N

N

A Layered Control Approach to Human-Aware Task and
Motion Planning for Human-Robot Collaboration
Marco Faroni, Manuel Beschi, Stefano Ghidini, Nicola Pedrocchi, Alessandro

Umbrico, Andrea Orlandini, Amedeo Cesta

» To cite this version:

Marco Faroni, Manuel Beschi, Stefano Ghidini, Nicola Pedrocchi, Alessandro Umbrico, et al.. A Lay-
ered Control Approach to Human-Aware Task and Motion Planning for Human-Robot Collaboration.
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Aug
2020, Naples (virtual), Italy. 10.1109/RO-MAN47096.2020.9223483 . hal-03157815

HAL Id: hal-03157815
https://hal.science/hal-03157815
Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03157815
https://hal.archives-ouvertes.fr

A Layered Control Approach to Human-Aware Task and Motion
Planning for Human-Robot Collaboration

Marco Faroni!, Manuel Beschi?, Stefano Ghidini?, Nicola Pedrocchi?,
Alessandro Umbrico®, Andrea Orlandini®, Amedeo Cesta®

Abstract— Combining task and motion planning efficiently
in human-robot collaboration (HRC) entails several challenges
because of the uncertainty conveyed by the human behavior.
Tasks plan execution should be continuously monitored and
updated based on the actual behavior of the human and
the robot to maintain productivity and safety. We propose
control-based approach based on two layers, i.e., task planning
and action planning. Each layer reasons at a different level
of abstraction: task planning considers high-level operations
without taking into account their motion properties; action
planning optimizes the execution of high-level operations based
on current human state and geometric reasoning. The result is a
hierarchical framework where the bottom layer gives feedback
to top layer about the feasibility of each task, and the top layer
uses this feedback to (re)optimize the process plan. The method
is applied to an industrial case study in which a robot and a
human worker cooperate to assemble a mosaic.

I. INTRODUCTION

Robotized assembly and manufacturing are evolving to-
wards a human-centered paradigm [1] but, even if humans
improve the flexibility and performance of the system, the
complexity underlying task and motion planning activities
increases [2]. In Human-Robot Collaboration (HRC), the
problem complexity is high even for a task composed of
a few activities: a simple task can be performed through
many robot trajectories and each of them could be performed
simultaneously with different human tasks. Also, the robot’s
execution time may be different than expected, as the robot
may slow down for safety reasons [2]. Therefore, HRC
makes the integration of task and motion planning difficult
without relying on limiting hypothesis and applicability
contexts [3]. To cope with such complexity, many works
focus on the identification of a feasible solution and not the
optimal one. Such methods are mainly structured into three
groups depending on the task planning strategy: PDDL [4],
hierarchical task networks [5], [6], and constraint satisfaction
problems (CSP) [7]. These methodologies, however, may
achieve low performance in industrial application, where at
least a sub-optimal feasible solution is necessary. Few works
have also addressed the identification of an optimal task and
motion planning via, e.g., a logic-geometric programming
approach [8]. Such approach, however, does not scale to large

1 STIIMA-CNR - Institute of Intelligent Industrial
nologies and Systems, National Research Council of
{name.surname}@stiima.cnr.it

2 Dipartimento di Ingegneria Meccanica e Industriale, University of
Brescia {name . surname}@unibs.it

3 ISTC-CNR - Institute of Cognitive Sciences and Technologies, National
Research Council of Italy {name . surname}@istc.cnr.it

Tech-
Italy

number of tasks, and it cannot manage the complexity of
industrial tasks. Except for [2], [3], all the approaches in
literature do not deal with time-variability and constraints
characterizing HRC tasks. On the one hand, there are many
constraints to be considered in order to safely perform robot
tasks. Specifically, the execution of robot tasks must take
into account simultaneous tasks the human may perform to
avoid collisions and risks. On the other hand, a coordinated
task plan should be generated and concurrently performed by
humans and robots with the aim of increasing the production
efficiency and safely supporting the human. An interesting
hierarchical approach that could be extended to HRC is
presented in [9]. A co-optimization approach explicitly models
the robot transition cost from one task to another, and splits the
optimization problem over three layers: task planning, action
planning and motion planning. The methodology allows the
optimization of the plans to reach the robot final configuration
and exploits the information coming from the low-level
motion planner. However, [9] does not consider temporal
information and the likely concurrent execution of human
and robot tasks, and the task planner uses a Travel Salesman
Problem formulation that does not fit the specification of a
generic industrial task. An underrated issue is the integration
of the feedback coming from the field for the update of the
motion and task planning and execution [3]. Indeed, task
and motion planning architectures should also consider to
dynamically change the motion plan to be compliant with
human movements.

