
requests managed by controllers, respectively; thus, mitigat-
ing the after-failure migration burden on the control plane,
described in Section III-B. Finally, our hypervisor migration
model is discussed in Section III-C.

A. Static Latency-Aware Resilient Hypervisor Placement

The physical topology is modeled as a graph G(V, E) with
nodes v ∈ V connected by undirected edges (links) e ∈ E with
latency function l(e) based on their lengths. Each node hosts a
physical SDN switch (S = V), while potential hypervisor and
controller locations are given in the sets H ⊆ V and C ⊆ V ,
respectively. In SHPP the current set of vSDN requests R, as
well as ∀r ∈ R the data plane embedding is given as part of
the input as a connected subgraph Vr ⊆ V , which contains
both the physical nodes of the embedded virtual switches
as well some intermediate physical nodes the virtual links
traverse [6]. Our objective is to maximize the acceptance ratio
for R with at most k = |H∗|,H∗ ⊆ H active hypervisors:

max
{∑
r∈R

ar

}
, (1)

where ar is one if r is acceptable and zero otherwise. A request
r can be accepted if ∀vr ∈ Vr there exist:

• a unique controller location cr ∈ C;
• two active hypervisors h1, h2 ∈ H∗ which serve r,
• using two link-disjoint paths p1(v

r, h1, c
r) and

p2(v
r, h2, c

r) from vr to cr traversing the hypervisors
(e.g., in Figure 1), where the total latency of both paths
is lower than the maximum global control path latency
constraint L: ∀i ∈ {1, 2} :

∑
e∈pi(vr,hi,cr)

l(e) ≤ L.

For an efficient implementation placements which satisfy all
above constraints are pre-calculated and stored in the set of
quartets Q = {(c, h1, h2, v

r)}. We refer to the Integer Linear
Program (ILP) formulation in [6] which provides the optimal
solution for the above SHPP problem as ILPa.
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Fig. 1. Link-disjoint control paths p1(vr, h1, cr) and p2(vr, h2, cr) (bold
lines) between a switch and the vSDN controller traversing two active
hypervisors. Backup can be migrated without disrupting the service.

B. Minimize Maximum Hypervisor and Controller Load

For better load balancing the number of vSDN requests
per hypervisor should be limited. Previous resilient hypervisor
placement approaches [5], [6], [17] introduced high imbalance
between hypervisor nodes, having a central hypervisor location
used by most requests. Introducing upper bound on controller
load [18], [19] and delay [20] was already investigated for
SDNs, but hypervisors were not considered. Therefore, besides
minimizing the number of requests served by a controller, we
extend our model with minimizing the maximum hypervisor
load as well.

Our intelligent algorithm design goal in Objective (ii) is to
keep bottleneck resources open as long as possible [21], and
assign vSDN requests to hypervisor and controller locations
with lower load from the ones which satisfy the maximum
global control path latency constraint2. As a more balanced
load distribution among hypervisors and controllers can sig-
nificantly improve the reliability of vSDNs (and also increases
the placement’s flexibility), we integrate multiple objective
functions into ILPa. Our secondary objective function besides
Eq. (1) minimizes the maximum load of any hypervisor:

min
{
max
h∈H

load(h)
}
, (2)

where load(h) is the number of switches managed by h. The
third objective minimizes the maximum load of any controller:

min
{
max
c∈C

load(c)
}
, (3)

where load(c) is the number of vSDN requests managed by
c. These objective functions may be in conflict with each
other, i.e., improving one may result in a deterioration of
another. However, maximizing acceptance ratio is always our
primary objective, and any additional objectives are considered
subsequently under the constraint that the acceptance ratio re-
mains unchanged for R. This ensures that the best hypervisor
placement H∗ has maximal acceptance ratio with the most
balanced distribution of vSDN control load.

2Remember that the candidate locations (c, h1, h2, vr) satisfying L are
already stored in Q, hence, no additional preparation required.

