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Abstract— In this paper, we present a novel identification
approach to model the EMG–Force relationship of the human
arm, reduced to a single degree of freedom (1-DoF) for simplic-
ity. Specifically, we exploit the Linear Parameter Varying (LPV)
framework. The inputs of the model are the electromyographic
(EMG) signals acquired on two muscles of the upper arm,
biceps brachii and triceps brachii, and two muscles of the
forearm, brachioradialis and flexor carpi radialis. The output
of the model is the force produced at the hand actuating the
elbow. Because of the position-dependency of the system, the
elbow angle is used as scheduling signal for the LPV model.
Accurate modeling of the human arm with this approach opens
new possibilities in terms of robot control for physical Human-
Robot Interaction and rehabilitation robotics.

Index Terms— Human modeling, system identification,
biomedical signal processing, electromyography

I. INTRODUCTION

Skin electromyography (EMG) allows to acquire the elec-
trical activity that is responsible of muscular contractions.
This technique has become essential in a wide range of
applications, as research on the human neuromotor mecha-
nisms, clinical diagnostic methods [1] and neuro-prosthesis.
Robotic rehabilitation devices show great potential when
treating neurological injuries [2, 3], such as strokes or spinal
cord injuries, as the treatment involves repetitive movements.
Clinical studies show the increase of patient recovery when
the robot provides active aid by physical interaction [4, 5].
With the aim of improving the rehabilitation outcome, it
would be possible to integrate an EMG-based model of the
human limb into the robot control strategy.

EMG-driven models are developed considering as input
the electromyographic signals acquired on the muscles of
interest. The problem consists in determining the force
developed by a set of muscles from the corresponding
EMG signals. The EMG–Force relationship has been under
research with two different approaches. The first one consists
in phenomenological modeling by exploiting mathematical
equations describing the neuromuscular system, such as the
Hill model [6]. This modeling approach is highly nonlinear
and depends on several subject-specific parameters. Even
though optimization techniques have been proven to improve
the fitting of these parameters [7], the model structure
remains of high complexity and nonlinearity. The second
approach, used in this work, avoids the drawbacks of the
first one and is based on black-box system identification.
More precisely, the model parameters are identified directly

from input/output datasets. Several works have considered
the black-box approach to model the EMG–Force relation-
ship. In [8], a nonlinear dynamic polynomial model was
proposed to describe the EMG–Torque relationship around
the elbow. Other works showed that parallel cascade Wiener
models can perform well in the identification of the EMG–
Force relationship considering both constant-posture trials
[9] and free hand motions [10]. Here, the elbow angle of
the subject has been included as additional input in order
to identify the dependency of the system on the geometric
configuration of the arm. Indeed, the shape of the EMG–
Force relationship scales depending on the elbow angle [11].
This modeling approach was extended also to the case of free
hand motions [10]: releasing the constant-posture constraint
led to a dramatic decrease of the modeling accuracy.

The presented black-box models are still highly nonlinear
and computationally complex, thus being unsuitable for the
integration within the control system of rehabilitation robots.
Moreover, the accuracy of the presented models is generally
limited to the quasi-static case (isometric contractions), while
the performance decreased considering dynamic contractions.

Linear Parameter Varying (LPV) modeling has been re-
cently applied to study the human neuromusculoskeletal
system. Indeed, the LPV approach was exploited to model
the nonlinearity (due to a position dependency) of the joint
impedance, as for the case of the wrist [12] and the an-
kle [13]. The accuracy reported in these works serves as
motivation to extend the LPV approach to the EMG-Force
relationship of the 1-DoF human arm.

The present paper is structured as follows. In Section II,
we introduce the class of LPV models. Then, in Section III,
we describe the experimental setup. In Section IV, we present
the main results, which are discussed in Section V. Finally,
in Section VI, we conclude the paper.

