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Abstract

This paper looks into the problem of grasping unknown objects in a cluttered environment using 3D point cloud data
obtained from a range or an RGBD sensor. The objective is to identify graspable regions and detect suitable grasp
poses from a single view, possibly, partial 3D point cloud without any apriori knowledge of the object geometry. The
problem is solved in two steps: (1) identifying and segmenting various object surfaces and, (2) searching for suitable
grasping handles on these surfaces by applying geometric constraints of the physical gripper. The first step is solved
by using a modified version of region growing algorithm that uses a pair of thresholds for smoothness constraint on
local surface normals to find natural boundaries of object surfaces. In this process, a novel concept of edge point
is introduced that allows us to segment between different surfaces of the same object. The second step is solved
by converting a 6D pose detection problem into a 1D linear search problem by projecting 3D cloud points onto the
principal axes of the object surface. The graspable handles are then localized by applying physical constraints of the
gripper. The resulting method allows us to grasp all kinds of objects including rectangular or box-type objects with
flat surfaces which have been difficult so far to deal with in the grasping literature. The proposed method is simple
and can be implemented in real-time and does not require any off-line training phase for finding these affordances.
The improvements achieved is demonstrated through comparison with another state-of-the-art grasping algorithm on
various publicly-available and self-created datasets.

Keywords: Grasping, Grasp pose detection (GPD), graspable affordances, 3D point cloud, two-finger parallel-jaw
gripper

1. INTRODUCTION

A robot that can manipulate its environment is much
more useful than one that can only perceive. Such
robots can act as active agents which will someday re-
place humans from all types of dull, dangerous and dirty
works completely, thereby, freeing them for more cre-
ative pursuits. Grasping is an important capability nec-
essary for realizing this end. Solving the grasping prob-
lem involves two steps. This first step uses perception
module to estimate the pose (position and orientation) of
the object and hence, the gripper pose needed for pick-
ing it. Then, the second step uses a motion planner to
generate necessary robot and gripper movement to make
contact with the object. The usual approach, currently
employed in industries, uses the available knowledge of
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accurate geometry of objects as well as the environment
to solve the grasping problem off-line for all objects and
then, apply it to pick objects based on their recognition
during online implementation. Many of the recent ap-
proaches now solve the grasping problem independent
of the object identity, thanks to the availability of 3D or
RGBD point cloud available from low cost depth and
range sensors. In general, grasping unknown objects in
a cluttered environment still remains an open problem
and has attracted considerable amount of interest in the
recent past.

There are several approaches to solve the grasping
problem which are reviewed briefly in the next section.
In this paper, we are primarily interested in solving the
first part of the problem, namely, finding graspable re-
gions and suitable grasp poses (together known as gras-
pable affordances) for a two-finger parallel-jaw gripper.
This is more formally termed as robotic grasp detection
[1] or simply, grasp pose detection (GPD) [2]. The gras-
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pable affordances are to be detected in a RGBD or a 3D
point cloud obtained from a single view of the range or
depth sensor, without requiring any apriori knowledge
of the object geometry. Our work is inspired by the ap-
proach presented in [3] [4] which uses surface curvature
to localize graspable regions in the point cloud. The ad-
vantage of this approach lies in its simplicity which al-
lows real-time implementation and does not require any
time-consuming and data-intensive training phase com-
mon in most of the learning-based methods [5] [6] [7].
However, this approach suffers from several limitations,
which forms the basis for the work presented in this pa-
per. For instance, it can not be used for grasping objects
with flat surfaces, such as boxes, books etc. This is par-
tially remedied in [8] where authors use Histogram of
Gradients (HoG) features [9] to generate multiple hand
hypotheses and then, train a SVM network to detect the
valid grasps among these hypotheses. Secondly, their
algorithm necessitates creating several spherical regions
of fixed user-defined radius to search for these graspable
regions. Hence, it can not be used for localizing vary-
ing sizes of handles as it requires adjusting the radii of
these spherical regions. Because of these limitations,
the above algorithm performs poorly in extreme clutter
environment where there could be multiple objects ad-
jacent to each other.

In this paper, we propose a new approach based on
surface normals to overcome these limitations. It pri-
marily involves two steps. The first step uses surface
continuity of surface normals to identify the natural
boundaries of objects [10] [11]. A modified version
of the region-growing algorithm is proposed that can
distinguish between difference surfaces of the same ob-
ject having large variation in the direction of their sur-
face normals. This is done by defining edge points and
introducing a pair of thresholds on the similarity cri-
terion used by the region growing algorithm. This is
a novel concept which dramatically improves the per-
formance of the region growing algorithm in removing
spurious edges and thereby, identifying natural bound-
aries of each object even in a clutter. One of the clear
advantage of this approach is that it allows us to find
graspable affordances for box type objects with flat sur-
faces, which is considered to be a difficult problem in
the vision-based grasping literature. Also unlike [3] [4],
the proposed algorithm requires far too less number of
user-defined parameters and does not require initializa-
tion using spherical regions at multiple locations.

Once the surfaces for different objects are segmented,
the second step uses the gripper geometry to localize
the graspable regions. The six dimensional grasp pose
detection problem is simplified by making practical as-

sumption of the gripper approaching the object in a di-
rection opposite to the surface normal of the centroid
of the segment with its gripper closing plane coplanar
with the minor axis of the segment. The principal axes
for each segment (major, minor and normal axes) are
computed using Principal Component Analysis (PCA)
[12]. Essentially, the valid grasping regions are local-
ized by carrying out a one-dimensional search along the
principal axes of the segment and imposing the geomet-
rical constraints of the gripper. This is made possible by
projecting the original 3D Cartesian points of the sur-
face onto the principal axes of the surface segment. This
approach is mathematically much simpler compared to
other methods [13] [14] which require more complex
processes to make such decisions. The proposed grasp-
ing method is found to be more robust in localizing gras-
pable affordances in extreme clutter scenario as com-
pared to the state-of-the-art algorithms. This improve-
ment is achieved without compromising on the real-time
performance of the algorithm.