C. Hypervisor Migration

In this paper we follow previous control plane migration
models [5], [6] to deploy the new placement, in which only
hypervisors (and their respective control paths) are relocated,
while controllers and the switches remain at the same node
as shown in Figure 1. The vSDNs with failed nodes or
disrupted data planes can be submitted as a future request
after the control plane was recovered. Furthermore, owing
to our resilient hypervisor placement, each switch is served
by a primary and backup hypervisor which are continuously
synchronized, thus, the two instances are equal. Therefore, if
one of them fails or temporarily shut down and migrated to
a new location, the other still can serve the vSDN request(s).
Upon migration, we distinguish between two strategies:

• Stateless: A hypervisor can be invoked at a new node
while shut down at the old independently.

• Stateful: State have to be transferred from the primary
hypervisor location h1 to the new h2 backup location3.

IV. INTELLIGENT HYPERVISOR PLACEMENT HEURISTIC

We propose a novel intelligent heuristic approach which
selects a placement H′ ⊆ H with minimal number of
k hypervisors satisfying the latency constraints to achieve
Objective (ii). Our previous research showed [6] that using
a representative request set Rrep (which contains the most
probable but unknown future requests) is already beneficial to
obtain a hypervisor placement with high acceptance ratio. By
considering additional metrics, the novel heuristic is able to
deliver solutions with significantly improved preparedness and
consistency compared to its previous counterparts [5], [6].

A. Hypervisor Placement Heuristic

Given the quartets Q = {(c, h1, h2, s)} and a representative
set Rrep, the objective in Algorithm 1 is to find the minimum
number of hypervisors and the assignment of hypervisor-pairs
to physical SDN switches. In Phase 1 we apply a greedy set
cover as in [6], but we extended it with an additional MAXPREP
metric to maximize preparedness (discussed in Section IV-B),
and in each iteration the hypervisor with the highest overall
score is selected in Step 3. In Phase 2 we make post-process
and check whether we can drop any hypervisor while still
maintaining full coverage, i.e., ∀s ∈ S at least one {h1, h2}
pair remains in Q. Finally, in Phase 3 – in contrast with the
random selection in [6] – we assign the hypervisor pair to
the switch which provides the maximum number of controller
locations (according to Q) in order to maximize assignment
options for future requests. These two novel parts compared
to Algorithm 1 from [6] are denoted with bold.

B. Intelligent Hypervisor Placement and Candidate Selection

Note that, the SHPP problem was solved with a two-step
approach in [6]. First, the number of hypervisors required
to have at least one quartet in Q for each physical switch

3Owing to our control path design, the distance between h1 and h2 is
always ≤ L, both before and after migrating one of them.



Algorithm 1: Hypervisor Placement Heuristic
Input: Q- set of feasible quartets {(c, h1, h2, s)};
Rrep- representative request set;
Output: H′ - hypervisor locations;
∀s ∈ S : Hs = {h1, h2} - switch-to-hypervisor
assignment;

1 Initialize H′ := ∅;
// Phase 1: Perform greedy set cover

2 while ∃s ∈ S not covered by H′ do
3 Find h∗ ∈ H \ H′ for which H′ ∪ h∗ the score

MAXCOVER + MAXPREP is maximal;
4 Add h∗ to hypervisors H′ := H′ ∪ h∗;

// Phase 2: Post-processing
5 for h ∈ H′ do
6 if H′ \ {h} is a cover for S then
7 H′ := H′ \ {h};

// Phase 3: Switch-to-hypervisor
assignment

8 For every switch s ∈ S \ H′ select
Hs = {h1, h2} ∈ H′ that provides the maximum
number of possible controller locations for s;

s was minimized with a Greedy heuristic, which in each
iteration selected a hypervisor position h that maximized the
number of newly covered switches (denoted as MAXCOVER)
based on a set cover by pairs algorithm. In order to improve
the performance of the algorithm, it was repeated 400 times
to generate candidate placements [22], from which one was
randomly chosen with minimum hypervisor number k. In
a second step, using k from the Greedy heuristic as input
the ILPa was formulated which used a representative request
set Rrep in order to select a hypervisor placement which
maximized Eq. (1).