II. PRELIMINARIES

The Linear Parameter Varying (LPV) representation pro-
vides a framework to describe certain classes of nonlinear
systems. Many tools dedicated to Linear Time-Invariant
(LTI) systems can be extended to the LPV framework.
Indeed, LPV models can be considered as an extension of
LTI models. The practical advantage of an LPV model is that
its input/output relationship is linear, while the model itself
is capable of describing nonlinear and time-varying systems.



A. LPV Models

A discrete-time, state-space LPV model is defined as
follows

x(k + 1) = A (q(k))x(k) + B (q(k))u(k) (1a)
y(k) = C (q(k))x(k) + D (q(k))u(k) (1b)

where x(k) ∈ IRn is the state vector, u(k) ∈ IRp is
the input vector and y(k) ∈ IRm is the output vector,
all at time instant k. The order of the LPV model (n) is
the dimension of its state vector, while the integers p,m
represent the input and output dimensions, respectively. The
state matrix A (q(k)) ∈ IRn×n, input matrix B (q(k)) ∈
IRn×p, output matrix C (q(k)) ∈ IRm×n and feed-through
matrix D (q(k)) ∈ IRm×p are all dependent on an external
signal q(k), which is usually called scheduling signal. In
this work, we consider the subclass of Affine LPV (ALPV)
models [14, 15]. In this representation, the model matrices
depend in an affine way on the scheduling signal, namely

A (q(k)) = A0 + A1 q(k) (2)

and similarly for B(·) and C(·). Without loss of generality,
the feed-through term is considered to be zero, i.e. D(·) = 0.
We focus on the ALPV representation for two reasons: first,
the realization theory for this subclass of LPV models is
already mature [14, 15]; in addition, the control theory [16,
17] dedicated to ALPV models is well-developed. Moreover,
many of the tools developed for the LTI case are extended to
the LPV framework. This means that some LPV identifica-
tion methods directly rely on identification tools developed
for LTI models.

B. LPV Identification

LPV system identification can be divided into two main
approaches based on the experiment design, namely the local
and the global identification approaches [18]. The global
approach [19, 20] requires performing only one experiment
on the system, in which the input and the scheduling signals
are excited in order to capture all the dynamics of the system.
This is a natural way for obtaining datasets that describe
the real system. In contrast, the local approach identifies
multiple LTI models (usually called frozen LTI models) for
multiple, constant scheduling signals. Then, the parameter-
dependent LPV model is fitted to the system matrices of
the frozen LTI models using regressors formed from the
scheduling signal q [21, 22]. The local approach can be
teared down to the following three steps.

1) Identification of linear state-space models for several
values of the scheduling parameter space.

2) Transformation of the obtained LTI models to a con-
sistent state-space representation [17].

3) Interpolation of the state-space matrices of the local
models with respect to the scheduling signal in order
to obtain the LPV model.

It is well-known that the local approach suffers from a
systematic modeling error. However, this error is bounded
and its bound depends on the speed of change of the

scheduling signal [23]. On the other hand, the local approach
is more common for two reasons: it is more practical in terms
of experimental design and it benefits of the well-developed
theory of LTI systems identification.

Considering the LPV model here presented, the input of
the system is a set of EMG signals, the output is the measured
force, while the scheduling signal is a quantity proportional
to the elbow angle of the subject (see §III).

III. EXPERIMENTAL SETUP

In our setup, input/output data are acquired while the user
interacts with a collaborative robot, the KUKA LBR iiwa.
EMG and force data are synchronously acquired and stored
to be processed offline. Black-box identification methods
are then used to identify a model mapping the muscular
activation signals into the force developed by the arm.