This work aims to extend [3] investigating a control-based
approach to the optimization of the task and motion planning
in HRC. Starting from the formalization of the problem as
in [9], we propose a layered control approach for HRC at
different levels of granularity that maximizes throughput in
terms of process execution time. The work is also motivated
by the H2020 project ShareWork (http://www.sharework-
project.eu), which aims at developing safe and effective
innovative HRC solutions in manufacturing.

The paper is organized as follow: Section II deals with
the description of the methodology, Section III describes the
simulation of a case study, and Section IV reports some points
of discussion and the future work description.

II. HUMAN-AWARE CONTROL APPROACH

Fig. 1 shows an overview of the proposed control architec-
ture, split in two main modules: a task planner and an action
planner (which, in turn, integrates the motion planner).

Task
N Planner

5. Replanning

[—

—

4. Plan execution
_—e— e o mm = o= mm mm = e

A. Action dispatching
B. Action feedback

Action
Synthesis

Planner .
and Execution

1
M 1 Motion request
. Motion feedback

Motion Controller

Task Plan
Execution

Task Plan
Synthesis

 Action

Motion

Fig. 1: Task and motion planning integration overview.

The Task Planner addresses human-robot coordination and
task sequencing and assignment. It generates a suitable task
sequence dealing with the temporal variance entailed by the
human presence. The Task Planner sends the goals to a
human operator, for example through a Human-Machine
Interface (HMI). In addition, it receives feedback from
the HMI, as operators can accept or discard the incoming
tasks, and also inform the system about the outcome of
the performed task (successfully finished or terminated
with errors). This feedback is fundamental as the controller
cannot assume the duration of human tasks but it needs to
wait for a feedback. Pursuing a Sense-Plan-Act approach,
the task planner is capable of dynamically (re)planning
the sequence of tasks according to the feedback and the
(possible) refusal of task from the operator. The robot Action
Planner computes the optimal sequence of motion plans
that satisfies the operational constraint. Remarkably, the
actual human position is considered as feedback when the
motion plans are computed. Once the action is defined, the
Action Planner sends the trajectory to be executed to the
robot motion controller. The combination of these modules
realizes flexible robot behaviors that can also be dynamically
adapted according to the observed behaviors of a human
operator, limiting negative effects on the production flow,
when unforeseen events occur.

A. Task Planner

The Task Planner relies on Timeline-based Planning and
Scheduling (P&S) [10], a temporal planning paradigm that
takes inspiration from the classical Control Theory and has
been successfully applied in many real-world applications
(e.g., [11]). A timeline-based model is composed of a set of

Production
Goal
Level

R TRLITTS
CONTAINS | ¢
.
Q

¥
v

¥
Production ¥ e > Process; Process;
Process X N
Level _ee"" Process; = = Idle
Lo T
v K
Action, Action, Action, Action,
Human : 1dl Robot
Action Idle € Action
Level : Level
v
Move
Move, <
Human . /v
Machine Interface T
Move Robot
8 Motion
Level

Fig. 2: Hierarchical model of the case study.

state variables describing the possible temporal behaviours
of domain features. Each state variable specifies a set of
values that represent the states or actions the related domain
feature may assume or perform over time. Each value is
also associated with a flexible duration and a controllability
tag which specifies whether the value is controllable or
not (from the “controller perspective”). A state transition
function characterizes the allowed sequences of values of
a state variable, i.e., the set of temporal behaviors of a
domain feature that are valid with respect to the domain
specification (i.e., a timeline). In order to coordinate different
domain features and realize complex functionalities or achieve
complex goals, a set of rules called synchronizations model
such “global” constraints that must be satisfied to build valid
plans. A timeline represents an envelope of valid temporal
behaviors of a particular domain features. A plan is constituted
by a set of timelines (one for each state variable) and
represents a set of temporal behaviors (i.e., solutions) that can
be adapted according to the observations/feedback received
from the environment during execution. The execution of
a timeline-based plan consists in selecting the particular
temporal instance of a plan which best fits the observed
state of the environment.