In short, the major contributions made in this paper
are as follows: (1) a new method is proposed that ex-
ploits segmentation based on smoothness of surface nor-
mals [11] to find graspable affordances in a 3D point
cloud. This allows us to grasp box-type objects with
flat surfaces, which is considered to be a difficult prob-
lem in the grasping literature. (2) The introduction of a
novel concept of edge point and a modified region grow-
ing algorithm that uses a pair of thresholds on smooth-
ness constraint allows us to distinguish between differ-
ent surfaces of the same object and helps in finding the
natural boundaries of objects in a clutter by removing
spurious edges. This, in turn, allows us to grasp box-
type objects which is otherwise considered to be diffi-
cult. (3) The problem of 6D pose detection is simplified
by constraining the search space by using the gripper
geometry and converted into a one-dimensional search
problem through scalar projections of 3D points on to
the principal axes of the surface segment. The result-
ing method is quite simple and can be implemented in
real-time and does not require any data-intensive and
off-line training phase. (4) In this process, we con-
tribute a new dataset that can be used for analyzing
the performance of various grasping algorithms. This
dataset exhibit various real world scenario including ex-
treme clutter, constrained view within a bin etc. Finally,
the improvement achieved by the proposed algorithm is
demonstrated through rigorous experiments on several
publicly available dataset including our own.

The rest of this paper is organized as follows. A brief
overview of related literature is provided in the next sec-
tion. The symbols and notations used for explaining the
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method is provided in Section 3. The proposed method
is explained in Section 4 and the experimental and sim-
ulation results are provided in Section 6. The summary
and conclusion is made in Section 7.

2. Related Work

Grasping is a challenging problem which has at-
tracted considerable amount of interest over last couple
of decades. This section provides an overview of vari-
ous related work in this domain. We will particularly fo-
cus on precision grasping where the object is held with
the tips of the fingers providing higher sensitivity and
dexterity compared to power grasping which involves
large area of contact between the hand and the object
[15]. If the accurate 3D model of the object is avail-
able, one can leverage force-closure and form-closure
to find stable grasp configurations for holding the ob-
ject but it presupposes the availability of contact points
on the object [16]. These contact points are, however,
not easily available in real world scenarios and hence,
forms the subject matter of our interest in this paper.
The rapid advancement in computer vision algorithms
has enabled researchers to use vision sensors to identify
graspable regions in objects. These methods extract 2D
image features and combine them with geometric meth-
ods either to compute size or shape of the object [5]
[17] [18]. The availability of low cost range or RGBD
sensors have further simplified the grasping problem by
providing 2.5D or 3D point cloud data. In the later cat-
egory, a number of approaches have been tried to ex-
tract object shape information. For instance, Fischinger
and Vincze [19] use a novel Height accumulated fea-
ture (HAF) to detect shape and find grasping regions
in a cluttered environment. Similarly, the authors in
[13] [20] use superquadric functions to model objects.
There are other methods that exploit geometric prop-
erties of gripper and object surfaces to detect suitable
grasping regions as in [14] [4]. Some methods try to fit
a primitive shape around the object point cloud and this
is used for deciding the suitable graspable pose for the
robotic gripper [21] [22] [23] [24]. Many of these meth-
ods produce multiple grasp hypotheses based on cer-
tain heuristics and then use machine learning methods to
evaluate them [25] [2] [26]. Quite recently, deep learn-
ing methods are being increasingly used for solving the
grasping problem [6] [7] [27] [28]. These methods re-
quire time-consuming data gathering and off-line train-
ing processes which limit their applications to many real
world problems.

We are particularly inspired by the work by Ten pas
and Platt [4] where the grasping regions (or affordances)

are directly computed from a single view 3D point cloud
obtained from a RGBD sensor, without requiring any
apriori knowledge of the object geometry. They use a
fixed radius circle to cluster 3D points in the environ-
ment at multiple locations. This radius is decided based
on the geometry of the gripper and clearance required
for avoiding collision with neighboring objects. In a
sense, the authors do not make use of surface attributes
to find object boundaries. The success of their method
relies on the careful selection of this radius which can
not be generalized to wide varieties of objects in a clut-
tered scenario. Secondly, it is biased towards identify-
ing curved surfaces and hence, can not deal with ob-
jects with flat surfaces. This is partially remedied in [8]
where such rectangular edges are identified using HoG
features and a trained SVM classifier. They further im-
prove the accuracy of their method in [2] by training a
deep network with multi-view images of the same ob-
ject.

In contrast to the above approaches, we use region
growing algorithm [10] to cluster 3D points based on the
orientation of surface normals [29]. Such methods are
popular for segmenting point clouds based on smooth
constraint [11] [10]. We modify the existing region
growing algorithm introducing a concept of edge points
and incorporating two user-defined thresholds which re-
markably improves the detection of discrete boundaries
even on the same object. In other words, we exploit
the discontinuity of surface normals to identify the nat-
ural object boundaries unlike Platt’s approach [4] which
merely uses pre-defined spheres to define object bound-
aries. This forms the first main contribution of this pa-
per which allows us to detect graspable regions for a
wide variety of objects including flat surfaces in a heav-
ily cluttered scene as will be demonstrated later in this
paper.

