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Abstract— This work describes a virtual reality (VR) based
robot teleoperation framework which relies on scene visual-
ization from depth cameras and implements human-robot and
human-scene interaction gestures. We suggest that mounting a
camera on a slave robot’s end-effector (an in-hand camera)
allows the operator to achieve better visualization of the
remote scene and improve task performance. We compared
experimentally the operator’s ability to understand the remote
environment in different visualization modes: single external
static camera, in-hand camera, in-hand and external static
camera, in-hand camera with OctoMap occupancy mapping.
The latter option provided the operator with a better under-
standing of the remote environment whilst requiring relatively
small communication bandwidth. Consequently, we propose
suitable grasping methods compatible with the VR based
teleoperation with the in-hand camera. Video demonstration:
https://youtu.be/3vZaEykMS_E.

I. INTRODUCTION

In comparison to conventional 2D display, keyboard and
mouse teleoperation interface, Virtual Reality (VR) headset
and handheld wireless controllers provide the operator with
improved depth perception [1], more intuitive control and re-
mote environment exploration [2], [3]. enabling challenging
applications as disaster relief [4], surgery [5], exploration
[6], and automation [7]. VR based teleoperation interfaces
work efficiently when used with RGB-D cameras which
provide a 3D point cloud visualization of the remote en-
vironment [8]. The majority of VR teleoperation systems
use a single external static RGB-D camera directed at the
robot’s workspace [3], [7], [9]. In such systems, the task
performance suffers from incomplete and imperfect visual
reconstruction of the remote environment. Depending on
the remote environment’s reflectivity, geometry, and overall
lighting conditions some objects may appear distorted in the
point cloud [10]. Occlusion is another issue limiting visual
feedback in VR when a single camera is used.

A possible approach to improve visual feedback in VR
is to use an additional in-hand RGB camera [3] (a camera
attached to the robot’s end-effector (EE)) and render the
video stream on a surface in VR. However, the grasp would
have to be performed relying on the video stream rather than
the point cloud which reduces the benefits of the VR. Al-
ternatively, the remote environment can be represented with
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Fig. 1. Overview of the proposed teleoperation system: a) the experi-
mental setup for the visualization study; b) the operator’s view; c,d) the
operator manipulates the virtual scene with gestures; e-i) steps for object
segmentation in the proposed framework

the help of multiple external static RGB-D cameras [11].
Although it greatly reduces potential occlusions it does not
eliminate them, and deploying multiple cameras in a remote
site is not always practically feasible.

We propose a VR teleoperation framework with dy-
namic field-of-view control, gestures-based manipulation of
the virtual scene, and multiple grasping methods with in-
hand RGB-D camera. We experimentally demonstrate that
an in-hand RGB-D camera combined with OctoMap [12]
occupancy mapping provides the operator with a superior
overview of the remote environment compared to the con-
ventional single static camera [3] and multiple camera se-
tups [11]. Furthermore unlike [11] our framework is suitable
for unknown and unstructured environments. The gestures-
based manipulation of the virtual scene allows the operator to
manipulate the 3D visualization of the remote environment
in VR. Although the in-hand RGB-D camera improves the



visualization of the remote site, the grasping and manipula-
tion become more problematic as the point cloud of the grasp
might not be registered if the grasp occurs very close to the
camera. We propose multiple grasping methods that allow the
operator to consistently perform grasps in our framework.

II. PROPOSED FRAMEWORK

A. Dynamic field-of-view control

We provide the operator with the ability to control the
field-of-view of the remote camera to reduce visual occlu-
sions and distortions and improve the operator’s situational
awareness. Although in-hand RGB visual feedback was used
in various robotics applications [3], [13], [14], to our knowl-
edge, there has been no research that use in-hand RGB-D
cameras as a part of the VR teleoperation interface.

