
End-User Programming of Low- and High-Level Actions
for Robotic Task Planning

Ying Siu Liang, Damien Pellier, Humbert Fiorino, and Sylvie Pesty

Abstract— Programming robots for general purpose appli-
cations is extremely challenging due to the great diversity of
end-user tasks ranging from manufacturing environments to
personal homes. Recent work has focused on enabling end-
users to program robots using Programming by Demonstration.
However, teaching robots new actions from scratch that can be
reused for unseen tasks remains a difficult challenge and is
generally left up to robotic experts. We propose iRoPro, an
interactive Robot Programming framework that allows end-
users to teach robots new actions from scratch and reuse them
with a task planner. In this work we provide a system implemen-
tation on a two-armed Baxter robot that (i) allows simultaneous
teaching of low- and high-level actions by demonstration, (ii)
includes a user interface for action creation with condition
inference and modification, and (iii) allows creating and solving
previously unseen problems using a task planner for the robot
to execute in real-time. We evaluate the generalisation power
of the system on six benchmark tasks and show how taught
actions can be easily reused for complex tasks. We further
demonstrate its usability with a user study (N=21), where users
completed eight tasks to teach the robot new actions that are
reused with a task planner. The study demonstrates that users
with any programming level and educational background can
easily learn and use the system.

I. INTRODUCTION

Despite the ongoing advances in Robotics and A.I., it is
extremely challenging to pre-program robots for specific end-
user applications. Instead of developing robots for domain-
specific tasks, a more flexible solution is to have robots
learn new actions directly from end-users and let them cus-
tomise the robot for their specific application. Programming
by Demonstration (PbD) [1] has been used to allow end-
users to teach robots actions in an intuitive way by taking
demonstrations as input and inferring a policy for the task.
However, PbD solutions usually require users to teach robots
an action sequence to achieve a certain goal. If the goal
changes, the user has to teach the robot a new sequence.

Consider the Tower of Hanoi, a puzzle consisting of three
pegs and a number of differently-sized disks, stacked on one
peg in descending order, with the largest peg at the bottom.
The goal is to move the entire stack from one peg to another,
by moving one disk at a time, and only to a larger disk or an
empty peg. The solution is different depending on the given
number of disks. If we want to teach a robot to solve this
problem, it would be infeasible to demonstrate the solution
each time. A more efficient approach would be to teach the
robot the primitive action of moving a disk, associate rules
or conditions to this action (e.g., smaller disks can only be
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Fig. 1: Users programmed the Baxter robot via a graphical
interface to manipulate objects (shown with their type hier-
archies) in the task domain.

placed on top of larger ones), and have the robot generate
an optimal solution using a task planner [2].

Our research argues for teaching robots primitive actions,
instead of entire action sequences, and delegating the logical
reasoning process of finding a solution to task planners.
Even though task planners are generally used by domain-
experts, we have previously shown that users with little to no
programming experience can easily learn and use symbolic
planning languages [3]. Based on the obtained results, this
work presents iRoPro, an interactive Robot Programming
system (Sec. III). It is a working end-to-end system that
allows efficient programming of both how an action is
performed (low-level) and when it can be applied (high-
level), while generalising both aspects to previously unseen
scenarios. We implement the system on a Baxter robot and
developed a graphical interface that allows users to teach new
actions by kinesthetic demonstration, modify their conditions
and define previously unseen problems to solve with a task
planner (Sec. IV). We demonstrate our system’s capability
to generalise primitive actions on six benchmark tasks that
are programmed and executed on the robot (Sec. V). We
empirically investigate the system’s usability and validate
its intuitiveness through a study with users of different
educational backgrounds and programming levels (Sec. VI).
To better understand user teaching strategies, we split partic-
ipants into two control groups, with and without automatic
condition inference, and showed that users in both groups
can easily learn and use the system. Finally, we discuss
limitations and possible extensions to further increase the
system’s generalisability (Sec. VII).
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II. RELATED WORK

Our work relates to several topics explored in previous
research. End-user robot programming has been addressed
previously for industrial robots to be programmed by non-
robotics domain experts, where users specify and modify
existing plans for robots to adapt to new scenarios [4]. In our
work we argue for the use of task planners to automatically
generate plans for new scenarios.

