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Abstract— This paper presents a haptic shared control
paradigm that modulates the level of robotic guidance, based
on predictions of human motion intentions. The proposed
method incorporates robot trajectories learned from human
demonstrations and dynamically adjusts the level of robotic
assistance based on how closely the detected intentions match
these trajectories. An experimental study is conducted to
demonstrate the paradigm on a teleoperated pick-and-place
task using a Franka Emika Panda robot arm, controlled via
a 3D Systems Touch X haptic interface. In the experiment,
the human operator teleoperates a remote robot arm while
observing the environment on a 2D screen. While the human
teleoperates the robot arm, the objects are tracked, and the
human’s motion intentions (e.g., which object will be picked
or which bin will be approached) are predicted using a
Deep Q-Network (DQN). The predictions are made considering
the current robot state and baseline robot trajectories that
are learned from human demonstrations using Probabilistic
Movement Primitives (ProMPs). The detected intentions are
then used to condition the ProMP trajectories to modulate the
movement and accommodate changing object configurations.
Consequently, the system generates adaptive force guidance as
weighted virtual fixtures that are rendered on the haptic device.
The outcomes of the user study, conducted with 12 participants,
indicate that the proposed paradigm can successfully guide
users to robust grasping configurations and brings better
performance by reducing the number of grasp attempts and
improving trajectory smoothness and length.

I. INTRODUCTION

Collaborative robotics is an emerging field, thanks to its
capability of putting robots in close distance to humans,
and thus boosting the range of applications across domains.
For example, significant contributions can be foreseen in
enabling robots in hazardous environments [1], in minimally
invasive surgery [2], operating in space [3] and for underwa-
ter exploration [4]. Although such robots have transformative
capability by delivering beyond human performance through
highly precise, rapid and stable movements in far more
degrees of freedom than the human hand, fully autonomous
solutions are not feasible due to environmental uncertainities
and complex decision requirements of the tasks. This brings
forward a need for developing shared control systems [5],
[6], [7], where both humans and robots may benefit from
one another’s capabilities by dynamically and appropriately
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Fig. 1. The human teleoperates the Panda arm to sort objects into bins
according to color, while viewing the scene on a computer screen.

assigning roles to the human and the robot [8], [9]. For
example, shared control can be applied on a teleoperated
nuclear waste sorting scenario, in which the human may be
given the control authority to decide how the heap should be
manipulated, whereas the robot can support the human by
completing mechanical actions in a smooth and precise way.

Even though robots are not yet capable of matching human
abilities in real world scenarios, in recent years, we witnessed
a rise of robot learning methodologies, allowing robots to
be programmed to learn from humans and generalise expert
knowledge on motor tasks [10], [11], [12]. The current
study leverages robot learning to integrate human intent
awareness with robot kinematic planning within a shared-
control context. We propose a haptic guidance framework
to predict human intent, and based on this prediction, dy-
namically modulate the level of assistance to enact robot
behavior for reaching dynamic objects and placing them in
static bins. Human and robot autonomy are combined to
appropriately guide teleoperators, so that no excessive or
misleading constraints are put on human operation. This
is done through an effective blend of human and robot
capabilities, where the robot continuously monitors human
operation to infer about the intended targets, and guides the
human toward feasible robot trajectories.

In order to study the proposed paradigm, we created a
teleoperated pick and place scenario. Figure 1 shows the
human’s view of the scene, where a haptic device is used
to teleoperate a simulated robot arm, while the human
observes the scene through a screen interface. Robot trajecto-
ries are pre-learned using Probabilistic Movement Primitives
(ProMPs) to program a library of robot behaviours, which
are then conditioned to modulate the motion to changing
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object configurations. A Deep Q-Network (DQN) is trained
to predict the human intent based on the robot’s end-effector
pose. DQN is used to streamline the intent detection and
generate rewards in real-time to modulate the level of robot
assistance. Once the human intent is detected, the robot
reactively responds to the intent, which is transferred to
the human in the form of kinesthetic guidance. This intent-
aware guidance paradigm allows humans the flexibility to
freely move around the scene and change targets as they
desire. In comparison with manual operation, the proposed
method improves task performance by significantly reducing
the number of grasp attempts when picking objects and
improving motion smoothness and trajectory length without
incurring extra energy.

II. RELATED WORK

The detection of human intention during physical inter-
action is not a straightforward problem. In this work, we
adopt a high level definition and consider intent as a target
configuration that a human aims to reach. This definition
is applicable to many robotic manipulation tasks, includ-
ing teleoperated picking and placing of objects. Previously,
Goodrich and Jr proposed a memory-based approach to
infer about user’s goals based on their intent history [13].
However, this approach depended greatly on data, which is
hard to gather in interactive robotic tasks and may be affected
by the personal perspectives when labelling intentions.