In order to satisfy both Objective (i) and (ii) with a one-step
approach, we introduce a second metric besides MAXCOVER
in Algorithm 1, called MAXPREP, which maximizes Eq. (1).
The MAXPREP value consists of four components which are
normalized and combined into a score. The first two com-
ponents maximize the number of quartets in Q (i.e., possible
control structures) for the current set of demands R and a rep-
resentative set Rrep, respectively. The third component repre-
sents the realization potential of these placements discussed in
Section II-A. We evaluate flexibility φr(C, T ) for each request
r ∈ R, which indicates whether r can be served with ≤ C
migration cost and ≤ T migration time or not [9]. Placements
with higher flexibility means better preparedness. In case of
stateless migration we set C = {1, . . . , k}; T = ∞, while for
stateful migration C = {1, . . . , k}; T =

∑
e∈p(h1,h2)

l(e), i.e.,
we estimate the migration time with the shortest path latency
between h1 and the new location of h2.

Finally, a Gaussian random variable was added as a fourth
component to increase the likelihood of finding candidate
placements with close-to-optimal acceptance ratio through
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Fig. 2. The effect of active hypervisor instances on the acceptance ratio in
the Italy network (L = 0.5) calculated with the ILPa method [6].

repeated (e.g., 400) runs [6], [22] of Algorithm 1 using a novel
intelligent candidate selection approach. First, the candidate
placement list is pruned of duplicates and placements not
using the minimal number of k hypervisors. Second, instead
of random selection the best solution in terms of acceptance
ratio on Rrep is selected . We demonstrate in Section VI-B
that with the novel MAXCOVER + MAXPREP score and with
this intelligent candidate selection process based on Rrep

we can significantly outperform – in fact, producing optimal
solutions – the Greedy heuristic [6], which relies purely only
on MAXCOVER and a random candidate selection.

V. SELF-ADJUSTING HYPERVISOR MIGRATION STRATEGY

Although Algorithm 1 was designed to be intelligent
through optimizing for the current requests and also maximizes
preparedness according to Objective (i) and (ii), respectively,
continuously calculating a hypervisor placement from scratch
to maximize acceptance ratio in a dynamic environment where
demands are arriving and leaving the network frequently is not
possible owing to its computational complexity [6]. Therefore,
in this section we propose a self-adjusting method, which
instead of a fully new solution slightly adapts the hypervisor
locations after each change in the request set R and tries to
keep the placement as accurate as possible.

A. Resilient Self-Adjusting Hypervisor Migration

Owing to our resilient hypervisor design it is enough to fol-
low a simple rule in the proposed self-adjusting control plane:
when the request set R is changing (either because of traffic
load or single-link failure), we adjust the location of at most a
single hypervisor at a time. With this operation existing vSDN
requests in the network can continuously operate without any
service disruption (for the price of reduced reliability during
the migration process), while the new hypervisor placement
can improve the acceptance ratio compared to a static solution.

In our simulations we relocate the single hypervisor instance
which improves the latency values the most, or we leave the
current placement as it is if no such instance exists. However,
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Fig. 3. Comparison of the Greedy heuristic in [6] with Algorithm 1 using
random and intelligent candidate selection in the Italy network (L = 0.6).

our model is general enough to incorporate multiple revenue
and cost models besides minimum latency to decide which
hypervisor instance should be moved (if any), e.g., different
Quality-of-Service classes, remaining request times, etc. In our
simulations we follow a simple conservative approach where
each request r is considered to be equal. However, we keep
all existing vSDN requests in the network, while trying to
maximize the acceptance ratio of novel vSDN requests in R.

VI. SIMULATIONS

We investigated two topologies with similar sizes but dif-
ferent characteristics, namely the Janos-US (26 nodes, 42
edges, 3.23 average node degree) and Italy (25 nodes, 35
edges, 2.72 average node degree) networks [23]. We used
multiple global latency requirements L given as the fraction of
diameter. For each investigation, 10 independent simulations
were performed, and in the figures, the average result of
these simulations is shown. The vSDN requests are connected
subgraphs in our network and the vSDN size in the figures
refers to that size (i.e. |Vr|). To evaluate the acceptance ratio,
with each vSDN size (2 ≤ |Vr| ≤ |V|) 1000 (or maximum
existing) unique vSDN request was generated.