Previous work has addressed knowledge engineering tools
for constructing planning domains but usually require PDDL
experts or common knowledge in software engineering
(e.g., itSIMPLE [5]). There has been previous work on inte-
grating task planning with robotic systems [6] and learning
preconditions and effects of actions to be used in planning
[7]. However, the robot is usually provided with a fixed set
of low-level motor skills. We do not provide the robot with
any predefined actions but allow users to teach both low- and
high-level actions from scratch.

Programming by demonstration [1] has been commonly
applied to allow end-users to teach robots new actions
by demonstration. Recent work has focused on mobile
and industrial manipulators [4] and learning from single
demonstrations [8]. Alexandrova et al. created an end-user
programming framework with an interactive action visual-
isation allowing the user to teach new actions from single
demonstrations but do not reuse them with a task planner.

Most closely related to our approach is the work by
Abdo et al. [9] where manipulation actions are learned from
kinesthetic demonstrations and reused with task planners.
However, the approach requires 5-10 demonstrations to learn
action conditions which becomes tedious and impractical
if several actions need to be taught. Our work argues for
having the user act as the expert by letting them correct
inferred action conditions, thus allowing a new action to be
learned from a single demonstration. We further provide a
graphical interface that allows users to create new actions
and previously unseen problems that can be solved with task
planners.

III. APPROACH

Our approach aims at providing end-users with an intuitive
way of teaching robots new actions that can be reused with
a task planner to solve more complex tasks. Given a single
demonstration, the robot should learn both how (Sec. III-
A) and when (Sec. III-B) an action should be applied. To
accelerate the programming process, action conditions are
directly inferred from a single demonstration (Sec. III-C).
The action generalisation is performed on both low- and
high-level representations (Sec. III-D), allowing it to be
reused with a task planner (Sec. III-E). We will describe
our approach in the following sections.

A. Low-level Action Representation

We represent low-level actions as proposed in previous
work using keyframe-based PbD [8], where the action is rep-
resented as a sparse sequence of gripper states (open/close)
and end-effector poses relative to perceived objects or to the
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Fig. 2: Overview of iRoPro to teach low- and high-level
actions: the user interacts with the GUI to run the demon-
stration, modify inferred action conditions and to create new
planning problems for the robot to solve and execute.

robot’s coordinate frame. During the demonstration phase
the user guides the robot arm using kinesthetic manipulation
and saves poses that they find relevant for the action. For
example, the pick-and-place action of an object to a marked
position could be represented as poses relative to the object
(for the pick action), poses relative to the target position
(for the place action), and corresponding open/close gripper
states. Action executions are performed by first detecting the
landmarks in the environment, calculating the end-effector
poses relative to the observed landmarks, and interpolating
between the poses.

While these actions can be learned from multiple demon-
strations [10], we take the approach that only requires a
single demonstration by heuristically assigning poses and
letting the user correct them if needed [8]. Thus, the first
demonstrated action is already an executable action. The user
can teach multiple manipulation actions and discriminate
between them by associating different conditions that specify
when the robot should use them (e.g., actions using claw
or suction grippers). These conditions are discussed next in
Sec. III-B.

B. High-level Action Representation

We represent high-level actions similar to previous work
on task planning [2], where an action is represented as a
tuple a = (param(a), pre(a), eff(a)), whose elements are:

• param(a): set of parameters that a applies to
• pre(a): set of predicates that must be true to apply a
• eff(a)−: set of predicates that are false after applying a
• eff(a)+: set of predicates that are true after applying a

where eff(a) = eff(a)− ∪ eff(a)+. Action parameters are
world instances that the robot interacts with and are associ-
ated with a type. For example, in iRoPro, we implemented
a type hierarchy, consisting of a general type ELEMENT,
divided into POSITION and OBJECT, which further divides
into BASE, CUBE, and ROOF (Fig. 1).

Predicates are used to describe object states and relations
between them and are defined in first-order logic. In our



graphical interface, predicates are translated from first-order
logic (‘on(obj, A)’) to English statements (‘obj is on A’).

In iRoPro, we implemented predicates that are commonly
used in task planning domains as well as two additional ones
to describe object properties:

• ELEMENT is clear: an element has nothing on top of
it

• OBJECT is on ELEMENT: an object is on an element
• OBJECT is stackable on ELEMENT: an object can be

placed on an element
• OBJECT is flat: an object has a flat top
• OBJECT is thin: an object is thin

We assume that CUBE and BASE objects are flat, while
CUBE and ROOF objects are thin enough for the robot
to grasp. The set of inferred types and predicates could
be extended for more complex tasks (e.g., object colour or
orientation [11]).