The Task Planner is implemented through PLATINUm
[12], a timeline-based software framework for P&S able to
deal with temporal uncertainty and already successfully de-
ployed in real-world manufacturing scenarios [2]. A planning
synthesis module (Task Plan Synthesis in Fig. 1) synthesizes
flexible behaviors of domain features (i.e., the timelines). An
executive module (Task Plan Execution in Fig. 1) dispatches
the tasks composing the timelines and checks the consistency
of a plan with respect to the actual state of the environment.
PLATINUm pursues a general solving behavior can be tailored

to the particular features of a planning problem through the
use of specifically designed heuristics and search strategies.
The former supports the solving algorithm in selecting the
flaw to solve at each iteration. This choice does not affect
the completeness of algorithm but it is particularly crucial
for its efficiency. The latter supports the solving algorithm
in selecting which partial plan to refine at next iteration
among the ones available in the search space (search space
expansion). This choice may affect the completeness of the
algorithm and the gualities of the synthesized plans. The
design of P&S applications for HRC also entails design
and verification issues [13]. Here, we focus on the approach
feasibility and these issues are considered out of the scope
of the paper.

B. Action Planning Module

The Action Planner is in charge of converting high-level
actions from the task planner into actual robot movements. Its
general structure is represented in Fig. 1. It is equipped with
a motion planning module used to solve motion planning
queries during the action planning. It encodes a set of
actions such as pick_from, place_in, assemble, which are
automatically parsed into a sequence of motion instances and
basic operations (e.g., move_to, grasp, release, wait). These
basic operations represent the smallest level of granularity
in the task decomposition hierarchy described in Fig. 2. For
example, consider the case of a pick and place skill. The
robot should perform the following operations: move to the
picking station; approach the object; grasp it; move to the
placing spot; approach the final pose; and release the object.
These operations shall be executed in the aforementioned
order. From the task planner point of view, it is pointless to
subdivide the skill in single operations, given that their order
is already known. On the contrary, gathering all the operation
in a higher-level action reduces the complexity of the task
planning problem because a large number of sub-tasks is
removed. For this reason, all these operations are grouped in
a single action (yellow nodes in Fig. 2) that corresponds to
a planning instance for the Action Planner.

An action planning query finds the optimal plan to execute
the sequence of basic operations (green nodes in Fig. 2.
Although the order of the operations is already defined, the
Action Planner has a certain level of autonomy in the way
such operations are performed. Referring to the pick and
place example, multiple objects of the same type might be
eligible for the same pick and place task. The Action Planner
runs a motion planning query from the robot current state to
each eligible picking spot. In this way, it is possible to select
the most suitable object. The selection criterion is the cost
of the path planning query computed by means of the metric
function used by the motion planning algorithm. Path length
is the most common index, but indices based on the level of
interference between the robot and the human’s motion are
also possible by using a human-occupancy costmap. Similarly,
in the placing operation, if multiple placing spots are available,
the Action Planner selects the most suitable with respect
to the planning metrics. It is worth noticing that the path

planning problems are solved online and therefore take into
account the current state of the human co-worker and the
environment. This means that the same motion planning
query gives different solutions based on the current state of
the workspace and the human behavior. Once an optimal
plan to execute the action is found, the trajectories are sent
to the robot controller, which is in charge of executing and
monitoring the actual motion of the robot.

Other complex skills can be encoded in the motion planning
module by following a similar approach. It is clear that
reasoning at skill level is a great advantage for the task
planner, which can now focus on high-added-value operations,
while the motion planning module automatically manages
complex but structured operations.