Once these object boundaries are identified, the ge-
ometrical attributes (size, pose etc.) of these objects
are computed using Principal Component Analysis [12].
The information obtained from this step is further used
to localize the graspable regions on a given object sur-
face. The grasping problem involves search in a 6D
space which is a computationally intensive task. The
dimensionality of this search space is reduced by im-
posing constraints through primitive shape fitting [21]
or by using superquadrics [13] [30] or another functions
to model object shape. In contrast to these methods,
we convert the 6D search problem to a one-dimensional
search problem by exploiting the geometrical attributes
of the surface as well as the gripper. This simplification
is achieved without necessitating any complex math-
ematical process and can be generalized for any kind
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Figure 1: Grasp Configuration for a two finger parallel jaw gripper. For a successful grasp, the clearance between objects must be greater than the
width of each finger (g > w). The gripper approaches the object along a direction opposite to the surface normal with its gripper closing plane
coplanar with the minor axis f̂ of surface segment as shown in (b). The objects 1 and 2 in (c) are obstacles which are to be avoided by the gripper
while grasping the target object 3. The 6D pose detection problem becomes a 1-D linear search for a volume of l × b× e along the major axis â.

of objects without necessitating any apriori knowledge.
The problem formulation and the solution details are de-
scribed next in this paper.

3. Problem Definition

In this paper, we look into the problem of finding
graspable affordances for a two finger parallel-jaw grip-
per in a 3D point cloud obtained from a single view of
a range or RGBD sensor. The affordances for objects
are to be computed in an extreme clutter scenario where
many objects could be partially occluded. The problem
is solved by taking a geometric approach where the ge-
ometry of the robot gripper is utilized to simplify the
problem.

Various geometrical parameters corresponding to the
gripper and the object to be grasped is shown in Fig-
ure 1(a). The maximum hand aperture is the maximum
diameter that can be grasped by the robot hand and is
denoted by d. It should be greater than the diameter b
of a cylinder encircling the object. It is further assumed
that each finger of the gripper has a width w, thickness
e and total length h. The minimum amount of length
needed for grasping an object successfully is assumed
to be l. There has to sufficient clearance between ob-
jects so that a gripper can make contact with the tar-
get object without colliding with its neighbors. Let this
minimum clearance needed between two objects be g
and it should be more than the width of each finger, i.e.,
g > w to avoid collision with non-target objects while
making a grasping manoeuvre. This clearance is shown
as blue ring in Figure 1(c). Each object surface is asso-

ciated with three principal axes, namely, n̂ normal to the
surface and two principal axes - major axis â orthogonal
to the plane of finger motion (gripper closing plane) and
minor axis - f̂ which is orthogonal to other two axes as
shown in Figure 1(b). Readers can refer to [8] to un-
derstand some of the terms which have been used here
without being defined to avoid repetitions.

The proposed grasp pose detection algorithm takes
a 3D point cloud C ∈ R3 and a geometric model
of the robot hand as input and produces a six-
dimensional grasp pose handle H ⊆ SE(3). The
six-dimensional grasp pose is represented by the vec-
tor p = [x, y, z, θx, θy, θz], where (x, y, z) is the point
where a closing plane of the gripper and object sur-
face seen by the robot camera intersect; and, (θx, θy, θz)
is the orientation of the gripper handle with respect to
a global coordinate frame. Searching for a suitable 6
DOF grasp pose is a computationally intensive task and
hence, a practical approach is taken where the search
space is reduced by applying several constraints. For
instance, it is assumed that the gripper approaches the
object along a plane which is orthogonal to the object
surface seen by the robot camera. In other words, the
closing plane of the gripper is normal to the object sur-
face as shown in Figure 1(b). Since the mean depth of
the object surface is known, the pose detection prob-
lem becomes a search for three-dimensional (l× b× e)
bands along the major axis â where l is the minimum
depth necessary for holding the object. Hence, the grasp
pose detection becomes a one-dimensional search prob-
lem once an object surface is identified.

Hence, the problem of computing graspable affor-
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Figure 2: Defining an edge point. It is a point on the surface around
which the surface normals are widely scattered in different directions.

dances or grasp pose detection boils down to two steps:
(1) creating surfaces in three point clouds and, (2) ap-
plying geometric constrains of a two finger parallel jaw
gripper to reduce the search space for finding suitable
gripper hand pose. The details of the proposed method
to solve these two problems is described in the next sec-
tion.

4. Proposed Method

As explained in the previous section, the proposed
method for finding graspable affordances involves two
steps: (1) Creating continuous surfaces in the 3D point
cloud and then, (2) applying geometrical constraints to
search for suitable gripper poses on these surfaces. This
is described next in the following subsections.

4.1. Creating Continuous Surfaces in 3D point cloud

The method involves creating several surface patches
in the 3D point cloud using region growing algorithm
[10] [11]. The angle between surface normals is taken
as the smoothness condition and is denoted by symbol
θ. The process starts from one seed point and the points
in its neighbourhood are added to the current region (or
label) if the angle between the surface normals of new
point and that of seed point is less than a user-defined
threshold. Now the procedure is repeated with these
neighboring points as the new seed points. This pro-
cess continues until all points have been labeled to one
region or the other. The quality of segmentation heav-
ily depends on the choice of this threshold value. A very
low value may lead to over segmentation and a very high
value may lead to under segmentation. The presence of
sensor noise further exacerbates this problem leading to
spurious edges when only one threshold is used. This
limitation of the standard region growing algorithm is
overcome by introducing a concept called edge points
and using a pair of thresholds instead of one. The use of
two thresholds is inspired by a similar technique used in

Canny edge filter [31] [32] and is demonstrated to pro-
vide robustness against spurious edges. This modified
version of the region growing algorithm is described
next in the following section.