C. Action Inference from Demonstration

Instead of manually defining action parameters, precon-
ditions, and effects, we accelerate the programming process
by inferring them from the observed sensor data during the
teaching phase. Object types are inferred based on their
detected bounding boxes (see Sec. IV-A). Object positions
are determined by the proximity of the object to given
positions. If the nearest position p to the object o is within
a certain threshold d, then the predicates ‘o is on p’ and ‘p
is not clear’ are added to the detected world state.

To infer action conditions, the robot perceives the initial
world state before and after the kinesthetic action demon-
stration as seen in similar work for learning object ma-
nipulation tasks [12]. Let O1 = {φ1, φ2, ...} be the set
of predicates observed before the action demonstration and
O2 = {ψ1, ψ2, ...} after. The action inference is the heuristic
deduction of predicates that have changed between O1 and
O2, i.e.,

pre(a) = (O1 −O1 ∩O2) = {φi|φi ∈ O1 ∧ φi /∈ O2},
eff(a) = (O2 −O1 ∩O2) = {ψi|ψi /∈ O1 ∧ ψi ∈ O2},

where eff(a) includes positive and negative effects (Fig. 3).
A predicate φ has variables var(φ) = {v1, v2, . . . }, where
each vi has a type. Therefore, action parameters are the set
of variables that appear in either preconditions or effects, i.e.,

param(a) = {vi| ∃φ ∈ pre(a) s.t. vi ∈ var(φ)
∨ ∃ψ ∈ eff(a) s.t. vi ∈ var(ψ)}.

Note that conditions could be learned from multiple
demonstrations [9], [7]. Our work argues for accelerating the
teaching phase by learning from a single demonstration and
letting the user act as the expert to correct wrongly inferred
conditions.

D. Action Generalisation

The low-level representation (Sec. III-A) generalises mo-
tion trajectories by re-calculating poses based on detected
landmarks from the demonstrated to the new environment.
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Fig. 3: Example of a high-level action for moving an object
from A to B. Conditions are inferred from the observed
predicates before (O1) and after (O2) the demonstration.

The high-level representation (Sec. III-B) specifies when
an action can be applied, therefore allows taught low-level
motion trajectories to be reused for other objects (e.g., use
suction grip for all objects, regardless of their dimension) or
to be restricted for certain types (e.g., only BASE objects).
By combining these two representation levels, taught actions
can be generalised for more complex environments and the
user can customise them for their specific use case.

E. Task Planning

Task planners are used to generate solutions, or action
sequences, to solve complex problems. Given a description
of a planning domain, i.e., object types, actions with precon-
ditions and effects, we can define a planning problem with an
initial state and a desired goal state. The planner generates
an optimal action sequence, or plan, which guarantees the
transition from initial state to the goal state. PDDL [13]
is often used as a standard encoding language for planning
problems. A move action as shown in Fig. 3 is defined as
follows:

(:action move
:parameters (?obj - object

?A - position ?B - position)
:precondition (and (on ?obj ?A)(clear ?B)

not(on ?obj ?B) not(clear ?A))
:effect (and (on ?obj ?B) (clear ?A)

not(on ?obj ?A) not(clear ?B))

A planning problem consists of an initial state and a goal
state and can be solved using existing actions in the domain.
For example, the problem of swapping two objects obj1, obj2
on A and B respectively with C unoccupied, can be defined
as:

(:objects obj1 obj2 - object
A B C - position)

(:init (and (on obj1 A) (on obj2 B)
(clear C))

(:goal (and (on obj1 B) (on obj2 A)))



The planner would generate the following action sequence:

1. move(obj1, A, C)
2. move(obj2, B, A)
3. move(obj1, C, B)

IV. SYSTEM

A. Platform & Implementation Details

We implemented our system on a Baxter robot with two
arms (one claw and one suction gripper), both with 7-DoF
and a load capacity of 2.2kg. For the object perception we
mounted a Kinect Xbox 360 depth camera on the robot. We
developed a user interface as a web application that can
be accessed via a browser on a PC, tablet or smartphone.
The source code for iRoPro is developed in ROS [14] and
available online1. The low-level action is learned using the
open-source system Rapid PbD2. The integration of the
task planner is implemented using the ROS package PDDL
planner3.