IITI. CASE STUDY - COLLABORATIVE MOSAIC ASSEMBLY

We analyze a case study in which an operator and a robot
shall assemble the mosaic shown in Fig. 3. It reproduces the
acronym SW (from the name of the project ShareWork) and
is composed of 50 cubes arranged in 5 rows and 10 columns.
Each slot of the mosaic is identified by its column letter and
its row number (e.g., Al, A2, etc.). Letter ‘S’ is made up
of orange cubes; letter ‘W’ is made up of white cubes; the
background is made up of blue cubes. The mosaic shall be
assembled according to the following constraints: i) orange
cubes moved only by the robot; ii) white cubes moved only
by the operator; iii) blue cubes moved by both the robot and
the operator; iv) Row 3 shall begin after the end of Row 1;
v) Row 4 shall begin after the end of Rows 1 and 2; vi) Row
5 shall begin after the end of Rows 1, 2, and 3.

A B C D E F

G H I J

Fig. 3: A collaborative mosaic to be assembled. Orange tiles
can be handled only by the operator, white tiles can be moved
only by the robot, and blue tiles can be moved by both.

The following subsections describe the model considered in
the proposed framework for the collaborative process and the
ROS-based simulation environment developed for validating
the proposed methodology.

A. Dynamic Task Planning Module Implementation

We define a timeline-based representation of the task plan-
ning problem for the case study. Fig. 2 shows an overview of
the task planning model for the collaborative process modeled
according to a Hierarchical Task Analysis [14]. A production

goal level represents the high-level goals “triggering” the
execution of a collaborative production process. A production
process level represents the different collaborative processes
that can achieve production goals. This level models the tasks
to perform and the operational constraints to satisfy in order
to successfully achieve a particular production goal. Finally,
a human/robot behavior layer models the low-level tasks the
two actors can simultaneously perform to actually realize the
production tasks.

According to [15], the dynamics of these levels are
describes by means of a number of state variables. A state
variable SV = (Vo, T, Da,va) models the production
goal level by representing production goals that can be
performed into a production environment (e.g., the value
v; = DoMosaic € Vg). A state variable SV); =
{ Ve, Tar, D, var) models the high-level tasks that should
be performed to carry out a particular production goal of
the goal level (i.e., values v; € V(7). Each value represents
a (collaborative) high-level task to be executed in order to
successfully carry out v; € Vir = {DoRowy, ..., DoRows }
representing the tasks of assemblying the rows of the
mosaic). Synchronization rules link production goals (e.g.,
v; = DoMosaic € Vg) to the underlying production
tasks (v; = DoRow; € V) and specify a number of
temporal relations between these values, representing desired
operational constraints. Equation (1) shows an example of
such a rule specifying a number of precedence relations
between high-level high-level tasks v; = DoRowy € Vir:

ao[SVa = DoMosaic] — 3 a1[SVm = DoRow1],

1
as[SVy = DoRows].C

where ¢ = DoRowy < DoRowsz A ... A DoRowyg < DoRows.

Then, two additional state variables SVp =
(Va,Tu,Dyg,vu) and SVg = (Vg,Tg,Dr,Vr)
characterize the behavior level and model respectively the
low-level tasks the human and the robot can perform to
actually carry out a collaborative process. In this specific
case, the human and the robot can perform the same type of
task PickPlace,. A task PickPlace, consists in picking a
tile z of the mosaic from a box (i.e., white_box, blue_box
and orange_box) and place the tile x in the correct position
(e.g., Al, B2 or G3). Values vy = PickPlace, € Vg
and v; = PickPlace; € Vg represent the PickPlace,
low-level tasks the human and the robot can actually perform,
according to specific production needs of the case study.
The state variable of the robot behavior SVi would not
contain PickPlace, tasks concerning white boxes. Vice
versa, the state variable of the human behavior SVy would
not contain PickPlace, tasks concerning orange boxes.
For example the task PickPlace, with x = Al can be
performed only by the robot as Al is an “orange tile”,
while the task PickPlace, with = I3 can be performed
only by the human as I3 is “white tile”. Tasks concerning
blue tiles instead (e.g., PickPlaceps) can be performed
by both and thus are contained in both state variables
(PickPlaceps € VN Vg).