To begin, we first describe the concept of edge points
and then, explain how a pair of two thresholds on
smoothness condition can improve the performance of
the standard region growing algorithm. Some of the no-
tations which will be used for describing the proposed
method are as follows. Also refer to Figure 2 for a bet-
ter understanding of these notations. Let us consider
a seed point s ∈ C with its own spherical neighbor-
hood N (s) shown as a circle in Figure 2. It is further
assumed that this neighborhood consists of m points
(pi, i = 1, 2, . . . ,m) in the 3D point cloud. Mathemati-
cally, this neighborhood may be written as follows:

N (s) = {pi ∈ C
∣∣∣ ‖s− pi‖ ≤ r}; i = 1, 2, . . . ,m

(1)
where r is an user-defined radius of the spherical neigh-
borhood. Each neighboring point pi has an associated
surface normal Ni which makes an angle of θi with the
normal associated with the seedNs. As stated earlier, θi
is the smoothness condition for the region growing al-
gorithm. In this context, we define two thresholds θlow
and θhigh which are used for defining the region label
for the neighboring point and creating new seed for fur-
ther propagation. Let Qs be the set of new seeds which
will be used in the next iteration of the region grow-
ing algorithm. Before describing the modification to the
standard region growing algorithm, it is necessary to in-
troduce the concept of edge points which is defined as
follows:

Definition 1 (Edge Point). Let R(s) be a set of those
neighbors pi of seed point s for which θi > θhigh. In
other words,

R(s) = {pi ∈ N (s) | θi > θhigh, i = 1, 2, . . . ,m}
(2)

Let CR be the cardinality of the set R(s),i.e., CR =
|R(s)|. Then, a seed point will be called as an edge
point if the following condition is satisfied:

CR
m

> k; 0 < k < 1.0 (3)

The set of all edge points for a given point cloud C be
denoted by the symbol E and E ⊂ C . �

The value of k = 0.4 is found to be empirically effec-
tive in providing better segmentation of surfaces as will
be shown later in this section. Essentially, an edge point
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Figure 3: Update criteria of proposed region growing is illustrated here a cuboid. Two cases are shown here,- one on a face (A) and other on the
boundary (B). Noisy data leads to error in normal directions as shown in (c) compared to ideal input data (b) resulting either spurious boundary or
undetected boundary. Our method combines the boundary condition with two thresholds (d) in order to achieve better performance.

is a point on the edge of a surface where a majority of
its neighbors will have surface normals scattered in all
directions and for such a seed point, the neighboring
points will have angles θi > θhigh as mentioned above.
One such edge point is shown in Figure 3 as point B.
An edge point is different from a non-edge point in the
sense that the later lies away from an edge and its neigh-
bors have surface normals more or less in the same di-
rection. One such non-edge point is shown as point A
in Figure 3. Even with sensor noise, the neighboring
points around such a seed point will have surface nor-
mals with smaller values of angles with respect to the
surface normal of the seed point, i.e., θi < θhigh.

Now, in the region growing algorithm starting with
the seed point s, the label L{pi} for a neighboring point
pi ∈ N (s) is defined as follows:

if θi < θlow; then, L{pi} = L{s} ∧ pi → Qs
if θi > θhigh; then, L{pi} 6= L{s} ∧ pi 6→ Qs

(4)
where the notation pi → Qs indicates that the point pi
is added to the list of seed points which will be used
by the region growing algorithm in the next iteration.
However, if the angle between normals lies between the
above two thresholds, i.e., θlow < θi < θhigh, the label
to the neighboring point is assigned as follows:

if s /∈ E then, L{pi} = L{s} ∧ pi → Qs

if s ∈ E then L{pi} = L{s} ∧ pi 6→ Qs (5)

The above equation only states that while the neigh-
boring point pi is assigned the same label as that of the

seed point s, it is not considered as a new seed point if
the current seed is an edge point. This allows the region
growing algorithm to terminate at the edges of each sur-
face where there is a sudden and large change in the di-
rection of surface normals thereby obtaining the natural
boundaries of the objects. The above process for decid-
ing labels for neighboring points is demonstrated picto-
rially in Figure 3. It is also shown how a pair of thresh-
olds are effective in dealing with sensor noise, thereby
eliminating spurious edges. The effect of this modified
version of region growing algorithm on the object seg-
mentation can be seen clearly in Figure 4. Figures 4(a)
and (b) shows the case of segmentation obtained with
only one threshold. In the first case, a lower threshold
cut-off value θlow is used while in the later, upper cut-
off threshold θhigh is used. As discussed earlier, lower
value of threshold leads to under-segmentation and may
generate multiple patches even on the same surface. On
the other hand, higher value of thresholds leads to over-
segmentation where different surfaces of a rectangular
box may be identified as a single surface patch. In con-
trast to these two cases, the use of two thresholds pro-
vide better segmentation leading to creation of two sep-
arate surfaces one for each face of the rectangular box.