In our implementation, landmarks are either predefined
table positions or objects that are detected from Kinect point
cloud clusters using an open-source tabletop segmentation
library4. An object obj = (x, y, z, width, length, height) is
represented by its detected location and bounding box, which
are used to infer its type and related predicates (Sec. III-C)
The user creates a complete PDDL domain via the GUI by
teaching new actions and problems that can be solved with
the integrated task planner.5

B. Interactive Robot Programming

The user interacts with the GUI (Fig. 4) to visualise the
robot and the detected objects, create new actions, run the
kinesthetic teaching by demonstration, modify inferred types
or predicates, create and solve new problems with the task
planner. The interactive robot programming cycle consists of
creating and modifying actions and problems.

a) Actions: New actions are taught by kinesthetically
moving the robot’s arms, where both low-level and high-level
actions are learned and generalised. The low-level action
is learned by keyframe-based demonstration (Sec. III-A).
To verify the taught action, the user can have the robot
re-execute it immediately. The high-level action is inferred
automatically by capturing the world state before and after
the action demonstration (as described in Sec. III-C). The
user can modify the action properties if the inference was
not correct. To teach more actions, the user can either create
a new one or copy a previously taught action and modify it.

b) Problems: New planning problems can be created
if at least one action exists. To create a problem, the robot
first detects the existing landmarks and infers their types and
initial states. The user can modify them if the inference was
not correct. Then, the user enters predicates that describe

1https://github.com/ysl208/iRoPro/tree/cond
2https://github.com/jstnhuang/rapid_pbd
3http://docs.ros.org/indigo/api/pddl_planner
4https://github.com/jstnhuang/surface_perception
5Video can be viewed at https://youtu.be/YCDrC0UFX38

Fig. 4: The iRoPro interface showing the action condition
menu and an interactive visualisation of the Baxter robot
and detected objects.

the goal states to achieve. The complete planning domain
and problem are translated into PDDL and sent to the Fast-
Forward planner [15]. If a solution is found that reaches
the goal, it is displayed on the GUI for the user to verify
and execute on the robot. If no solution is found or if the
generated plan is wrong, the user can open a debug menu
which summarises the entire planning domain with hints
described in natural language to investigate the problem
(e.g., ‘make sure the action effects can achieve the goal
states’). In our user study (Sec. VI) we found that this
helped users understand how the system worked and why the
generated plan was wrong. Once the user modified actions,
initial or goal states, they can relaunch the planner to see if
a correct plan is generated. To solve new tasks, the user can
create a new problem or modify existing ones by redetecting
the objects.

C. Plan Execution

The generated plan is a sequence of actions with parame-
ters that correspond to detected objects. For each action, the
sequence of end-effector poses are calculated relative to the
landmarks that the action is being applied to (Sec. III-A).
To accelerate the execution, we only detect the landmarks
once at the start and save their new positions in a mental
model. After each action execution, the user can confirm that
it executed correctly and the mental model is updated with
the latest positions of the changed landmarks. The mental
model is also used as a workaround for our limited perception
system for problems with stacked objects in their initial states
(Sec. VII).

V. SYSTEM EVALUATION

We evaluate our system’s generalisability on six bench-
mark tasks (Table I) and show how taught primitive actions
can be reused for complex tasks. The tasks involved manip-
ulating different object types on four marked positions with

https://github.com/ysl208/iRoPro/tree/cond
https://github.com/jstnhuang/rapid_pbd
http://docs.ros.org/indigo/api/pddl_planner
https://github.com/jstnhuang/surface_perception
https://youtu.be/YCDrC0UFX38


Fig. 5: Snapshots from the executions of the system evaluation showing Task 3 (top) and 4 (bottom).

both claw and suction grippers. We take the Blocksworld
domain [16] for building and rebuilding stacked objects
(Tasks 1-4) and an elaborate version of the Tower of Hanoi
problem with different object types to build a ‘house’ (Tasks
5&6). Instead of disks, we decided to use different object
types (ROOF, CUBE, BASE), where BASE corresponds to
the largest disk, followed by CUBE and ROOF. The rules for
stacking different objects still apply (e.g., BASE cannot be
stacked on top of ROOF or CUBE). However, to demonstrate
the generalisation of actions to diverse tasks, additional
constraints are added as objects cannot be all manipulated
in the same way. The order of the tasks was given with
increasing complexity, requiring the user to modify existing
actions or teach new actions from scratch.