Another set of synchronization rules links high-level
tasks in SVj; to low-level tasks in SVy and SVg. These
rules model possible allocations of low-level tasks (i.e.,
PickPlace, concerning blue tiles) and thus define different
ways of performing high-level tasks. Equation (2) and
Equation (3) show two examples of synchronization rules
describing two alternative ways of performing high-level task
v; = DoRow; € V). Specifically these rules show two
alternative assignments of low-level tasks PickPlace, to the
human and to the robot (Equation (2) assigns the low-level
task PickPlaces; to the robot while Equation (3) assigns
the same task to the human).

ao[SVam = DoRowi] — 3 a1[SVr = PickPlaceai],
<, a5[SVy = PickPlaceg1], ?)
.. @10[SVR = PickPlacej1].Cri,a
ao[SVm = DoRow;]| — 3 a1[SVr = PickPlaceai],
wy a5[SVy = PickPlaceg1], 3)
< @10[SVH = PickPlacej1].Cr1p

In general rules with the same head (i.e., the left side of
the rule) represent alternative ways of decomposing a task
and are therefore treated as disjunctions during plan synthesis.
In this case, they are used to model possible assignment of
PickPlace, concerning blue tiles.

Controllability information characterizes task execution
with respect to the uncontrollable dynamics of the environ-
ment. The controllability tagging function of a state variable
SV; specifies whether a value v; € V; is controllable or not.
We distinguish among controllable, partially-controllable and
uncontrollable values (v; : V; — {¢,pe,u}). Controllable
values are completely under the control of the system (it can
decide both the start and the end of their execution). Partially-
controllable values can only be started by the system while
their end (i.e., the actual duration of their execution) can
only be observed during execution. Uncontrollable values can
neither be started nor ended by the system and their actual
behavior can only be observed.

The behavior of the human is modeled as uncontrollable.
Values of v, € Vg are tagged as uncontrollable (g (v) =
u,V v € Vp). Robot behavior is modeled as partially
controllable. Values v, € Vg are thus tagged as partially-
controllable (yr(vt) = pc,V vy € Vg). Values of other state
variables are modeled as controllable. Controllability infor-
mation is used to analyze and evaluate execution properties
of plans [16]. Therefore, PLATINUm synthesizes flexible
plans that do not make assumptions on the actual duration of
not controllable values/tasks (i.e., pseudo-controllable plans
[16]) assuring a good level of robustness and limiting the
need for rask re-planning at execution time [17].

B. Action Planning Module Implementation

The general structure of the Action Planner module
described in Section II-B is implemented here for the case
study. The general description of Fig. 2 is therefore tailored
to the case study tasks and actions. Each pick-place operation
is an action planning instance (yellow nodes in Fig. 2). A

pick-place is then composed of several motion instances
(green nodes in Fig. 2), namely: move_to_X, approach_object,
grasp_object, move_to_Y, approach_slot, release_object. X and
Y are symbolic labels that identify the color (orange, white,
blue) of the picking cube and the coordinates of placing spots
(Al, A2, etc.) respectively.

When an action from the task planning arrives (e.g.,
PickPlace 1), the motion planning module decodes the
desired color and chooses the most suitable cube from the
available ones. Then, it places the cube in the corresponding
slot. To select the best action plan, a picking server and a
packaging server are defined for each robot. The picking
server manages multiple inbound stations, each station is a
logical box containing objects of multiple types (i.e., colors).
When the picking server receives the request to pick an
object of a certain type, it checks how many inbound stations
contain the requested object type. These stations are the goals
of the path planning queries. The picking server executes the
movement to the closest inbound station and, simultaneously,
it runs another path planning query by setting as goals
the poses corresponding to the current placing slot. After
the execution of the approaching movement to the selected
object, the picking server executes the grasp action, such as
closing the fingers or activating the suction cup. Finally, the
picking server plans and executes the removal movement. The
packaging server manages the filling of the mosaic. It initially
plans a path to the approaching position of the specified slot.
During the execution of the movement, the algorithm plan
the movement to the placing slot. After that, the release
action is executed, for example opening the gripper fingers
or switching off the vacuum generator. It is worth noticing
that both the picking server and the packaging server can
manage multiple robots acting simultaneously in the cell.