The major differences between the in-hand camera and
external camera are the level of detail and the size of the
captured area. External cameras are usually placed to maxi-
mize the overview of the remote site, resulting in a large but
low detailed 3D reconstruction. By comparison the in-hand
camera provides a more detailed view of a smaller area. We
suggest that a mapping techniques such as OctoMap [12] can
be used to continuously generate a lightweight occupancy
map of the robot’s workspace to compensate for the lack
of overview. In VR occupied OctoMap nodes are displayed
as transparent boxes, layered over the point cloud, see
Fig. 1.c,d. The map is generated continuously as the operator
explores the remote environment.

B. Grasping methods with in-hand RGB-D camera

The grasping with an in-hand RGB-D camera is more
complicated compared to grasping with an external camera,
since RGB-D cameras require a minimum distance to an
object to register it as a point cloud. If the in-hand camera
is too close to the gripper the operator will have to grasp
nearly blind. We propose three solutions that vary in the
operator’s involvement in the process, illustrated in Table I
and demonstrated in the video demo: https://youtu.
be/3vZaEykMS_E.

Method 1: Grasp by direct control is designed for direct
teleoperation in which the operator drags the virtual EE to
control the robot in real-time. The core idea for this solution
is to perform the grasp on a persistent segmented clone of the
object of interest rather than on the ”live” point cloud. We
perform a naive segmentation by separate OctoMap chunks
- all occupied contiguous OctoMap nodes - to isolate the
object, illustrated in Fig. 1.e-i. The operator indicates the
object of interest by pointing at it with a ray that extends
from the operator’s hand. All points contained in the isolated

TABLE I
TASK DELEGATION ACROSS GRASPING METHODS

Grasp object Grasp pose Grasp trajectory
Direct grasp Operator Operator Operator

Grasp on pose Operator Operator Robot
Point and click Operator Robot Robot

OctoMap chunk are then segmented and cloned to persistent
local memory. If the partial clone of the object is insufficient
the operator can move the camera and add more points to
the existing clone. As the operator approaches for the grasp
the ”live” point cloud of the object disappears, since it is
too close to the camera, but the clone persists and can be
grasped, see Fig. 2.A.

Method 2: Grasp on pose is designed for supervised
teleoperation where the operator plans the grasp on the ”live”
point cloud. It is arguably less physically demanding as the
operator does not have to manually drag the robot to the
grasp pose. In Fig. 2.B the operator specifies the position of
the grasp on the ”live” point cloud. The desired grasp pose
is then sent to the motion planner which proposes the grasp
trajectory that can be previewed by the operator. Finally, the
operator decides to reject or accept the trajectory.

Method 3: Point and click takes advantage of automated
grasp generation to further reduce the teleoperation task load.
The idea is only to point at an object of interest and let
the robot propose the grasp pose and the trajectory. We
use the same pointing and segmentation method as in direct
grasping, shown in Fig. 2.C except that the segmented point
cloud is then fed to the grasp pose generator. The resulting
grasp pose is then passed to the motion planner similar to the
Grasp on pose method. The operator previews the proposed
grasp pose and trajectory and rejects or accepts them.

C. Gestures-based manipulation of the virtual scene

We propose an intuitive set of gestures that allows the
operator to manipulate the visualization of the remote envi-
ronment. This helps the operator to navigate and inspect the
remote environment, if the operator is uncomfortable with
physically moving in VR (walking or crouching) or prefers
to operate sitting (to reduce physical exertion).

Gestures are inspired by the 3D drawing tools like Tilt
Brush [15]. To rotate the scene the operator should press both
buttons of the left and right handheld wireless controllers and
perform rotation as if rotating a physical steering wheel. In
this case, the center of rotation is fixed to the middle point
between the operators’ left and right hands. Translating and
scaling is implemented similarly. Pulling and pushing the
center of rotation will pull and push all objects in the scene.
Bringing arms closer/further apart will scale the virtual envi-
ronment up/down. Translation, rotation, and scaling gestures
can operate simultaneously. The gesture-based manipulation
of the virtual scene is shown in Fig. 1.c,d.

