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Abstract— Social robots are being considered to be a part
of the therapy of children with autism. During the interaction,
some aggressive behaviors could lead to harmful scenarios. The
ability of a social robot to detect such behaviors and react to
intervene or notify the therapist would improve the outcomes of
therapy and prevent any potential harm toward another person
or to the robot. In this study, we investigate the feasibility of
the Multi-layer Perceptron (MLP) artificial neural network in
classifying 6 interaction behaviors between a child and a small
social robot. The behaviors were hit, shake, throw, pickup, drop,
and no interaction or idle. Due to the ease of acquiring data
from adult participants, model was developed based on adults’
data and evaluated with children’s data. The developed model
was able to achieve promising results based on the accuracy (i.e.
80%), classification report (i.e. overall F1-score = 80%), and
confusion matrix. The findings highlight the potential of neural
networks to characterize children interactions with social robots
to improve safety in therapy.

I. INTRODUCTION
Autism Spectrum Disorders (ASD) is a condition that is

diagnosed during childhood and causes impairments in social
interaction, communication, and characterized by the exhi-
bition of restricted interests or behaviors [1]. Furthermore,
people affected by ASD may exhibit many forms of challeng-
ing behaviors, for example, aggression against others, with-
drawal, tantrums, property destruction, and meltdowns [2].
The manifestation of challenging behaviors among children
on the spectrum varies due to the diverse nature of ASD.
There are many contributing factors toward the exhibition of
challenging behaviors, such as frustration and new environ-
ments rich in sensory stimuli [3]. The reported occurrence
rates of challenging behaviors among children with ASD
are high (e.g. aggression rate greater than 50% [4]). Early
intervention seems to be effective in the mitigation of such
behaviors [5].

Recent advancements in technology are providing added
tools for improved therapeutic sessions (e.g. independent
learning, hands-on learning, and skill training [6]). Fur-
thermore, previous studies demonstrated that children on
the spectrum have a strong interest in technology, such
as computer applications and virtual environments [7], [8].
Social robots have also been reported to help in improving
the outcomes of therapy, such as improving communica-
tion, motor and social skills, eye contact, and joint atten-
tion [9],[10], [11], [12].
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Social robots are meant to elicit behaviors that may or may
not trigger negative or unwanted reactions. The challenging
behaviors that exist within ASD pose a risk to the children
themselves or to others around them (e.g. throwing objects
at others, kicking objects, hitting oneself, and banging on
objects [2]). Previous studies showed that children might
exhibit some aggression toward the robots [13], [14], [15].
In case of small robots, children might carry the robot and
mishandle it. They might even throw the robot and hit others
and cause potential harm. For example, hitting others with
a small robot on the head might cause superficial injuries
or subconcussions [16]. The existence of such behaviors
demand for safer robotic designs [17],[18],[19]. To date,
limited studies have been conducted to predict the unwanted
physical interactions between a child and a robot, especially
in relation to potentially harmful behaviors [20], [14], [21].

Unwanted physical interactions between a robot and a
child take on different forms, such as hitting, throwing,
and shaking. The ability of a robot to classify unwanted
physical interactions serves many purposes. This can help in
preventing potential harm, to monitor interaction, and to use
the robot as a teaching tool. Furthermore, it can be used by
the robot to help the child to stop the undesired behavior and
prevent any progression [15]. For example, a child shaking or
hitting a robot could be a precursor for a meltdown episode.

In this study, we investigate the potential of using an
artificial neural network to develop a model that is capable
of classifying the unwanted physical interactions between a
child and a small social robot (Fig. 1). We have considered
six different interaction behaviors, namely: hitting, shaking,
dropping, throwing, picking, and being idle (i.e. no active
interaction). This paper is organized as follows. Section 2
describes related work. Section 3 describes materials and
methods. Section 4 includes results and discussion. Finally,
Section 5 concludes the paper.