This modified version of region growing algorithm
allows us to find graspable affordances for rectangu-
lar box-type objects which were hitherto difficult. For
instance, authors in [3] [4] find graspable affordances
only for objects with cylindrical or spherical shapes as
they relied on curve fitting methods. In [8] [2], authors
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(a) θlow (b) θhigh (c) {θlow, θhigh}

(d) (e) (f)

Figure 4: Effect of double thresholds on smooth condition in re-
gion growing algorithm. (a) Using single threshold: θlow leads to
under-segmentation - multiple and discontinuous patches on the same
surface (b) Using single threshold: θhigh leads to over-segmentation
where different surfaces (having different normals) are merge to-
gether into a single surface. (c) using double boundary thresholds
{θlow, θhigh} provides better surface segmentation compared to the
case when only one threshold is used. (d) Shows the case when only
one threshold is used. Two orthogonal surfaces of the object gets
merged into one continuous surface. (e) Shows the edge points in
blue color (f) Shows that the use of double thresholds lead to creation
of two surfaces for the rectangular object.

use a trained SVM to identify rectangular edges using
HoG features and pre-defined hand poses were used for
grasping objects at these detected regions. Compared to
these approaches, the above proposed method is much
simpler which does not require any training phase and
can be implemented in real-time. More details about
real-time implementation will be provided in the exper-
iment section later in this paper. The surfaces identified
in this section are then used to find valid graspable re-
gions on the object as described in the next section.

5. Finding Graspable Affordances

Once the surface segments are created, the grasping
algorithm needs to find suitable handles which could be
used by the gripper for picking objects. This is oth-
erwise known as the problem of grasp pose detection
[2] which essentially aims at finding six dimensional
pose for the gripper necessary for making a stable grasp-
ing contact with the object. However, this is a com-
putationally intensive task as one has to search in a 6-
dimensional pose space. The searching procedure is

broadly handled in two ways. In one approach, the ob-
ject to be picked is matched with its CAD model. Once
a match is found, then the geometric parameters of the
object model is used to compute the 6 DOF gripper pose
directly. As CAD models may not always be available,
the objects are generally approximated with some ba-
sic shape primitives [21] [22] [23] or superquadric [13]
models. While these methods take 3D point cloud as in-
put, other methods can work with RGBD data. They
generally take color and depth information as image
and apply a sliding window based search with different
scale to find valid grasping regions [6] [7]. We simplify
this search problem at first by grouping similar type of
points based on the boundaries obtained in the previous
step and, by making some practical assumptions about
the grasping task. As described earlier in section 3, the
gripper is assumed to approach the object in a direction
opposite to surface normal of the object. It is also as-
sumed that the gripper closing plane coincides with the
minor axis of the surface segment under consideration
as shown in Figure 1(b). In this way, the 6D pose prob-
lem is solved in a single step and can be implemented in
real-time. However, it is still necessary to identify suit-
able regions on the surface segments that can fit within
the fingers of the gripper while ensuring that the grip-
per does not collide with neighbouring objects. In other
words, one still needs to search for a three-dimensional
cube of dimension l×b×e around the centroid of the ob-
ject segment as shown in Figure 1(b). This requires car-
rying out a linear search along the three principal axes of
the surface to find regions that meet this bounding box
constraint. These regions are the graspable affordances
for the object to be picked by the gripper. The details of
the search process is described next in this section.

Let us assume that the region growing algorithm, de-
scribed in the previous section, leads to the creation of S
segments in the 3D point cloud C ∈ R3. As a first step,
we extract the following parameters for each of these
segments s = 1, 2, . . . , S:

• The centroid of the segment: µs = [µsx, µ
s
y, µ

s
z].

• The associated surface normal vector: n̂s ∈ R3.

• First two dominant directions obtained from Prin-
ciple Component Analysis (PCA) and their corre-
sponding lengths. These two axes correspond to
vectors â and f̂ respectively in Figure 1(b).

The search for suitable handles starts from the cen-
troid µs of the surface and proceeds along the three
principal axes, i.e., major axis â, minor axis f̂ and sur-
face normal n̂. In order to do this, the 3d point in the
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original point cloud corresponding to the surface seg-
ment under consideration s are projected onto these new
axes (f̂ , â, n̂) as shown in Figure 5. So for every point
~pO = (x1, y1, z1)O in the orginal coordinate system
(x̂, ŷ, ẑ, O) that lies within a sphere of radius d/2 results
in a vector ~qO′ = (f1, a1, n1)O′ in the new coordinate
system (f̂ , â, n̂, O′). The radius of the sphere is selected
to be half of the maximum hand aperture of the gripper
to be used for picking the object. The third axes n̂ and
ẑ are normal to the surface of the paper and hence is not
displayed in the figure.

Through this scalar projection, the three dimensional
search problem is converted into three one-dimensional
search problems, which is computationally much sim-
pler compared to the former. The search is first per-
formed along the direction â and n̂ respectively. All the
points that lie within the radius e/2 around the centroid
µs is considered to be a part of the gripper handle. Sim-
ilarly, all points of the surface that lie within the radius
of l along a direction of −n̂ is considered to be part of
the gripper handle. Please note that e and l are the width
and the length of gripper fingers needed for holding the
object. Once these two boundaries are defined, we get
a horizontal patch of points extending along the minor
axis f̂ as shown in Figure 6 (c), (e) and (f). So now, we
need to find the boundary along the minor axis to see if
it would fit within the gripper finger gap. This is done
by searching for a gap along the minor axis f̂ which is
at least bigger than a given user defined threshold which
itself depends on the thickness of the gripper finger. The
idea is that there should be sufficient gap between two
objects to avoid collision with the neighboring objects.
This is illustrated in Figure 6. The working of the search
process could be understood by analyzing this figure as
explained in the following paragraph.