III. EXPERIMENTAL SETUP

The experimental setup consisted of: the Franka Emika’s
Panda robot, two Microsoft Kinect2 RGB-D cameras (for
the visualization study), Intel d415i RGB-D camera (for
the grasping demonstration), Oculus Rift VR headset with
Oculus Touch controllers, master PC, slave PC and a local
Ethernet network. The setup for the visualization study is
shown in Fig. 1.b and its schematic diagram is shown in
Fig. 3. The first Kinect2 camera was placed two meters above
the robot. The second Kinect2 or Intel d415i were attached



Fig. 2. Grasping methods with in-hand RGB-D camera in the proposed framework.

Fig. 3. The schematic diagram of the experimental setup.

Fig. 4. Operator’s view in different modes: a,e) top camera: the robot occludes a part of the view and the bowl’s shape is deformed; b,f) in-hand: the bowl
is more recognizable; c,h) double camera: note the difference in bowl registration g) the edge between in-hand and top cameras - notice the difference in
resolution; d,i) in-hand camera with OctoMap: the bowl is not in the camera’s view but the OctoMap maintains an accurate geometrical representation.



to the robot’s EE and pointed along the EE. We ran the
ROS-bridge on the slave PC to publish ROS messages to a
WebSocket and ROS-sharp on the master to read them. We
separated the point cloud (only the XYZRGB portion) into
a dedicated UDP channel. In our tests the dedicated UDP
channel proved to be faster than the ROS-bridge.

Kinect2 point clouds were generated using the standard
definition - 512X424, the Intel d415i - 640X480. We ran the
XYZRGB registration on the slave PC. This simplified the
point cloud and OctoMap generation compared to registering
on master [3], although it uses more bandwidth. To reduce
the bandwidth consumption we cropped the point cloud to the
area of interest - 0.9m X 0.6m X 0.3m and removed all points
on which registration failed. We repacked original point
clouds to 15 bytes per point (standard Kinect2 registration
uses 32 bytes, Intel d415i - 24 bytes). We visualized the point
cloud and the segmented clone using the Unity’s particle
system. We kept the segmented clone white to make it visible
when layered over the ”live” point cloud.

The widely used OctoMap representation of the environ-
ment was produced based on the in-hand camera’s point
cloud. We only detected objects that were located above the
desk. For the visualization study the OctoMap resolution was
set to 2 cm. We designed a custom parser and renderer for the
binary OctoMap. The renderer visualized only the occupied
OctoMap nodes with transparent boxes.

The RGB video was disabled in the visualization study
as we were interested in the operator’s ability to understand
the remote scene from the point cloud only. The robot was
controlled in direct teleoperation mode, similar to [2], [3],
[16]. The operator moved the robot by dragging and rotating
the virtual desired pose axes mesh, see Fig. 1b. Then, the
desired change of pose was published in the Interoperable
Teleoperation Protocol (ITP) format [17], [18]. The slave
controller ran the Panda robot in the Cartesian impedance
mode. This was also the control mode for the direct grasping.

We also added a supervised control mode (for ”grasp on
pose” and ”point and click” grasping) that controlled the
robot using the MoveIt with the RRTConnect planner. We
defined three types of motion requests in the corresponding
master GUI: ”move to pose”, ”move to grasp pose”, ”propose
grasp on point cloud”. The ”move to pose” generated a
trajectory to a desired EE pose. The ”move to grasp pose”
command was similar to ”move to pose” except it queued
an additional pre-grasp pose that ensured a collision-free
movement. The ”propose grasp on point cloud” command
used the segmented clone of the object of interest to generate

Fig. 5. An example of the area of interest used in the experimental study.

a grasp pose using the principal component analysis [19].
The generated grasp pose was then processed as in ”move
to grasp pose” command.