A. Protocol

The tasks were programmed by one of the authors, with
the most efficient teaching strategy of minimising the number
of actions created and generalising them by changing the
action properties (as described in Sec. III-D). Depending
on the given task and involved objects, the experimenter
decided what manipulation action needed to be taught. Only
one planning problem was created and reused for all tasks
by redetecting the objects in the initial state and changing
the goal state. When the generated plan was incorrect, the
debug menu on the GUI was used to determine the changes
to be made to generalise the actions. A task was considered
completed when the generated plan was correct and the robot
successfully executed it. As the mental model saved the latest
object positions after an action execution, Tasks 3 and 6
were continued from the preceding tasks and did not require
redetecting the initial states.

B. Results

We programmed three manipulation actions for the six
benchmark tasks, which involved demonstrating pick-and-
place actions with claw and suction grippers from the top
and from the side. Actions were generalised by changing
parameter types (e.g., from CUBE or POSITION to ELE-
MENT) or adding preconditions or effects which were not
inferred automatically. For pick-and-place actions from the
top, ‘obj is clear’ was added as a precondition (Task 1-3),
while it was not included when picking an object from the

TABLE I: Benchmark tasks for the system evaluation. Three
different pick-and-place actions were programmed.

# Task goal Pick-and-place action
1 Build tower with 3 CUBES claw from top
2 Build tower with 4 CUBES claw from top
3 Rebuild Task 2 on a different position claw from top
4 Build tower and move (w/o disassembly) claw from top & side
5 Build house with BASE, CUBE, ROOF claw & suction from top
6 Rebuild Task 5 on a different position claw & suction from top

side to allow moving a pile of objects (Task 4). For actions
involving the claw gripper, the precondition ‘obj is thin’ was
added so that the robot would only use it on ROOF and
CUBE objects, similarly ‘is flat’ for the suction gripper (Task
5&6). The ‘is stackable’ condition was used for the Tower of
Hanoi as an equivalent to the rule ‘larger objects cannot be
placed on top of smaller ones’. Due to the noisy sensing
and control of the Baxter robot, action executions failed
occasionally, even though the generated plan was correct.
Overall, the robot was able to generate plans for all tasks and
executed them at least twice (Fig. 5). While the experimental
scope was limited and set in a controlled environment, it still
demonstrates iRoPro’s expressivity. With minimal end-user
programming effort, manipulation actions can be taught from
scratch and reused for a diverse range of tasks, even beyond
the six benchmark tasks.

VI. USER EVALUATION

The second part of the evaluation was conducted using
THEDRE [17], a human experiment design method that
combines qualitative and quantitative approaches to contin-
uously improve and evaluate the developed system from
the experimental ground. The aim was to evaluate our
approach with real end-users and we were also interested
in the user’s programming strategy for using the system.
We split participants into two control groups, with and
without condition inference (Sec. III-C) and evaluated user
performance in terms of programming times for completing
a set of benchmark tasks. We set the following hypotheses
for our experiments:

H1 Action creation: users can teach new low- and high-
level actions by demonstration



H2 Problem solving: users can solve new problems by
defining the goal states and executing the plan on
Baxter

H3 Autonomous system navigation: users understand the
system and can navigate and troubleshoot on their own

H4 Condition inference (CI) - Group 1 vs 2: users without
CI will understand the system better

H5 Pre-study test (PT): users that score higher in the PT
have shorter programming times

A. Participants

The study was conducted with 21 participants (10M,
11F) in the range of 18-39 years (M=24.67, SD=6.1). We
recruited participants with different educational background
and programming levels: 6 ‘CS’ (either completed a de-
gree in computer science or were currently pursuing one),
7 ‘non-CS’ (have previously taken a programming course
before), and 8 ‘no experience’ (only had experience with
office productivity software). Furthermore, 3 participants (in
‘CS’) have programmed a robot before, out of which 1 had
intermediate experience with symbolic planning languages
while the remaining participants had no experience in either.
One participant in the category ‘non-CS’ failed to complete
the majority of tasks and was excluded from the result
evaluation. The two control groups included equal number
of participants in all three categories.