II. RELATED WORK

The research in human activity recognition relies on dif-
ferent sensors, technologies and wearable devices to acquire
data [22], [23], [24]. Human activity recognition is being
considered in the healthcare domain, for example, detecting
falls among the elderly [25], [26]. Previous studies on fall
detection considered wearable devices, ambient devices, and
vision based devices [27]. Different sensors were used, such
as accelerators, cameras, microphones, and gyroscopes [28].
Furthermore, different classification of falls were investigated
(e.g. falls from sleeping or from walking) [27]. A recent
study has considered using a wearable device on a belt to
detect falls [29]. The device contains an accelerometer that



Fig. 1. Overview of the proposed model to detect unwanted physical interactions between a child and a small social robot.

acquires signals at a sampling frequency of 25 Hz. Their
method was able to achieve an accuracy of 99.4% using a
non-linear classifier and Kalman filter.

The detection of problematic behaviors in the population
with special needs is another area in the healthcare domain
that considers activity recognition techniques. One study
used on-body accelerometers to classify problematic behav-
iors [30]. Simulated data generated by trained clinic staff
were used in the system development and in the validation.
The system was able to classify challenging behaviors of a
child with autism obtained from a realistic session with an
accuracy of 69.7%.

Activity recognition is also gaining attention in the area of
robotics, especially when a robot operates in close proximity
with humans. In robot-assisted living, one study introduced
a wearable system that relies on the fusion of multi-sensors
to recognize human daily activities [31]. The sensor system
consisted of two nodes (i.e. on the waist and on the foot)
that measure angular velocity, magnetic data, acceleration,
and temperature. The system was able to produce promising
results using a combination of neural networks and hidden
Markov models. More recently, human activity recognition
is being considered in new interactive applications, such as
that found in robot games [32], [33].

For social robots that interact with children with ASD,
some studies aimed at characterizing interactions [34], [14].
An earlier study used a ball-like mobile robot (i.e.
Roball [20]) embedded with sensors to detect the direct
interaction instances with the robot. The study considered
four interaction cases with the robot, namely robot being
alone, robot receiving an interaction, robot being carried, and
robot being spun. The study demonstrated the possibility of
using the sensor data to make the robot more adaptable. An-

other study considered different interactions with a smaller
ball-like robot (i.e. Sphero), such as holding, kicking, and
picking up [21]. Adult participants were asked to perform
the behaviors. A set of features were extracted from the data
of the embedded tri-axis accelerometer and gyroscope and
then tested with different supervised learning algorithms. The
best classifier (i.e. random forest algorithm) trained on data
obtained from the adult participants achieved an accuracy
of around 49% when evaluated with data generated from
children participants.

III. MATERIALS AND METHODS

A. Experimental Setup

1) Robot System Design: The progress in technology is
enabling smaller robots to be more intelligent and more
compact. Furthermore, smaller social robots are considered
to be more affordable and suitable to be used by average
home users. These robots have usually characteristics very
similar to non robotic toys. The toys considered in this study
were selected by considering this aspect. Three different
shapes of toys were used, namely a stuffed robot (LATTJO
soft toy, IKEA, Sweden), a stuffed panda (KRAMIG Soft toy,
IKEA, Sweden), and a toy truck (Fig. 2). The dimensions of
these toys (i.e. less than (38.0 x 29.0 x 9.0 cm3)) and their
masses (i.e. less than 0.75 kg) were on the range that enable
ease of interaction (e.g. carrying) for children.

The differences in sizes, in shapes, and in materials of
the selected toys should cover common variations among
different small social robots. Additionally, the selected toys
varied in terms of their softness. For example, the stuffed
robot is considered the softest while the truck is considered
the hardest. Both of the stuffed toys (i.e. the robot and the



Fig. 2. The toys that have been considered as dummy robotic forms. From
left to right, a stuffed panda, a soft toy robot, and a toy truck.

panda) were modified with zippered pockets to allow the
insertion of the data acquisition and computing system.