The joint configuration of the robot is set in order to
kinematically couple the human elbow angle with the elbow
joint of the robot, as shown in Fig 1. In this way, the
user can rest their arm on the robot while standing next
to it. Both the standing point and the arm resting point
are marked for repeatability. This setup permits to achieve
weight compensation of the arm without the use of any belts
or braces. Moreover, the proportionality between the elbow
angle of the user and the elbow joint of the robot allows
to easily measure and vary the human elbow angle. In this
way, the experimental setup allows to measure the interaction
forces between the user and the robot in two modes. First,
by fixing the robotic arm at a certain position (i.e. at a fixed
angle), we can model the dynamics of the 1-DoF human
arm in a constant-posture setting. This type of experiment
is called local trial and it is used in the local approach for
LPV identification. Second, we can apply a movement profile
to the elbow joint of the robotic arm, which would lead to
a time-varying elbow angle profile in the horizontal plane.
This experiment is called hereafter global trial and results
in datasets which are suitable for the global identification
approach. During the experiments, the subjects are asked to
stand still, maintaining a constant body posture, and focus
on actuating only the elbow joint to generate force, while
keeping the wrist at a fixed angle.

The EMG signals, which represent the input of the system,
are acquired using the Delsys Trigno Wireless System (Del-
sys Inc) with a sampling rate of 2000 Hz. Four muscles of
the arm are considered, namely biceps brachii (BIC), triceps
brachii (TRI), flexor carpi radialis (FCR) and brachioradialis
(BRD). The force, which is the output of the system, is
acquired using a 6-DoF force/torque sensor (ATI Mini40,
ATI Industrial Automation) mounted on the end effector of
the robotic arm. For the model, we only consider the force
component in the horizontal plane and perpendicular to the
forearm of the subject. Real-time visual feedback of the force
profile is provided to the user on a computer screen, in
order to keep the applied forces within a maximum value
of ± 20 N.
Thanks to the aforementioned kinematic coupling, the co-
ordinate of the elbow joint of the robot (q) is acquired to



Fig. 1. Schematic representation of the acquisition setup: the user rests his
arm on the KUKA robot while standing. EMG and force are synchronously
acquired. The span of the scheduling signal q is shown with a dash-dotted
line. A computer screen in front of the user provides the visual force
feedback in real time.

be used as the scheduling signal of the LPV model. The
Fast Research Interface (FRI) [24] of the KUKA robot is
exploited in order to acquire the force and scheduling signals
at 100 Hz.

The study population consists in two male subjects with
an average age of 35.5 years and an average Body Mass
Index (BMI) of 24.5 kg/m2.

A. EMG Processing

The so-called muscular activation signal is derived from
the raw EMG data for each muscle according to the following
processing steps. The acquisition system applies a first band-
pass filter between 20 and 450 Hz, in order to filter out
offsets and baseline drifts as well as to avoid aliasing. Then,
during the offline processing, the bandwidth of the signal
is further reduced using a Butterworth filter that selects
the frequencies between 20 and 350 Hz, implemented by
means of the series of a fifth order high-pass and a second
order low-pass. Full-Wave Rectification is later applied to the
resulting signal by taking its absolute value. The last filtering
step is the envelope extraction, which is performed using
a second order Butterworth low-pass filter with a cut-off
frequency of 1.775 Hz. Starting from state-of-the-art values,
the parameters of the filtering stages have been optimized in
order to get the highest modeling accuracy.

IV. IDENTIFICATION OF THE EMG-FORCE
RELATIONSHIP

In this Section, the two LPV identification approaches
exploited to obtain the model of the 1-DoF arm are described.
The results of model validation have been computed by
comparing the estimated force output with the measured
signals in terms of goodness of FIT [%] and Variance
Accounted For (VAF) [%].

A. Local Identification Approach

The basic idea of the local approach for LPV modeling
is to consider the nonlinear, position-dependent system as
a set of Linear Time-Invariant (LTI) models for different

working points of the scheduling signal q. Hence, a success-
ful description of the EMG–Force relationship at constant
values of q by means of LTI models is essential to build
the LPV model following this approach. Therefore, several
identification experiments are performed at constant angu-
lar positions. Specifically, 8 local datasets are acquired at
q = 10, 20, 25, 30, 40, 45, 50, 60 [◦]. Considering the human
elbow angle, q = −40◦ corresponds to the full extension of
the arm (i.e. 180◦).
The local LTI models are identified at each of these angular
positions using numerical algorithms for state-space models
based on sub-space identification (N4SID) [19]. The iden-
tification is done in free form with prediction focus, thus
minimizing the 1-step ahead prediction error.