B. Protocol

Users were first given a brief introduction to task planning
concepts, the Baxter robot and the experimental set up
(Fig. 1). They were then asked to complete a pre-study test
to capture the participant’s understanding of the presented
concepts. Users were given 8 tasks to complete, where the
first two were practice tasks to introduce them to the system
(Table II). The tasks were designed to address different as-
pects to familiarise them with the system: create new actions
(Task 6), modify parameter types (Tasks 4&7), modify action
conditions (Tasks 3,5,8). For each task they needed to create
a new problem, define the goal states, and launch the planner
to generate an action sequence. When the generated plan was
correct, they were executed on the robot. Otherwise, the user
had to modify the existing input until the plan was correctly
generated. Tasks 6-8 were similar to the previous tasks (1-5)
but use both robot grippers.

C. Metrics

We captured the following data during the experiments:
1) Qualitative data: video recording of the experiment,

observations during the experimental protocol.
2) Quantitative data: task duration and UI activity log,

pre-study test, post-study survey.
The pre-study test included 7 questions related to their

understanding of the concepts presented at the start of the
experiment, e.g., syntax (‘If move(CUBE) describes a move
action, tick all statements that are true.’), logical reasoning
(‘Which two conditions can never be true at the same time?’),
and other concepts (‘Tick all predicates that are required

TABLE II: Benchmark tasks for the user study where the first
two tasks were used to introduce participants to the system.

# Task description Main solution
(1) move BASE object (suction grip) create new action (+demo)
(2) move BASE object to any position create new problem
3 swap two BASE objects add condition (‘is clear’)
4 stack CUBE on BASE modify types (‘OBJECT’)
5 do not stack CUBE on ROOF add condition (‘is stackable’)
6 move ROOF object (claw grip) create new action (+demo)
7 stack ROOF on a CUBE modify types (‘ELEMENT’)
8 build a house (BASE, CUBE, ROOF) navigate autonomously

TABLE III: User performance comparing task completion
times with pre-study test scores.

Main tasks (in min) PT score (out of 7)
AVG STD AVG STD

no experience 43.6 5.37 5.8 0.95
non-CS 36.6 7.46 6.2 0.55

CS 43.8 14.13 5.3 1.11
Overall 41.2 9.08 5.8 0.91
Group 1 41.0 7.89 6.1 0.77
Group 2 41.4 10.56 5.5 0.98

as preconditions for the given action’). The questions were
multiple choice and the highest achievable score was 7.

In the post-study survey we used the System Usability
Scale (SUS) [18] where participants had to give a rating
on a 5-Point Likert scale ranging from ‘Strongly agree’ to
‘Strongly disagree’. It enabled us to measure the perceived
usability of the system with a small sample of users. As a
benchmark, we compare overall responses to our previous
user study [3], where users were simulated a similar robot
programming experience using the Wizard-of-Oz technique
but had no direct interaction with a working system. Finally,
participants were asked which aspects they found most
useful, most difficult, and which they liked the best and the
least.

D. Results

20 participants completed all tasks, while one ‘non-CS’
user failed to complete the majority of tasks and did not
seem to understand the presented concepts. This participant
was excluded in the results presented below (Table III):

H1)-H3) User performance: Users took between 22-60
minutes to complete the main tasks (3-8), with an average of
41.2 minutes. ‘non-CS’ users completed the tasks the fastest,
followed by users with no programming experience. ‘CS’
users took on average longer as they were often interested
in testing the system’s functionalities that were beyond the
given tasks.

Users initially had problems with different concepts that
were presented at the start of the study, in particular they
confused action parameters, preconditions and goal states.
For example, in Task 3, 6 (or 30%) users tried to add
intermediate action steps to achieve the goal state, instead of
simply letting the planner generate the solution. In Task 4,
14 (or 70%) wanted to create a new action, even though they



It was easy to manipulate Baxter’s arm
Baxter is well adapted for workers on the assembly line

Baxter's behaviour was intelligent
I believe that I have taught him a new 

I can explain how Baxter represented the atomic action
I can explain how Baxter learned an atomic action from my demonstration

I can explain how Baxter represented the preconditions of the atomic action
I did not encounter any difficulties during the experiment

No programming experience is required to teach Baxter a new action

0 2 4 6 8 10

Table 1

It was easy to 
manipulate the 
robot’s arms

The robot 
programming 
process is 
well-adapted 
for workers on 
the assembly 
line

The robot’s 
behaviour was 
intelligent

I believe that I 
have taught 
the robot a 
new 

I can explain 
how the robot 
represented 
the new action

I can explain 
how the robot 
learned a new 
action from my 
demonstration

I can explain 
how the robot 
represented 
the 
preconditions 
and effects of 
the new action