The robot mesh was animated using either the actual
robot’s joint angle values (default setting) or trajectory pro-
posed by MoveIt command. The Master GUI was set such
that whenever a trajectory message is received the virtual
robot visualization is toggled into preview mode. The virtual
robot animation was switched back to the real robot when
the operator rejected or accepted/executed the trajectory.

IV. THE VISUALIZATION STUDY

The goal of the study was to investigate the effect of
the RGB-D camera placement on the operator’s ability
to understand the remote environment. For this study we
implemented four visualization modes used as experimental
conditions (see table II): M1) top camera; M2) in-hand
camera; M3) double camera (top and in-hand); M4) in-
hand camera with OctoMap. The experimental task was to
explore the remote environment in order to visually recognize
and locate objects placed randomly next to the robot. The
performance of each task was characterised by completion
time, number of correctly recognised objects and NASA-
Task Load Index (TLX) [20].

A. Experimental Protocol

The robot’s workspace was divided into a six-segments
grid as shown in Fig. 5. Thirty six different objects (varied
in size, shape, color, and reflectivity) were used for the
visualisation study. Nine different objects were selected and
placed in each of the grids for each trial (their locations
and combination were randomized in for each trial). Each
object appeared for each participant once. In certain trials
some segments of the grid were left empty and some objects
could overlap to create partial occlusions. The robot was
placed into a random pose before each trial. Ten participants
were recruited from for the experimental study (all healthy
adults; one female; age 25-30). All participants had some
experience with VR but did not have prior experience with
robot teleoperation. Each participant was given a 10 minute
training time during which participants got accustomed to the
VR teleoperation interface and the testing procedure, using
a separate training set of objects.

In each trial a participant was asked to identify an object
type, its location (all grids were labeled), and communicate
verbally the object name or color and shape as well as its
location. Participants had no prior knowledge of what object
might appear in the grid. The number of incorrect object
recognitions was counted. A full point was given for each

TABLE II
VISUALIZATION MODES USED IN THE STUDY

mode top Kinect2 in-hand Kinect2 OctoMap
M1 yes no no
M2 no yes no
M3 yes yes no
M4 no yes yes



incorrect answer. A half-point was given when the participant
was able to locate the object but failed to recognize the
object or the shape of the object; for example ”green cone”
instead of ”green sphere” or ”apple”, see Fig. 4.b (an apple
is located in the scene but the point cloud appears to look
like a cone). We did not specify the total amount of objects
in the scene to the participants, nor did we inform them
if any objects were missed. After each trial the participant
filled in the NASA-TLX questionnaire. We also benchmarked
the average and peak communications bandwidth usage by
recording the number of points in the point cloud and the
size of the OctoMap binary message.

B. Results and discussion

Visualisation and object recognition. The results of
the study are presented in Fig. 6. The top plot of Fig. 6
demonstrates that the visualization based on the top camera
was characterized by a high number of incorrect recogni-
tions. Participants often failed to recognize the shape of
an object if objects were non-convex or when looking at
an object along its axis of symmetry, i.e. looking straight
down at the bowl (see Fig. 4.e). Other objects were missed
due to partial occlusions. In all other modes participants
were able to correctly recognize the same objects thanks
to the ability to direct the camera sideways as shown in
Fig. 4{f,h}. In double camera mode (M3), the mean number
of misses was slightly higher compared to the in-hand camera
only (M2). This is surprising given that more information
can be accessed with the latter. It is likely caused by the
imperfect overlap between the point clouds, see Fig. 4h. If
one of the cameras gives a false detection on the object
shape - the operator would not know which camera to trust.
According to ANOVA test visualization modes affect the
number of missed objects (F(3,37) = 15.83; p < 0.01).
The in-hand camera with the OctoMap (M4) mode had the
lowest number of incorrect object recognitions. That means
that a combination of dynamic field-of-view adjustment and
OctoMap representation of the scene is an efficient human-
robot interface for VR based remote inspection tasks.