The figure 6(a) shows two objects which has been
kept adjacent to each other such that their boundaries
touch each other. The figure (b) shows the surface seg-
ments obtained using the proposed region growing al-
gorithm. The objective is to find a suitable graspable
handle for the cylinder object. The figure (c) shows the
horizontal patch obtained using the linear search as ex-
plained above. Since there is no gap along the minor
axis (shown in red), the region belonging to both the
objects within the yellow band gets included into the
graspable region. Total horizontal length of this band
may exceed the maximum hand aperture d of the grip-
per making it an invalid grasping handle for the object.
Now the next band of width e on the top of the last band
is taken into consideration. In this case, a gap is found
immediately around the boundary of the cylindrical sur-

face along the minor axis as shown in Figure 6(e). Since
this length along the red axis fits within the gripper han-
dle, it will be considered as a valid handle for the object.
The figures 6(g)-(h) shows the case when these two ob-
jects have been kept apart. In this case, the gap is found
along the minor axis and hence the handle for the bot-
tle is detected successfully without any further search.
Hence the search process involves four steps:

1. Project all the points on the surface segment within
a spherical radius of d/2 onto the axes â, f̂ and n̂.

2. Fix boundary along the major axis â at a distance
of e/2 on either side of the centroid the patch under
consideration.

3. Fix boundary along the normal axis −n̂ at a dis-
tance of l from the top surface.

4. Search for gap along the minor axis f̂ on either side
of the centroid. If this gap is greater than or equal
to g, then search is stopped. The resulting patch is
considered a valid grasping handle for the object if
the total length of the patch along the minor axis is
less than maximum hand aperture d of the gripper.

A new patch along the major axis either side of the
centre patch is analyzed for validity in case the current
one fails to satisfy the gripper constraints. So it is possi-
ble to obtain multiple handles on the same object, which
is very useful, as the robot motion planner may not be
able to provide a valid end-effector trajectory for a given
graspable affordance. The gripper approaches the object
at the centroid of the yellow patch shown in Figure 6(c)
or (e) along the direction of surface normal (shown in
blue color in Figure 6 (d) or (f) respectively, towards
the object with its gripper closing plane coinciding with
the minor axis (show in red color). As one can appre-
ciate, the pose detection problem is solved by a simple
method that converts a 6D search problem into a sim-
ple 1-D search problem. This is much faster computer
other method such as [13] that use complex optimiza-
tion methods to arrive at the same conclusion. The pro-
posed provides remarkable improvement over the state
of the art method [3] [4] which provides much infe-
rior performance in a cluttered environment as will be
shown in the next section.

6. Experimental Results

In this section, we provide results of various experi-
ments performed to establish the usefulness of the pro-
posed algorithm in comparison to the existing state-of-
the-art methods. As explained before, our focus is to
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Figure 5: Scalar Projection of 3D cloud points to a new coordinate
frame. The 3D point cloud points on the surface segment s repre-
sented by ~pO within the sphere of radius d/2 is projected onto the
axes of the new coordinate frame (f̂ , â, n̂) represented by the vector
~qO′ . These projected points are used for finding suitable graspable
affordances for the object. The axes ẑ and n̂ are perpendicular to the
plane of the paper and point outward.

find suitable graspable affordances for various house-
hold items. The input to our algorithm is a 3D point
cloud obtained from an RGBD or a range sensor and,
the output is a set of graspable affordances comprising
of graspable regions and gripper pose required to pick
the objects. We have particularly tested our algorithms
on datasets obtained using Kinect [33], realsense [34]
and Ensenso [35] depth sensors. An additional smooth-
ing pre-processing step is applied to the Ensenso point
cloud which are otherwise quite noisy compared to that
obtained using either Kinect or realsense sensors. As
we will demonstrate shortly, we have considered grasp-
ing of individual objects in an extremely cluttered envi-
ronment. The performance of the proposed algorithm is
compared with other methods on four different datasets,
namely, (1) Big bird dataset [36], (2) Cornell Grasping
dataset [6], (3) ECCV dataset [37], (4) Kinect Dataset
[38] (5) Willow garage dataset [39], (5) the TCS Grasp-
ing Dataset-1 and (6) TCS Grasping Dataset-2. The
last two are created by us as a part of this work and
is made available online [40] along with the program
source code for the convenience of users. A snapshot
of images for these two datasets are shown in Figure
7. The first TCS dataset contains 382 frames each hav-
ing only single object in its view inside the bin of a rack
where the view could be slightly constrained due to poor

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Searching for suitable grasping handle. (a) Actual picture
for a case where objects are stacked very close to each other (b) Seg-
mented point cloud obtained after applying region growing on surface
normals; (c) - (d) Suitable handle is not found as discontinuity is de-
tected in the horizontal axis (e) - (f) suitable handle is found for an-
other patch on the same object; (g)-(h) suitable handle found when
objects are separate as a discontinuity is detected along the red axis

illumination. Similarly, the second dataset consists of
40 frames with multiple objects in extreme clutter en-
vironment. Each dataset contains RGB images, point
cloud data (as .pcd files) and annotations in the text for-
mat. These datasets exhibit more difficult real world
scenarios compared to what is available in the existing
datasets. The algorithm is implemented on a Linux lap-
top with a i7 processor and 16 GB RAM.
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6.1. Performance Measure

Different authors use different parameters to evaluate
the performance of their algorithm. For instance, au-
thors in [2] use recall at high precision as a measure
while few others as in [6] use accuracy as a measure.
In some cases, accuracy may not be a good measure for
grasping algorithms because the number of true nega-
tives in a grasping dataset is usually much more than
the number of true positives. So, the accuracy could be
high even when the number of true positives (actual han-
dles detected) are less (or the precision is less). There
are other researchers as in [8] [21] [13] who use suc-
cess rate as a performance measure which is defined as
the number of times a robot is able to successfully pick
an object in a physical experiment. The success rate is
usually directly linked to the precision of the algorithm
as the false detections or mistakes could be detrimental
to the robot operation. In other words, a grasping algo-
rithm with high precision is expected to yield high suc-
cess rate. The precision is usually defined as the frac-
tion of total number of handles detected which are true.
However, in a cluttered scenario, the precision may not
always provide an effective measure to evaluate the per-
formance of the grasping algorithm. For instance, it is
possible to detect multiple handles for some objects and
no handles at all for some others, without affecting the
total precision score. In other words, the fact that no
handles are detected for a set of objects may not have
any effect on the final score as long as there are other
objects for which more than one handle is detected.