I did not 
encounter any 
difficulties 
during the 
experiment

No 
programming 
experience is 
required to 
teach the 
robot a new 

I understood 
why the 
generated plan 
was wrong

I understood 
why the robot 
failed to 
complete a 

Overall, I am 
satisfied with 
the ease of 
completing the 
s in the 
scenarios

Overall, I am 
satisfied with 
the amount of 
time it took to 
complete the s

If I was a 
factory worker 
on an 
assembly line, 
it would be 
easy for me to 
become skillful 
at using the 
system

Strongly 
agree

11 5 7 3 5 6 6 1 6 6 7 5 4 5

Agree 9 13 11 13 13 14 14 6 7 12 9 14 15 13

Neutral 0 2 1 4 1 0 0 7 3 1 3 1 0 2

Disagree 0 0 1 0 1 0 0 6 4 1 1 0 1 0

Strongly 
disagree

0 0 0 0 0 0 0 0 0 0 0 0 0 0

It was easy to manipulate the robot’s arms
The programming process is well-adapted for workers on the assembly line

The robot’s behaviour was intelligent
I believe that I have taught the robot a new 

I can explain how the robot represented the new action
I can explain how the robot learned a new action from my demonstration

I can explain how the robot represented the preconditions and effects
I did not encounter any difficulties during the experiment

No programming experience is required to teach the robot a new 
0 4 8 12 16 20

Strongly agree Agree Neutral Disagree Strongly disagree

Table 2

It was easy to 
manipulate 
Baxter’s arm

Baxter is well 
adapted for 
workers on the 
assembly line

Baxter's behaviour 
was intelligent

I believe that I 
have taught him a 
new 

I can explain how 
Baxter 
represented the 
atomic action

I can explain how 
Baxter learned an 
atomic action 
from my 
demonstration

I can explain how 
Baxter 
represented the 
preconditions of 
the atomic action

I did not 
encounter any 
difficulties during 
the experiment

No programming 
experience is 
required to teach 
Baxter a new 
action

Strongly agree 9 5 7 11 3 2 4 11 8

Somewhat agree 2 6 2 0 5 8 5 0 1

Somewhat 
disagree

0 0 2 0 2 0 1 0 2

Strongly disagree 0 0 0 0 1 1 1 0 0

a) iRoPro           b) Liang et al.

�1

    a)                                       b)

I believe that I have taught the robot a new task

No programming experience is required to teach the robot a new task

Fig. 6: User responses from the post-study survey comparing a) iRoPro (N=20) to b) our previous user study (N=11) [3]

could reuse the existing action by modifying the parameter
types. However, by Task 6, all users were able to use the
system autonomously to create new actions and problems
and navigated the system with little to no guidance. By the
end of the experiment, users programmed two manipulation
actions (one for each gripper) that were reused to complete
all 8 benchmark tasks.

H4) Condition inference (CI): We noticed a discrepancy
in the programming strategies between the two control
groups (Group 1 with CI vs. Group 2 without CI). Partic-
ipants in Group 1 had the tendency to leave the inferred
conditions unmodified without adding conditions that would
improve the action’s generalisability to different use cases.
As participants in Group 2 had to add action conditions man-
ually, they considered all predicates they deemed necessary
for the action and added additional ones that were required
for later tasks. Thus, Group 2 took on average longer to
complete tasks where a new action had to be created (Tasks
1&6), but was faster than Group 1 for subsequent tasks,
where conditions had to be modified (Tasks 3,5,7). Overall
both groups had similar completion times for all tasks.

H5) Pre-study test: As expected, participants who demon-
strated a better understanding of the introduced concepts in
the pre-study test completed the main tasks (Tasks 3-8) faster
on average (p-value< 0.05). Users scored between 4.3-6.93
out of 7 points. ‘non-CS’ users scored above average points
and completed the fastest. As an outlier we observed that the
fastest participant scored only 4.7, but easily learned how to
use the system and completed the tasks in 22 minutes. Even
though Group 1 performed slightly better in the pre-study
test than Group 2, both completion times were on average
similar.