2) Data Collection System: The data collection system
was based on the Raspberry Pi (Pi 3 Model B+, Raspberry Pi
Foundation, UK). The operating system used was the Rasp-
bian (v4.14, Debian Project) installed on a micro SD card
(32 GB, EVOplus, SAMSUNG). An add-on board (Sense
Hat, Raspberry Pi Foundation, UK) was mounted on the 40-
pin GPIO header of the Raspberry Pi (Fig. 3). The built-in
accelerometer (LSM9DS1, STMicroelectronics, Switzerland)
was used to acquire the data. It can capture acceleration
changes for up to 16 g, which is adequate to capture the
behaviors considered in this study [35]. The accelerometer
data (i.e. acceleration in X, Y, and Z directions) was acquired
at a rate of around 30 Hz. This rate was high enough to

Fig. 3. The data collection system that was based on a SenseHat board
mounted on a Raspberry Pi board.

Fig. 4. A sample of the extracted features for the acceleration signal.

capture the characteristics of the behaviors being investigated
(i.e. greater than 20 Hz) [36]. A Python script was used to
read the data of the accelerometer and then store them as
comma separated values (CSV) files.

B. Procedures

Acquiring sufficient data from adults is relatively easier
than from children [21], [30], hence, the development of
the model was based on data acquired from adult partic-
ipants. The participants that took part in this study were
asked to perform five different behaviors with each robot.
The participants were given the freedom in performing the
required behaviors and to take breaks between experiments.
No instructions were given to the participants, especially
about how a particular behavior should be performed (e.g.
the way to hit or shake the robot). The only instructions
were given to let the participants know the start and the end
of each experiment. A MATLAB script (v2018, MathWorks,
Massachusetts, USA) was used to analyze the data and then
extract the instances of each behavior based on thresholds
(Fig. 4). These data were then used to train, develop, and
test the neural network model.

The data to validate the model were acquired from neu-
rotypical children. Imaginative scenarios were told to the
children to make them perform the behaviors of interest. For
example, to acquire pickup and shake behaviors, they were
told that ”The robot is asleep and you need to pick it up
and then shake it to wake it up” (Fig. 5). We believe that
the characteristics of behaviors (e.g. hitting) considered in
this study are similar and comparable between neurotypical
children and those with autism. Hence, these data will be
used as indicator for the applicability of the developed model
to the targeted end-users.

C. Participants

Five healthy adults (one female and four males) aged 24
to 31 years old participated in this study. Their data were
used to train and test the model. Additionally, the study



Fig. 5. Samples from the sessions with the children.

acquired data from four neurotypical children (one female
and three males). The children’s data were used to validate
the developed model. The procedures for this work did not
include invasive or potentially hazardous methods and were
performed in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki).

D. Algorithm

The development of the classification algorithm was
based on Scikit-learn, a Python-based machine learning
library [37]. This library includes many supervised and
unsupervised learning algorithms along with other evaluation
tools. Furthermore, it uses high-level language that makes the
implementation convenient and flexible. The classification
algorithm in this study was based on a supervised learning
algorithm, the Multi-layer Perceptron (MLP).

MLP is one of the most widely used form of neural
networks. The simplest configuration of this network consists
of an input and an output layer, while a more complex
configuration includes also one or more hidden layers be-
tween the input and the output layers. Connections between
layers follow consecutive order starting from the input layer
and terminating at the output layer. All connections have
assigned values called weights that are learned during the
network training. Each neuron has an activation function
(e.g. sigmoid) that generates an output based on the product
of the inputs of the preceding layer and the weights of
their connections. More detailed, mathematical description
of MLP can be found in [38].

The neurons of the input layer of the classification algo-
rithm take the resultant acceleration values as an input vector.
A window size of approximately 1 sec (i.e. 25 data points)
was considered. This size was expected to provide fast
recognition speed while maintaining sufficient accuracy [39].
The magnitude of the resultant acceleration was based on

the square root of the sum of the squares of the individual
accelerations. The relation is represented as follows:

|A|=
√

A2
x +A2

y +A2
z (1)

where Ax is the magnitude of acceleration in the X direction,
Ay is the magnitude of acceleration in the Y direction, and
Az is the magnitude of acceleration in the Z direction. The
classification algorithm trains to map the resultant acceler-
ation values into labeled outputs corresponding to different
behaviors.