In our case, the precision is considered to be 100% as
any handle that does not satisfy the gripper and the envi-
ronment constraints is rejected. In order to address the
concerns mentioned above, we use recall at high preci-
sion as a measure of the performance of our algorithm
which is defined as the fraction of total number of gras-
pable objects for which at least one valid handle is de-
tected. Mathematically, it can be written as

recall % =
Number of objects for which at least one handle is detected

Total number of graspable objects
×100

(6)
The total number of graspable objects includes objects
which could be actually picked up by the robot gripper
in a real world experiment. It excludes the objects in the
clutter which can not picked up due to substantial oc-
clusion. This forms the ground truth for the experiment.
Note that the above definition is slightly different from
the conventional definition of recall in the sense that the
later may include multiple handles for a given object
which are not considered in our definition. We analyze
and compare the performance of our algorithm with an

(a) Snapshot of TCS Grasp Dataset 1

(b) Snapshot of TCS Grasp Dataset 2

Figure 7: Snapshot of frames in TCS Grasping datasets 1 and 2. Each
dataset consists of images and point cloud data files along with anno-
tations in text files.

existing state-of-the-art algorithm using this new metric
as described in the next section.

6.2. Grasping of Individual Objects
First, we demonstrate the performance of the pro-

posed algorithm in picking individual objects. Table
1 shows the performance of the proposed algorithm on
TCS dataset 1. This dataset has 382 frames along with
the corresponding 3D point cloud data and annotations
for ground truth. A snapshot of objects present in these
dataset is shown in Figure 7. The performance of our
proposed algorithm on this dataset is compared with
Platt’s algorithm reported in [3] [4]. As one can see
in Table 1, the proposed algorithm is able to find gras-
pable affordances for objects in more number of frames
and hence it is more robust compared to the previous
approach. On an average, our algorithm is able to de-
tect handles in 94% of the frames compared to Platt’s
approach which can detect handles only for 51% of
frames. This could be attributed to the fact that Platt’s
algorithm primarily relies on surface curvature to find
handles and hence, can not deal with rectangular objects
with flat surfaces. They try to overcome this limitation
in [8] by training a SVM classifier to detect valid grasp
out of a number of hypotheses created using HoG fea-
tures. Compared to this approach, our proposed method
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(a) Toothpaste

(b) Fevicol

(c) Battery

(d) Sprout Brush

(e) Cup

(f) Cleaning Brush

Figure 8: Finding graspable affordances for few objects inside a rack.
The objects in (d), (e) and (f) show few cases where it is difficult to
find graspable affordances.

Table 1: Performance Comparison for TCS Grasping Dataset 1 - In-
dividual Objects

Object
Total

Number of
frames

% of frames where a
valid handle is detected

Platt’s Method
[4]

Proposed
Method

Toothpaste 40 38 90
Cup 50 70 96

Dove Soap 40 25 100
Fevicol 40 75 92
Battery 50 36 98
Clips 21 45 90

CleaningBrush 40 30 90
SproutBrush 21 63 95
Devi Coffee 40 76 93
Tissue Paper 40 40 96

Total 382 51 94

is much simpler to implement as it does not require any
training and can be implemented in real-time. It also
does not depend on image features which are more sus-
ceptible to various photometric effects. Some of the
handles detected by our algorithm for individual objects
are shown in Figure 8. Examples (a)-(c) shows few in-
stances of simple objects where it is easier to find affor-
dances while the (d)-(f) shows few difficult objects for
which finding a suitable handle is challenging.

6.3. Grasping Objects in a Clutter
In this section, we demonstrate the performance of

our proposed algorithm in a cluttered environment. A
new dataset is created for this purpose. It is called
‘TCS Grasp Dataset 2’ and it contains 40 frames each
one showing multiple objects in extreme clutter situa-
tion. The objects in the clutter have different shapes and
sizes and, may exhibit partial or full occlusion. The per-
formance of our algorithm on some of these frames are
shown in Figure 9. The performance comparison with
Platt’s algorithm [4] [3] is shown in Figure 10. As one
can see in Figure 9, the proposed algorithm is successful
in finding graspable affordances for rectangular objects
with flat surfaces such as books in addition to objects
with curved surfaces. It also shows multiple handles de-
tected for some of the objects. All those handles which
do not satisfy the geometric constraints of the gripper
are rejected and hence not shown in this figure. The
maximum hand aperture considered for finding these af-
fordances is 8 cm. In contrast, Platt’s algorithm [4] [3]
fails to detect any handles for flat rectangular objects
as shown in Figure 10. The Table 2 provides a more
quantitative comparison between these two algorithms.
It shows that the proposed algorithm is able to detect
at least 86% of unique handles in the dataset compared
to 36% recall achieved with Platt’s algorithm. The per-
formance of these two algorithms on various publicly
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Table 2: Performance Comparison for TCS Dataset 2 - Multiple ob-
jects in a Cluttered Environment

. Platt’s Method [3] [4] Proposed Method

Frame
No.