1) Local LTI Models: The average estimation perfor-
mance of the LTI models on the local datasets resulted in
87.75 % of FIT and 98.32 % of VAF. It is interesting to
evaluate the accuracy of these local models as a function
of the distance ∆q = qI − qV between the identification
position qI and the validation position qV . More precisely,
the LTI model identified at qI = 20◦ is validated using
the datasets acquired at qV = 10, 40, 60 [◦]. As shown in
Fig. 2, the performance of the LTI model drops as ∆q
increases. In particular, the FIT is much more sensitive to
the angular distance. The accuracy of the local linear models
is acceptable for low displacements from the identification
position, while it decreases dramatically for ∆q > 35◦.
This corroborates the modeling hypothesis of a position-
dependent system: the EMG–Force relationship does depend

0 50 100 150 200 250
-40

-20

0

20

40

F
o
rc

e
 [
N

]

q = 10°, q = -10°

0 50 100 150 200 250
-50

0

50

F
o
rc

e
 [
N

]

q = 40°, q = 20°

Real LTI (p=4) LTI (p=2)

0 50 100 150 200 250

Time [s]

-150

-100

-50

0

50

F
o
rc

e
 [
N

]

q = 60°, q = 40°

Fig. 2. Force plots comparing the real output (solid black) with the
estimated output of the LTI model identified at q = 20◦ and validated
at q = 10◦ (top panel), q = 40◦ (middle panel) and q = 60◦ (bottom
panel). In the plots, the green line corresponds to the LTI model identified
with p = 4 inputs, while the orange line refers to LTI models identified
from the signals of biceps and triceps only (p = 2).
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Fig. 3. Validation of the locally-identified LPV model on a local trial
(acquired at q = 40◦). The measured force (solid black) is compared to the
signal estimated by the LPV model (solid green).

on the elbow angle.
2) Locally-identified LPV Model: The sub-space method

used for the identification of the local LTI models may
have produced LTI state-space models belonging to different
bases. Hence, each LTI state-space model must be trans-
formed to the same basis before the interpolation, in order for
this to make sense. In this work, a Gramian-based balancing
transformation of the state-space realizations is used [25,
26]. After this, the coefficients of the ALPV model are
estimated by means of the Levenberg-Marquardt nonlinear
least-squares algorithm.

The LPV model obtained by means of the Local Identi-
fication Framework (denoted as LIF-LPV) can be validated
with a twofold approach. On the one hand, the local dataset
acquired at q = 40◦ is used to evaluate the accuracy of the
LPV model obtained by interpolation. On the other hand, it
is more significant to perform model validation considering
global trials, as they describe a more realistic scenario.
In the former case, the average FIT of the LIF-LPV model
is equal to 84.32 % and its average VAF is equal to 97.80 %.
On the local trials, the validation performance of the LPV
model is very similar to the estimation performance of the
local LTI models, which consists in an average FIT equal
to 85.83 % and an average VAF equal to 98.02 %. On the
other hand, in the latter case, the validation performance of
the LIF-LPV model decreases considerably. In particular, the
average FIT is 74.10 % and the average VAF is 95.43 %, as
reported in Table I. It can be noticed a different behavior
of the two indicators: while the average VAF of the LIF-
LPV model remains close to the performance obtained during
local validation, the FIT drops significantly.

B. Global Identification Approach

The Global Identification Framework for LPV modeling is
carried out exploiting the Prediction-Based Subspace Iden-
tification (PBSID) toolbox [27] and the LPVcore toolbox
[20], both developed for MATLAB. The output of the PBSID
toolbox is used to initialize the computation of the LPVcore
toolbox. This allows to refine the estimation of the LPV
model identified globally. This algorithm identifies the state-
space LPV model by means of a gradient-based optimization
technique. The LPV model obtained by means of the Global

Identification Framework (denoted as GIF-LPV) is again a
discrete-time, second order, ALPV model.