C. Software Implementation

The mock-up scenario shown in Fig. 4 is a simulation
environment built in ROS. It is composed of an Universal
Robot URS mounted on an linear axis. The mosaic should be
assembled on a worktable parallel to the linear axis. The blue
pieces are on a worktable (accessible to both the robot and
the operator), the orange ones behind the robot, and white
ones on a table near the operator. A human mannequin is
integrated in the simulator!.

The Action Planner is implemented as a set of ROS action
servers dedicated to pick or place tasks. Each action server
implements a Movelt! planner pipeline, allowing the use of
all path planning algorithms available in ROS (e.g., OMPL
[18] and STOMP [19]). The Task Planner is implemented
through PLATINUm (https://github.com/pstlab/PLATINUm)
implementing a classical plan refinement solving procedure
which consists in iterative refining the timelines of a plan by
solving flaws concerning the completeness and the temporal
validity of a plan (i.e., P&S flaws). Also, PLATINUm inte-
grates a pseudo-controllability check analyzing the duration of

'The modeled movements for the mannequin are: trunk (2 translations
and 3 rotations), shoulders (3 rotations each), elbow (1 rotation each), wrist
(3 rotations each).

~

Lo

Fig. 4: A 7-degree-of-freedom robot and an operator collabo-
rate to assemble a mosaic on the worktable; cubes of different
colors are placed near the agents allowed to pick them.

,

rosbridge_suite

motion
request

motion
request

motion
feedback

motion
feedback

ROBOT HUMAN

HMI PANEL

to motion planner to motion planner

Fig. 5: ROS data-flow scheme between task planner, HMI,
and motion planner nodes.

partially-controllable or uncontrollable values of the timelines.
The solving procedure is completed when no flaws are found
and a complete and valid partially-controllable set of timelines
is synthesized. In this experiment, we ran PLATINUm using
a hierarchy-based heuristics for flaw selection and a HR-
balancing search strategy for search space expansion. The
hierarchy-based heuristics is domain independent. It infers a
hierarchy among the detected flaws of a timeline-based plan
by using a topological sort algorithm on an acyclic graph-
based representation of their dependencies (extracted from
the synchronization rules of the model). According to this
hierarchy, the algorithm randomly selects one of the flaws
belonging to the equivalent set at the highest level of the
hierarchy (i.e., the “most independent flaws™) [20].

The HR-balancing search strategy is specifically designed
for HRC planning problems. This search strategy analyzes
the partial plans of the search space and selects the ones that
better balance the work-load between human and robot.

The communication between the planners is schematized
in Fig. 5. One ROS-node for each agent (human_node and
robot _node in Fig. 5) converts the task Planner’s functional
goals into motion instances of the motion planner algorithm.

Human.Idle

Human._PickPlace

Goal.DoMosaic
Mosaic.Idle
Mosaic.DoRow3
Mosaic.DoRow4
Mosaic.DoRowS
Mosaic.DoRow1
Mosaic.DoRow2
Robot.Idle

Robot._PickPlace

Fig. 6: Plan generated for the collaborative mosaic

One request topic and one feedback topic are defined for
each agent node. The Task Planner publishes messages on
the request topics to request the execution of a task and
receives messages from the feedback topics to get the outcome
(success/failure) of tasks. Human tasks are not controllable
according to Section III-A: their duration is not ensured to
be finite, as well as the time from request to beginning (such
time might even be infinite if the operator refuses to perform
the given task). The ROS package rosbridge_suite was used
to set up the communication between PLATINUm and ROS.
The feedback from the user have been simulated through
the deployment of a simple random-delay trigger that sends
the feedback to the Task Planner after the human task is
completed. To simulate the effects of safety functions on
the robot motion (i.e., robot slowdown/stop when the human
enters the collaborative space), we have implemented a Speed
and Separation Monitoring function, according to ISO/TS
15066 [21] using a simplified safety-zone approach that
reduces the robot speed to: i) 50% of the nominal speed
when the distance from the human to the worktable is less
than 1 m; ii) 30% of the nominal speed when the distance is
less than 0.5 m; iii) 0% of the nominal speed (i.e., stop of
the robot) when the human is working on the worktable.