E. Evaluation metrics

Several metrics were used to evaluate the developed
model, such as the accuracy, classification report, and con-
fusion matrix. Accuracy reported the percentage of correct
predictions in relation to the overall predictions performed
by the model as in (2). Classification report provided the
precision, recall, and F1- Score, and support for the model.
Precision provided the percentage of true positives in relation
to the total predicted positive as reported in equation 3.
Recall indicated the number of true positives in relation to
the total number of actual positive as in equation 4. F1 -
score provided the harmonic mean of precision and recall
as in equation 5. The confusion matrix reported in table 8
provides a breakdown for all the predictions (i.e. correct and
incorrect) by each class.

Accuracy =
Correct Predictions
Total Predictions

(2)

Precision =
True Positive

True Positive+False Positive
(3)

Recall =
True Positive

True Positive+False Negative
(4)

F1 = 2× Precision∗Recall
Precision+Recall

(5)

IV. RESULTS AND DISCUSSION

All participants performed the requested behaviors dif-
ferently from each other. For example, different intensities
were demonstrated when shaking or hitting the robots. The
data of the behaviors were post-processed and the features
were extracted (Fig. 6). The selected window size was
large enough to capture the most important features of each
behavior. The features of some of the behaviors performed
by the participants with the robots appeared to have some
similarities in their characteristics. For example, drop behav-
ior was characterized by low acceleration values followed
by a large spike and then oscillations. A hit behavior was
characterized by a large spike of a short duration. Pickup
has some resemblance to hit, but the spikes were longer
in duration and smaller in amplitude. Shake behavior was
characterized by continuous oscillations at different ampli-
tudes and frequencies. Throw was characterized by a wave of
low amplitude (i.e. start of throwing) followed by decline in
acceleration and then ending with a large spike, upon impact.
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Fig. 6. Samples of the extracted behaviors from the accelerometer signals for adults and children.
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Fig. 7. The training and validation over iterations plots for the developed model a) Accuracy plot. b) Loss plot.

TABLE I
THE CLASSIFICATION REPORT FOR THE EVALUATED UNSEEN ADULT’S DATASET

Behavior Precision Recall F1 - score Support

Drop 0.91 0.90 0.90 265
Hit 0.84 0.84 0.84 797
Idle 1.00 1.00 1.00 131
Pickup 0.80 0.84 0.82 747
Shake 0.91 0.86 0.88 776
Throw 0.94 0.94 0.94 614
Avg/ Total 0.88 0.88 0.88 3330

A. Model development

The extracted features of behaviors were labeled and
organized as a dataset to be used in the model training. A
total of 1,000 instances for each behavior covering all robots
and participants were extracted. For the idle class, 1,000
instances were added, hence, making the total instances to be
6,000. Augmentation (i.e roll by a factor of 25) on the data
was performed that should provide more robustness to the
model in terms of predicting new data. Additionally, it should
help in avoiding the learning of any specific pattern in the
data. A standard scaler was used to standardize the features
by scaling (i.e. to unit variance) and removing the mean.
The data were randomly split into 70% for training and 30%

for validation. Different network configurations were tested
and evaluated. The configurations for the best trained model
(i.e. accuracy of 92%) included a hidden layer consisting
of 300 or 150 units, a Rectifier Linear unit (i.e. ReLu) as
activation function, alpha = 0.0001 for the regularization
penalty term, and Limited-memory Broyden Fletcher Gold-
farb Shanno method (i.e. lbfgs) as weight optimization solver.
The performance of the model improved proportionally with
the number of iterations (Fig. 7a). The losses of training and
validation were decreasing over iterations and converging
closely (Fig. 7b). This indicated a comparable performance
and a good fit for the model. Finally, the entire dataset was
used to train the finalized model.