For each user, the acquisition of a global dataset is
repeated four times. In this way, one of these datasets is used
to identify the LPV model according to the global approach,
while the other three are used to perform model validation.

The average FIT and VAF of the GIF-LPV model are
78.25 % and 95.66 %, respectively. As expected, the global
identification approach for LPV modeling gives better per-
formance with respect to the local one considering global-
trial validation. This is due to the different datasets used for
the identification of the LPV model according to the two
approaches. In particular, the GIF-LPV model is identified
using a global dataset containing information about the arm
dynamics during time variations of the elbow angle. On the
other hand, this information is not contained in the local-
trial datasets, as the arm is in a fixed position. Moreover,
it should be noted that, while the performance of the LIF-
LPV model decreased when validated on a global trial, the
GIF-LPV model performs well also if validated on datasets
obtained with local trials.

C. Performance Comparison

In this Section, the performance of the LPV model are
compared to the results obtained by a Hammerstein model,
which is identified as a reference term for the LPV approach.
Moreover, it is interesting to evaluate the validation perfor-
mance on global trials of the LTI approach, given its accuracy
in the case of constant-posture trials (see §IV-A.1).

The Hammerstein model is identified using the System
Identification Toolbox of MATLAB. On the other hand, the
LTI model (hereafter, globally-identified LTI or gLTI for
brevity) is identified using again the N4SID algorithm. For
both models, the identification dataset is the same global trial
used also in the case of the GIF-LPV model.

The performance of the globally-identified LTI model are
presented first. The gLTI model outperforms the LPV model
identified following the local approach (LIF-LPV), with an
average FIT of 76.75 % and an average VAF of 94.75 %.

Fig. 4. Validation force plot comparing the GIF-LPV model with the
Hammerstein model and the globally-identified LTI model. The scheduling
variable trajectory q(t) is shown in the bottom panel of the plot.



TABLE I
VALIDATION RESULTS COMPARING THE PERFORMANCE ON GLOBAL TRIALS OF LTI, LIF-LPV AND GIF-LPV. THE PERFORMANCE OF THE

HAMMERSTEIN MODEL ARE REPORTED AS REFERENCE TERM.

LTI LIF-LPV GIF-LPV Hammerstein

User 1 FIT [%] 72.61 67.77 75.37 80.12
VAF [%] 93.12 94.63 94.88 96.19

User 2 FIT [%] 80.89 80.42 81.12 85.76
VAF [%] 96.38 96.22 96.44 97.98

Average FIT [%] 76.75 74.10 78.25 82.94
VAF [%] 94.75 95.55 95.66 97.09

Although this result may sound surprising, the reason behind
it is twofold. The first one is the difference between the
datasets used to identify the two models. In particular, the
LIF-LPV model is identified using a batch of local-trial
datasets, in which the scheduling signal is constant and the
muscles contract in isometric conditions. On the other hand,
the LTI model is in this case identified on a global trial,
thus being able to describe the dynamics of the system due
to the time variations of the scheduling signal and to the
non-isometric muscular contractions. The second reason is
what we call here the linearization effect actuated by the
muscles of the forearm. These muscles (BRD and FCR)
are not included in the models of the 1-DoF arm presented
in the literature. Indeed, their effect is generally neglected
as the wrist motion is externally constrained. On the other
hand, they have a non-negligible role in the process of end-
point force production considering the 1-DoF arm. Moreover,
their EMG–Force relationship is not influenced by the elbow
angle. Consequently, their contribution helps reducing the
overall nonlinearity of the system. This is confirmed by
evaluating the performance of the LTI model identified using
the activation signals of biceps and triceps only (i.e. with
p = 2 inputs) instead of using the full set of input signals
(i.e. p = 4). In the former case, the linear model is much
more sensitive to the elbow joint coordinate and hence to
∆q. This is evident comparing the force signals in Fig. 2.