We conducted our simulations on a virtual machine with 8
cores (Intel® Xeon® E5-2630 v3 @ 2.4GHz) and 32GB of
RAM running Ubuntu 18.04.1 LTS with kernel 4.15.0-151-
generic. The simulation environment and the algorithms are
implemented in Python 3.8.2. ILP instances are created with
the Gurobi Python Interface (gurobipy) and solved with the
Gurobi solver (version 9.5) [24].

A. Effect of Hypervisor Number on Acceptance Ratio

First, we analyzed the acceptance ratio with different num-
ber of active hypervisors k using the optimal ILPa method.
One can observe in Figure 2 that with increasing number
of hypervisors the acceptance ratio increases as well, but the
effect of adding a new one decreases with more instances. An
oblivious method like the Greedy heuristic in [6] which only
tries to minimize the hypervisor number (k = 6 in the figure)
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might have poor performance in terms of acceptance ratio.
However, we will demonstrate that even with the minimum
number of hypervisors high-quality solutions can be achieved
using an intelligent design through the MAXPREP function.

B. Intelligent versus Random Algorithm Design

Next, we compared Algorithm 1 to the Greedy heuristic
approach [6]. We emphasize again that the Greedy heuristic
finds only the minimum number of hypervisors k, and requires
ILPa in a second step to maximize acceptance ratio, while our
novel Algorithm 1 provides the result in a single step. For a
fair comparison, we repeated both heuristics 400 times, and
selected candidates both randomly and based on acceptance
ratio described in Section IV-B. In Figure 3 one can observe
that the Greedy approach with random candidate selection has
the worst performance, while Algorithm 1 with the intelligent
selection achieves 100% acceptance ratio for all investigated
Rrep sets. Algorithm 1 outperforms the Greedy method even
with random candidate selection when vSDNs are larger than
four, which demonstrates that considering acceptance ratio
through MAXPREP enables us to find high-quality solutions
with most runs of Algorithm 1. It runs twice as fast as the
two-step approach, and because less repeated runs are required
to find a good solution, running time can be further reduced.

C. Required Number of Repeated Simulation Runs

Here we investigate the trade-off between the standard
deviation of the Gaussian random variable used in MAXPREP
and the number or repeated heuristic runs of Algorithm 1
to find a high-quality solution. One can imagine the effect
of these two values as randomness increases the number
of unique candidate hypervisor placements with size k we
can select from, while the repeat number says how many
times we try to pick a different hypervisor placement from
this set. With a larger randomness we are able to explore
more placements around the optimal solution to find one with
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maximum acceptance ratio for Rrep. However, in a larger set
we might need more tries to pick the best solution.

Figure 4 presents our results which compares the acceptance
ratio of the found placements using Algorithm 1 to the optimal
ILPa [6], i.e., 1.0 means that the optimal solution is found,
while lower values mean weaker solutions. One can observe
that above 50 simulation runs the results are not improving
significantly, therefore we perform maximum 50 repeats in
the rest of our simulations (instead of the 400 used for the
Greedy method [6]). Furthermore, for the Gaussian random
variable used in MAXPREP, the parameter values below 0.5
gives better performance than the larger ones.

We further investigated these parameter ranges in Fig-
ure 5. Although with a single run we were not able to
observe any trend between different standard deviations, with
more repeated runs the additional random factor significantly
improved the acceptance ratio. We conclude that although
randomness helps to find better solutions with extending the
solution space of Algorithm 1, the effect of different variables
and parameters is unclear on the performance and might
change in different networks.

Reducing the number of repeats from 400 of the two-step
approach to 50 in Algorithm 1 it becomes over 10 times faster
on the investigated networks (reduces the control plane design
process from 1150 sec to 87 sec even with an unoptimized
Python code). The gap grows with increasing network size
since the ILP of the two-step approach scales relatively bad.