No. of
graspable
objects in
the frame

max no.
of

handles
detected

%
Recall

max no.
of

handles
detected

%
Recall

#1 8 2 25 6 75
#3 8 3 38 6 75
#5 6 3 50 6 100
#7 7 2 28 7 100

#10 6 3 50 5 83
#12 7 2 28 7 100
#13 7 2 28 7 100
#16 8 1 13 6 75
#20 8 2 25 6 75
#23 9 2 22 8 89
#24 6 3 50 5 83
#26 5 3 60 3 60
#28 5 2 40 5 100
#30 6 2 33 6 100
#32 6 2 33 5 83
#37 5 1 20 5 100
#38 2 2 100 2 100
#39 4 2 50 3 75
#36 5 1 20 4 80

Total 118 40 33 102 86

available datasets is summarized in Table 3. Cornell
Grasping Dataset [6] contains single object per frame
and grasping rectangle as ground truth. Their best re-
sult (93.7%) reported is in terms of accuracy whereas
recall from our method is 96% at 100% precision. The
Bird Bird dataset [36] consists of segmented individ-
ual objects and yields a maximum recall of 99%. This
high level of performance is due to the fact that the ob-
ject point cloud is segmented and processed for noise
removal. This dataset, as such, does not include clut-
ter and has been included in this section for the sake of
completeness. The ECCV dataset [37], Kinect Dataset
[38] and the Willowgarage dataset [39] have multiple
objects in one frame and may exhibit low level of clutter.
All of these dataset are created for either segmentation
or pose estimation purposes, therefore ground truth for
grasping is not provided. We have evaluated the perfor-
mance (as reported in Table 3) using manual annotation.
The extent of clutter in these datasets is not compara-
ble to what one will encounter in a real world scenario.
This is one of the reasons why we had to create our own
dataset. As one can see in Figure 7 (b), the TCS grasp
dataset 2 exhibits extreme clutter scenario. As one can
observe in Table 2, the proposed algorithm provides bet-
ter grasping performance compared to the current state-
of-the-art reported in literature.

6.4. Computation Time

The computational performance of the algorithm can
be assessed by analyzing the Table 4. This table shows

(a) (b)

(c) (d)

(e) (f)

Figure 9: Finding graspable affordances in extreme clutter. The pro-
posed algorithm is capable of finding graspable affordances for rect-
angular objects as well as objects with curved surface. The maximum
hand aperture (d) considered here is 8 cm.

Table 3: Performance Comparison on Various Publicly Available
Datasets

% Recall

S.
No.

Dataset Proposed
Method

Platt’s
Algorithm

[3] [4]
1 Big Bird [36] 99% 85% [2]
2 Cornell Dataset [6] 95.7% 93.7% [6]
3 ECCV [37] 93% 53%
4 Kinect Dataset [38] 91% 52%
5 Willow Garage [39] 98% 60%
6 TCS Dataset-1 [40] 94% 48%
7 TCS Dataset-2 [40] 85% 34%

the average computation time per frame for two TCS
datasets. As one can observe, the bulk of the time is
taken by the region growing algorithm which is the first
step of our proposed method. This time is proportional
to the size of the point cloud data. The second stage of
our algorithm detects valid handles by applying geomet-
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Visual comparison of the performance of the proposed
algorithm with Platt’s algorithm [3] on TCS Dataset 2. The Cyan
coloured patches on left hand side figures are the handles detected
using Platt’s algorithm. The patches on right side figures along with
gripper pose show affordances obtained using the propose algorithm.

ric constraints on the surface segments found in the first
step. This step is considerably faster compared to the
first step. Many of the segments created in the first step
are rejected in the second step to identify valid grasping
handles as can be see in the 4th and 5th columns in this
table. The computation time for each valid handle for
the two datasets is 4 and 5 ms respectively.

The total processing time for a complete frame with
around 40K data point is approximately 800 ms to 1 sec-
ond. This is quite reasonable in the sense that the robot
can process around 60 frames per second which is very
good for most of the industrial applications. This time
can be further reduced by detecting a particular ROI
within the image thereby reducing the number of points
to be processed in the frame. The computation time
per frame can also be reduced significantly by down-
sampling the point cloud. There is a limit to the extent
of downsampling allowed as it is directly linked to the
quality and quantity of handles detected. For high speed

Table 4: Average computation time per frame. All values are reported
per frame basis and are averaged over all frames.

Dataset
# data

in point
cloud

Time for
Region

Growing
algorithm

(sec)

# seg-
ments

detected

# valid
handles
detected

Handle
detec-

tion time
(sec)

TCS
Dataset

1
37050 0.729 77 10 0.055

TCS
Dataset

2
42461 0.82 182 43 0.171

applications, one may use FPGA or GPU based embed-
ded computing platform.

7. Conclusion

This paper looks into the problem of finding gras-
pable affordances (or suitable grasp poses) needed for
picking various household objects using two finger
parallel-jaw gripper in extreme clutter environment.
These affordances are to be extracted from a single view
3D point cloud obtained from a RGBD or a range sensor
without any apriori knowledge of object geometry. The
problem is solved by first creating surface segments us-
ing a modified version region growing algorithm based
on surface smoothness condition. This modified ver-
sion of region growing algorithm makes use of a pair
of user-defined thresholds and a concept called edge
point to discard false boundaries arising out of sensor
noise. The problem of real-time pose detection is sim-
plified by transforming the 6D search problem to a 1D
search problem through scalar projection and exploiting
the geometry of the two-finger gripper. Through exper-
iments on several datasets, it is demonstrated that the
proposed algorithm outperforms the existing state-of-
the-art methods in this field. In the process, we have
also contributed a new dataset to demonstrate its work-
ing in extreme clutter environment and is being made
available online for use by the research community.
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