D. Use Case Simulation

Fig. 6 shows a Gantt representation of a timeline-based plan
synthesized of the collaborative mosaic. A timeline-based
plan encapsulates an envelope of possible temporal behaviors
as valid solutions to a planning problem. The Gantt shows
a single particular solution we refer to as the earliest start
time solution. The task planner takes about 20 seconds for
the synthesis of this plan which represents the time spent to
generate a task plan of the overall collaborative process to
build the mosaic. The collaborative mosaic indeed requires
the execution of a total number of 50 PickPlace tasks. If we
consider an average duration of 45 seconds for task, the total
execution time of the overall process would be 38 minutes
in the worst case (all tasks assigned to the human or to the
robot) and 20 minutes in the best case (perfect balancing
between human and operator, without physical disturbance).

As can be seen in the Gantt, plans synthesized by the task
planner uniformly distribute the tasks between the human

and the robot. The resulting plans indeed have an average
makespan of 52 time units with 26 Pick Place tasks assigned
to the human and 24 PickPlace tasks assigned to the
robot. Such plans show the efficacy of the task planner
in synthesizing suitable and effective collaborations with
reasoning time that complies with production latency. When
the plan is ready, the communication between the task planner
and the motion planning framework starts. The task planner
sends the robot current task to robot _node and the human
current task to human_node, then it waits for the feedback
message of each task. Feedback messages communicate
the outcome of the task. If the task was not achieved, is
refused by the operator, or exceeds its maximum duration,
task planner detects that the plan is not valid anymore and
re-plans the remainder of the process; otherwise, the plan
execution continues unaltered. Several phases of the case-
study simulation are shown in Fig. 7. The progress of the
mosaic assembly is shown from 0% (Fig. 7a) to 100% (Fig.
7f). For example, in Fig. 7a, the execution has just started;
while the human is placing a blue cube, the robot is still
because of the safety functions that reduce the robot speed
based on the proximity to the human. In Fig. 7e, the human
waits for the robot to finish its task, while the robot is picking
the last cube of Row 4. Fig. 7f shows the final mosaic.

IV. CONCLUSIONS AND FUTURE WORKS

The paper proposes a control-based approach based on
two layers (task and action planning) where each layer
reasons at a different level of abstraction. This constitutes
a hierarchical framework implementing a control loop that
leverages feedback to monitor the execution and dynamically
(re)optimize the process plan. Moreover, operators can
accept/discard commands (via HMI) and give feedback about
the outcome of his/her tasks. The method is applied to an
industrial case study in which a robot and a human worker
cooperate to assemble a mosaic. The main current limitation
is related to the need of an a-priori estimation of the sub-tasks
duration. This estimation is often inaccurate (e.g., it is hard
to account for robot safety holds/stops). Despite the timeline-
based modelling deals with temporal variability, larger error
in the time estimation weakens the robustness of the plan,
and the optimality is hard to be guaranteed. Future works
will focus on including a learning phase to produce a realistic
estimation of the sub-task durations. Moreover, experiments
in a real setting are necessary to assess user dependability,
investigate scalability and extensibility of the approach and
to compare its performance against industrial best practices.

ACKNOWLEDGMENT
This work is partially supported by ShareWork project
(H2020, European Commission — G.A. 820807). Alessandro

Umbrico is also partially supported by ROXANNE project
(H2020, ROSIN - G.A. 732287).

REFERENCES

[1] L. Monostori, B. Kadar, T. Bauernhansl, S. Kondoh, S. Kumara,
G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-
physical systems in manufacturing,” CIRP Annals, vol. 65, no. 2, pp.
621 — 641, 2016.