Completion time and workload. Second and third plots
of Fig. 6 shows the results for task completion time and
NASA-TLX index across all participants per visualisation
condition, respectively. The differences in completion times
and NASA-TLX are insignificant: F(3,37) = 0.32; p = 0.81
and F(3,37) = 0.13; p = 0.93 (ANOVA test). However,
we can outline some interesting behaviours observed during
the experiment. Although completion times are comparable
across modes, the distribution of the time per task is different.
In the in-hand camera mode, the participants spent more
time re-positioning the camera; on the other hand, in the top
camera mode the operators spent more time manipulating
the view using gesture-based control. This is reflected by
the shift from the mental demand to physical demand on
the TLX breakdown, see bottom Fig. 6 which presents the
average NASA-TLX breakdown across all participants.

The double camera mode has the lowest effort value,
which is to be expected given that it provided the most
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Fig. 6. Experimental results averaged across all participants. From top
to bottom: percentage missed objects; completion time; NASA-TLX index;
averaged NASA-TLX breakdown. Boxes span test sets from the upper to the
lower quartile with a line at the median, whiskers extend from boxes until
the last datum within 1.5 interquartile range. Crosses mark mean values.
Scatter points represent individual participants.

full representation of the robot’s environment. The relative
increase in the frustration and mental load was likely caused
by the aforementioned imperfect overlapping between the
cameras’ views and reduced point cloud refresh rate, caused
by asynchronous merging of top and in-hand point clouds.

Another interesting behavior observed during the study is
the fact that operators preferred to change their view in VR
through gestures rather than by displacing their whole body.
Although it did not have a significant impact on our study,
the gesture-based re-positioning in VR teleoperation can be
useful for telerobotics systems that require the operator to
remain physically stationary, for example seated.



TABLE III
COMMUNICATION BANDWIDTH COMPARISON

Mode Mean (MB/s) Std.dev. (MB/s) Max (MB/s)
Full PointCloud2 97.69 0 97.69
Top camera 7.78 0.78 8.82
In-hand camera 41.48 10.51 63.73
OctoMap 0.75 0.15 1.05

Data transmission rate. The proposed VR teleoperation
interface and visualization modes rely on sending a sig-
nificant amount of data from the slave site to the master
site. Therefore, we have also investigated how much com-
munication network bandwidth was required in each of the
visualization modes. The results are summarised in Table III.
Since the top camera is placed much farther from the area
of the interest the portion of the point cloud that represents
the area of interest is considerably smaller than the in-hand
camera. As a result the cropped point cloud of the area of
interest is much lighter for the top camera compared to the
in-hand camera. Naturally bringing the top camera closer to
the area of interest would increase the point cloud resolution
but it is arguable if it would affect the underlying problems of
point cloud self-occlusion and distortion. The in-hand camera
with OctoMap provides a comparable overview of the area
of interest to double camera mode, but the OctoMap requires
much less communication bandwidth than the top camera.

Grasping and camera location. The grasping with an
in-hand RGB-D camera has proven to be more difficult
compared to grasping with an external camera, since RGB-D
cameras a limited to have a minimal distance to an object
for it to register a point cloud. In situations when the in-
hand camera is too close to the gripper and the object the
operator has to grasp the object without or with limited visual
feedback. We proposed three solutions for grasping: grasp
by direct control, grasp on pose, point and click. We plan
to perform a comparative study of the operator’s task load
across these grasping methods in future work.

V. CONCLUSION

We proposed a VR teleoperation framework with a dy-
namic field of view control, gesture-based navigation and
control, and multiple grasping methods suitable for robotic
manipulation systems with the in-hand RGB-D camera. The
key results of our study are: 1) the in-hand camera combined
with OctoMap visualization improves scene understanding;
2) users prefer to navigate the scene through proposed
gesture rather than moving physically; 3) OctoMap provides
an overview of the remote scene comparable to an extra
camera but at much lower communication bandwidth cost. In
future work we plan to replace the current naive segmentation
with a semantic segmentation pipeline to allow the operator
to request grasps on objects in a clutter.
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