The results of the Hammerstein model are presented at
last. This modeling approach scores an average FIT of
82.94 % and an average VAF of 97.09 % on global trials. As
expected, the nonlinear model outperforms both the LTI and
the LPV models, allowing the highest modeling accuracy.
The validation results on global trials of all the presented
models are summarized in Table I.

V. DISCUSSION

The first interesting result presented in this work is that
local, linear models (LTI) are accurate enough to describe
the EMG–Force relationship for constant-posture trials. This
demonstrated the feasibility of modeling the human arm ex-
ploiting the Local Identification Framework for LPV models.
Although feasible, the performance in terms of FIT decreased
dramatically considering global validation trials instead of
constant-posture trials. As argued above, this increase of
the estimation error is due to the lack of information about
the time-varying dynamics of the elbow angle in the local

datasets, which also results in non-isometric muscular con-
tractions. This is the main limitation of the local approach
for LPV identification. Indeed, the behavior of the true LPV
system cannot be fully determined interpolating a set of
local models identified at several values of the scheduling
signal, as the system is sensitive not only to q, but also to
its time variations. Aside to this intrinsic limitation of the
local identification approach, also the behavior of the muscles
changes from local to global trials. Indeed, the constant-
posture constraint is released in the latter case. Therefore,
the muscles work in isometric conditions in the case of
the identification trials and in non-isometric conditions in
the case of the validation trials. Hence, the more complex
dynamics of the validation data cannot be described by the
LIF-LPV model, since it is not contained in the dataset used
for its identification.

As expected, the LPV model identified globally (GIF-
LPV) outperforms both the LIF-LPV and the gLTI. Neverthe-
less, the Global Identification Framework is generally a less
practical choice compared to the Local Identification Frame-
work for LPV modeling. Moreover, the global identification
of LPV models is still under ongoing research, affecting
especially the development of algorithms and tools for the
identification process itself. Consequently, the performance
of this approach is expected to increase in the near future.

Another important result presented in this work is the im-
portance of including the muscles of the forearm, namely the
brachioradialis and the flexor carpi radialis, while releasing
the external constraints on the wrist movement. Indeed, these
muscles have an important role in force generation. This is
mainly due to the unconscious, synchronous activity they
manifest while biceps and triceps are consciously activated
when the subjects interact with the robot. This may be
partially related to the fact that the wrist was not constrained
during the acquisitions. One could argue that the identified
model actually describes the quasi-2-DoF arm, because of the
activation of the muscles of the forearm actuating the wrist.
Nevertheless, the aim of the identified model is to provide
a sufficiently accurate estimation of the force produced by
the human arm considering an experimental setup similar
to a real-case scenario of HRI. As a consequence, it was
chosen to let the wrist free from external constraints. As
shown in this work, this aim has been achieved. The muscles
of the forearm, in fact, induce a linearization effect of the
EMG–Force relationship, thus allowing higher accuracy with



a lower complexity modeling approach.

VI. CONCLUSION AND FUTURE DEVELOPMENTS

In this work, we have addressed the problem of modeling
the EMG–Force relationship of the 1-DoF human arm with
a low-complexity, control-oriented approach, by means of
Linear Parameter Varying (LPV) models. These results show
that an LPV model can be a good compromise in terms
of accuracy and complexity with respect to state-of-the-
art alternatives. Releasing the external constraints off the
wrist and including the forearm muscles appeared to be
fundamental to achieve such accurate results. The reported
performance metrics legitimate this approach, that can be
further investigated with the aim of integrating the identified
model into the control system of collaborative robots.

For the future, several improvements to the experimental
setup could be done. First of all, the number of subjects of
the study could be increased in order to have statistically
significant results. Moreover, it could be useful to have a
direct measurement of the elbow angle of the human subject.
This could allow to investigate also different interaction
scenarios between the robot and the human operator, as the
kinematic coupling would be no more necessary. Finally, the
model could be extended adding the degree of freedom due
to the actuation of the wrist and/or the shoulder.
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