TABLE II
CLASSIFICATION REPORT FOR THE EVALUATED CHILDREN’S DATASET

Behavior Precision Recall F1 - score Support

Drop 0.72 0.98 0.83 49
Hit 0.81 0.67 0.73 195
Pickup 0.44 0.52 0.48 56
Shake 0.87 0.91 0.89 377
Throw 0.78 0.67 0.72 70
Avg/ Total 0.80 0.80 0.80 747
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Fig. 8. The confusion matrix for the unseen adult’s data.

An accuracy of 88% was achieved when validating the
finalized model with unseen adult data. The confusion matrix
and classification report for the model were generated for
further analysis (Fig. 8 and Table I). Excluding the idle
case, the confusion matrix reported the highest value for
the throw case, while the lowest recognition for pickup and
hit behaviors. The model has identified incorrectly some
pickup instances mainly as hit or as shake instances. Similar
observation for the incorrect identification of some instances
can be made for shake and hit behaviors. Throw behavior
instances were mainly identified incorrectly as drop behavior.
These problems in identification could be attributed to some
similarities in the features of these behaviors. However, the
overall evaluation metrics of the model were promising. For
example, the model has achieved an average precision of
88%, a recall of 88%, and an F1- score of 88%. Precision
shows the ability of the model not to identify an incorrect
instance as correct, while recall shows the ability of the
model to find all correct instances. Finally, the F1 score takes
the average of recall and precision into consideration.

B. Model evaluation with children’s data

The main objective of this study is to develop a model
that can characterize the interactions between a child and a
small toy robot. Hence, evaluating the developed model with
children’s data was necessary to investigate its feasibility
and applicability to children. There are some similarities
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Fig. 9. The confusion matrix for the children’s dataset.

between the acceleration characteristics of behaviors that
were exhibited by the children and the adult participants, for
example, in case of hit, drop, and shake behaviors (Fig. 6).
Visual differences in performing some of the behaviors were
evident in pickup and throw.

The developed model has achieved an overall accuracy
of 80% when evaluated with the children’s dataset. The
confusion matrix showed that the model was able to identify
drop and shake behaviors with the best results (i.e. accuracy
> 90%) followed by hit and throw behaviors (i.e. 67%)
(Fig. 9). Pickup instances were the lowest to be identified
correctly with an accuracy of 52%. One quarter of pickup
instances were identified as shake behavior. The majority
for the incorrectly classified throw behaviors were identified
as either drop or shake. As for hit, they were incorrectly
identified as pickup or shake. These misclassifications could
be attributed to the differences in the behaviors’ intensities as
exhibited by different age groups that confuses the classifier.
For example, a child’s pickup behavior is more gentle and
slower as compared to that of an adult, hence, it was
identified as a shake behavior. The overall precision, recall,
and F1 - score of the model were all promising (i.e. 80%;
Table II).

In contrast to a previous study [21], the results showed
the possibility of using adult-based generated data to develop
a model that can classify some of the children’s unwanted
interactions with a small robot. Furthermore, it shows the
capabilities of using a relatively simple multi-layer percep-
tron (MLP) in such applications as compared to other more



demanding algorithms (e.g. support vector machines and
random forests).

V. CONCLUSION

In this study, a Multi-layer Perceptron (MLP) based neural
network was developed and validated for its potential in
classifying behaviors between a child and a small robot.
The physical interactions considered were hit, shake, throw,
drop, and pickup. We believe that these behaviors could
potentially be used to identify any unwanted interaction
between a child and a robot, which could then act to prevent
the occurrence of aggressive behaviors that might lead to
harm [16]. The data to develop the model was based on adult
participants performing the behaviors while the data used to
validate the developed the model was based on the children’s
interactions. The developed model was able to achieve a
high recognition accuracy (i.e. > 80%) when tested with
children’s data. Furthermore, the confusion matrix and the
classification report reported promising results.

The current findings have opened the possibilities for fu-
ture work on continuous online recognition that is embedded
within a social robot. The robot can then be programmed
to deliver an appropriate response. These findings can be
considered as a contribute toward improved therapy sessions
by anticipating some unwanted interactions and then prevent-
ing the occurrence or progression of challenging behaviors
by the intervention of a human therapist or the social robot
itself [15].
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