System usability and learnability: There are several ways
to interpret the System Usability Scale (SUS) scores [18]
obtained from the post-study survey. Using Bangor et al.’s
categories [19], 14 (70%) users ranked iRoPro as ‘accept-
able’, 6 (30%) rated it ‘marginally acceptable’, and no one
ranked it ‘not acceptable’. Correlating this with the Net Pro-
moter Score, this corresponds to 10 (50%) participants being
‘promoters’ (most likely to recommend the system), 5 (25%)
‘passive’, and 5 (25%) ‘detractors’ (likely to discourage).
Overall, iRoPro was rated with a good system usability and

learnability.
Overall user experience: We compare responses to our

previous user study (N=11) [3], where users had no direct
interaction with the robot programming system as it was
simulated using the Wizard-of-Oz technique. The main dif-
ferences were noted regarding difficulties encountered during
the experiment (Fig. 6): In our previous study we had 11 (or
100%) agree that they encountered no difficulties, while this
time only 7 (or 35%) of our users stated the same. However,
all of our users claimed to have a good understanding of the
action representation and how the robot learned new actions
from their demonstrations, while an average of 2 (18%)
disagreed in [3]. Both differences can be explained by the
fact that in this study, users had to use an end-to-end system
to program the robot, while in our previous work users had
no direct interaction with a working system. Even though
our users encountered more difficulties, they got a better
understanding of the functionalities due to getting hands-on
experience. This also correlates with negative responses in
our survey to the question if ‘no programming experience
was required’ where 13/20 (65%) agreed and 4 disagreed.
Overall, our user study received positive responses similar
to the previous study.

9 (45%) users stated ‘generate solutions to defined goals
automatically’ as the most useful feature, followed by ‘robot
learns action from my demonstration’ (4 or 20%) – two main
aspects of our approach. 4 (20%) stated the most difficult
part as ‘finding out why Baxter didn’t solve a problem
correctly’, similarly 8 (40%) stated difficulties related to
‘understanding predicates and defining conditions’. 11 (55%)
disliked ‘assigning action conditions’ the most, while the rest
stated different aspects. A common feedback was ‘it takes
time to understand how the system works at the start’. The
most liked parts were ‘executing the generated plan’ (8 or
40%) and ‘demonstrating an action on Baxter’ (7 or 35%).

VII. DISCUSSIONS

In our evaluation scenarios we could have programmed
more complicated manipulation actions such as turning or
pushing for packaging tasks (as done previously in [20]).
We decided to stick to simple pick-and-place manipulation
actions, as our main focus was to evaluate iRoPro’s usability



with end-users. Both system and user evaluations demon-
strated that the proposed robot programming process for
manipulation tasks can be learned easily by users with or
without programming experience.

The workaround based on mental models of the environ-
ment only works if the environment is static and no external
entity interferes with the world. The next step would be to
move from controlled environments to more dynamic ones,
whereby all relevant aspects of the environment need to be
fully perceivable by the system. An improved perception
system would also allow tracking and verifying action ex-
ecutions in case of failures in more complex environments.

Due to the Baxter robot’s different grippers, we did not
program actions that use both arms simultaneously (e.g., for
carrying a tray). A possible extension would be to include a
better motion and task planning system to allow this while
also considering self-collision avoidance. Furthermore, we
did not program human-robot collaborative tasks, such as
human-robot hand-over tasks. To allow this, more complex
planning domains and better multi-modal communication
would need to be implemented.

VIII. CONCLUSION

In this work we presented iRoPro, an interactive Robot
Programming system that allows simultaneous teaching of
low- and high-level representations of actions by demonstra-
tion. The robot reuses the actions with a task planner to
generate solutions to previously unseen tasks that are more
complex than the demonstrated action. The approach was
implemented on a Baxter robot and we showed its general-
isability on six benchmark tasks by teaching a minimal set
of primitive actions that were reused for all tasks. We further
demonstrated its usability with a user study (20 successful
results, 1 unsuccessful result) where participants with diverse
educational backgrounds and programming levels learned
how to use the system in less than an hour. Both user perfor-
mance and feedback confirmed iRoPro’s usability, with the
majority ranking it as ‘acceptable’ and half being promoters.
Overall, we demonstrated that our approach allows users with
any programming level to efficiently teach robots new actions
that can be reused for complex manipulation tasks.

Future work will focus on exploring more challenging
domains to extend the work to other platforms by including
a wider range of predicates and probabilistic techniques to
improve the condition inference. As we focused on controlled
environments, further studies will involve more complex
environments with factory workers who may ultimately use
this technology.
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