[2]

[3]

[4

flnam)

[5

[t}

[6]

[7

—

[8

[

[9

—

[10]

(11]

(a) Progress 0%

(b) Progress 20%

(c) Progress 40%

(d) Progress 60%

(e) Progress 80%

(f) Progress 100%

Fig. 7: Assembly of the cooperative mosaic during the simulation.

S. Pellegrinelli, A. Orlandini, N. Pedrocchi, A. Umbrico, and T. Tolio,
“Motion planning and scheduling for human and industrial-robot
collaboration,” CIRP Annals, vol. 66, no. 1, pp. 1 — 4, 2017.

S. Pellegrinelli, N. Pedrocchi, L. M. Tosatti, A. Fischer, and T. Tolio,
“Multi-robot spot-welding cells for car-body assembly: Design and
motion planning,” Robotics and Computer-Integrated Manufacturing,
vol. 44, pp. 97 — 116, 2017.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE International Conference
on Robotics and Automation, 2014, pp. 639-646.

J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation,” in Proceedings of the 20th
International Conference on Automated Planning and Scheduling,
ICAPS 2010, 2010, pp. 254-258.

L. de Silva, R. Lallement, and R. Alami, “The HATP hierarchical
planner: Formalisation and an initial study of its usability and
practicality,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 6465-6472.

T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for
solving sequential manipulation planning problems,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2014, pp.
3684-3691.

M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” 2015.

C. Zhang and J. A. Shah, “Co-optimizing task and motion planning,’
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), vol. 2016-Novem. IEEE, oct 2016, pp. 4750-4756.
N. Muscettola, “HSTS: Integrating Planning and Scheduling,” in
Intelligent Scheduling, Zweben, M. and Fox, M.S., Ed. Morgan
Kauffmann, 1994.

A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi, “MRSPOCK: Steps
in Developing an End-to-End Space Application,” Computational
Intelligence, vol. 27, no. 1, 2011.

>

[12]

[13]

[14]

[15]

[16]

[171

(18]

[19]

(20]

[21]

A. Umbrico, A. Cesta, M. Cialdea Mayer, and A. Orlandini, “PLAT-
INUm: A New Framework for Planning and Acting,” Lecture Notes in
Computer Science, pp. 498-512, 2017.

A. Orlandini, M. Cialdea Mayer, A. Umbrico, and A. Cesta, “Design
of timeline-based planning systems for safe human-robot collaboration,”
in Knowledge Engineering Tools and Techniques for Al Planning,
M. Vallati and D. Kitchin, Eds. Springer, 2020, pp. 231-248.

J. A. Marvel, J. Falco, and I. Marstio, “Characterizing task-based human-
robot collaboration safety in manufacturing,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 45, no. 2, 2015.

M. Cialdea Mayer, A. Orlandini, and A. Umbrico, “Planning and
execution with flexible timelines: a formal account,” Acta Informatica,
vol. 53, no. 6-8, pp. 649-680, 2016.

P. H. Morris, N. Muscettola, and T. Vidal, “Dynamic Control of Plans
With Temporal Uncertainty,” in International Joint Conference on
Artificial Intelligence (IJCAI), 2001, pp. 494-502.

A. Umbrico, A. Cesta, M. Cialdea Mayer, and A. Orlandini, “Evaluating
robustness of an acting framework over temporally uncertain domains,”
in AI*IA 2019 — Advances in Artificial Intelligence, M. Alviano,
G. Greco, and F. Scarcello, Eds. Springer, 2019, pp. 250-263.

I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72-82, December 2012, http://ompl.kavrakilab.org.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Proc. IEEE ICRA, Shanghai (China), 2011, pp. 4569-4574.

A. Umbrico, A. Orlandini, and M. Cialdea Mayer, “Enriching a
temporal planner with resources and a hierarchy-based heuristic,” in
AI*IA 2015, Advances in Artificial Intelligence. Springer International
Publishing, 2015, pp. 410-423.

“ISO/TS 15066:2016 Robots and robotic devices — Collaborative robots,”
International Organization for Standardization, Geneva, CH, Standard,
2016.