D. Capacity Constraint on Hypervisors and Controllers
In order to understand the effect of the introduced con-

straints, we investigated the objective functions discussed in
Section III. While we always considered Eq. (1) as the primary
objective, in our first evaluation we changed the relative
importance of Eq. (2) and Eq. (3) to each other. Considering
the controller load as a secondary objective decreases it around
3% but the hypervisor load cannot be reduced significantly
in this case. However, minimizing the maximum hypervisor
load before the controller load, we can decrease it about 12%
while still gain around 1% of controller load compared to the
ILPa formulation in [6], i.e., when only Eq. (1) is considered.
Therefore, we selected the latter one for further comparison.

Next, to fulfill strict requirements on the hypervisor loads,
we have investigated the case when these constraints are
incorporated into ILPa:

∀h ∈ H∗ : load(h) ≤ maxsw,

where maxsw is the upper bound on the number of switches
managed by any hypervisor. In Figure 6 one can observe that
the constraints have significant impact on the acceptance ratio,
as with the upper bound the most popular hypervisor locations
can serve only a given number of switches, thus, some vSDNs
must be rejected. If such limitations must be considered, the
network operator might need to increase the number of active
hypervisors to achieve an acceptable performance.

E. Self-Adjusting Operation

Finally, we investigated the performance of our self-
adjusting placement using the conservative approach, i.e.,
when in each timestep t+1 at most one hypervisor is migrated
in order to maximize the acceptance ratio of the new Rt+1,
subject to the constraint that ∀r ∈ Rt ∩ Rt+1 unfinished
request must be accepted. Although the self-adjusting oper-
ation [13], [16] is advantageous for requests with high spatial
locality (e.g., slow traffic load shifts as a day-night cycle),
we wanted to evaluate the worst case scenario and selected
vSDN requests into the request sets Rt uniformly random.
Hence, in Figure 7 we simulated 20 independent runs with 400
consecutive timesteps each, and compared our resilient self-
adjusting approach using at most one migration (denoted as 1)
to the placement calculated with Algorithm 1 in each timestep
(“Any” in the figure); and also to the method where we do not
migrate at all (denoted as 0), i.e., where a single representative
request set is used to find a high-quality initial placement with
Algorithm 1 which is used for all 400 timesteps.

One can observe in Figure 7 that owing to the MAXPREP
score the single placement for the first timestep (0 migration)
with Algorithm 1 is already well-prepared and can serve 89%
of all vSDNs. The self-adjusting operation (maximum 1 migra-
tion) outperforms it and achieves almost identical performance
as the operation with “Any” number of migrations. This is
in alignment with the table in the figure which shows the
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frequencies of hypervisor migrations per timestep. In most
cases only the migration of one hypervisor was sufficient
to maximize the number of accepted vSDN requests and
even though the unconstrained operation made 2 or more
hypervisor migrations in 4% of the time, it did not improved its
performance significantly. Therefore, we conclude that moving
only a single hypervisor instance per timestep is desirable,
as near-optimal performance can be achieved while service
continuity is guaranteed for all requests.

VII. CONCLUSIONS

In this paper we demonstrated through the use case of
resilient hypervisor placement that using Objective (i) and
(ii) as the driving force of an intelligent algorithm design
the acceptance ratio of vSDN requests can be improved,
which leads to increased revenue for the network operator.
On one hand, we proposed Algorithm 1 which considers
possible future request and flexibility in the single-link and
hypervisor failure resilient placement problem through a novel
MAXPREP metric; thus, requires reconfiguration only if the
request set has drastically changed. On the other hand, for
dynamic environments we proposed a self-adjusting algorithm
which adapts the hypervisor placement gradually for each new
request set while continuously serving existing vSDNs in the
network by using the same number of hypervisor instances. In
the simulations we demonstrated that both of our algorithms
provides well-prepared placements, and that our self-adjusting
approach performs close to optimal even for the worst case
(i.e., uniformly random) request changes.
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