Humans can communicate intent through haptic cues [14],
although such mechanisms are hardly applied in robotics.
Moertl et al. has demonstrated the use of force-related
information to infer about immediate human plans, and used
this information to arbitrate robot autonomy [15]. Similarly,
Medina et al. investigated the human intent to change the
direction of motion [16]. Aydin et al. demonstrated the use
of a fuzzy intent estimator and integrated it via a variable
impedance controller to adjust robot autonomy [17]. An
intent detection scheme which uses principle of maximum
entropy over trajectories was proposed in [18]. Later, this
approach was modified using Bayesian filtering in a Markov
model under a probabilistic framework [19] for shared-
control operation. The predictions made in this method were
based on distance to closest goal or based on history of user
inputs towards the closest goal. Hence, these approaches may
fail when the goals are too distant or too close when inferring
about intentions. In contrast, our method predicts the human
intent towards the closest legible trajectories to reach goals,
learned directly from human demonstrations.

Another major issue in a human-robot scenario is the
programming or robot behaviours. For example, in our
sorting task, we have multiple activities, such as picking
and moving coloured objects and placing them in a bin with
the same colour. Even though this is a simple scenario, a
robot needs decision making and planning. A robot, when
placed in front of such a scene would not even be capable
of distinguishing between objects and bins. A human, on
the other hand, could quickly develop this understanding,
which can be transferred to the robot by teaching skills

to handle the scene. Our intent detection method relies on
learned models of previously executed task motions. We pro-
pose the combination of intent detection and Learning from
Demonstration (LfD) for motion planning as an end-to-end
paradigm for robot assistance in shared control human-robot
systems. LfD is an easy-to-use approach to transfer human
skills into robot motions through trajectory representations
learned directly from human operations [20], [10]. LfD has
been used as a popular method to support collaborative
robots in various industrial applications [21], [22]. Popular
LfD approaches use trajectory representations by Gaussian
Mixture Regression (GMR) [23], Gaussian processes (GPs)
[24] or Movement Primitives (MPs). Among these, MPs
have greater potential to generalize motions to different goals
using concise and simple representations with small time and
memory complexity. Due to the simplicity of representation
and adaptation power, in our work we use MPs known as
Probabilistic Movement Primitives (ProMPs) [25] to repre-
sent trajectories as weighted virtual fixtures to guide human
motion, while adapting to dynamic object motion in the
scene. We address the intent detection using reinforcement
learning (RL) to select between multiple trajectories by
computing a reward to match the nearest trajectory to the
current robot end-effector pose. The use of RL enables faster
matching in comparison to exhaustive search over all the
phase space of all trajectories (minimising the distance to
each phase of each trajectory), especially with a large number
of objects. Combining artificial neural networks and RL,
Deep Q-Networks (DQN) offer a model-free goal-oriented
approach to solve RL problems in continuous environments.

The benefits from the mental abilities of a human operator,
and the precision and reliability of a robot system can be
simultaneously achieved through shared control in a teleop-
eration scenario [26], [27]. Recently, [28], [29] investigated
shared control through optimization techniques to infer user’s
goals, in turn, to provide assistance. A teleoperation shared-
control architecture utilising learned trajectory properties for
assistance is described in [30] for reaching tasks, however,
without considering the intent of the operator. As demon-
strated [6], intent recognition can be effectively used to
choose the appropriate level of shared control autonomy.
Similarly, the choice of control autonomy in our current
work is framed as a role distribution problem [31], [32],
where human and robot autonomy are balanced by choosing
an appropriate level of robot autonomy, meanwhile selecting
the best way to guide the human. Recently, Ewerton et al.
introduced a framework using a combination of Gaussian
mixture models (GMM) and ProMPs, to infer best trajec-
tories when reaching for a specific target [33]. This study
used RL to model virtual guidance fixtures as potential
fields matching the operator’s intent to reach a single known
goal. Our work is essentially different as we do not learn
alternative ways to reach a target, but in contrast, we select
between multiple trajectories to reach a number of targets in a
complex environment, also accommodating changing object
configurations. In addition, our work enables dynamic auton-
omy in a novel way by weighting the guidance trajectories
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Fig. 2. a) The overview of the proposed framework to enable haptic control of the Panda arm. The bottom block presents the components of the predictive
haptic guidance mechanism including trajectory planning, intent detection and adaptive guidance. (b) The experimental scenario where the remote robot
arm is teleoperated to sort objects according to color.

depending on the confidence of prediction for the intent.

III. METHODOLOGY

A. Control architecture

Figure 2a represents an overview of the proposed
paradigm. The system is designed for bilateral teleoperation,
such that the remote arm will mirror the end-effector pose
of the haptic control interface, while feedback forces are
rendered on the haptic device and felt by the human. The
upper block of Figure 2a describes the control loop where
we use inverse kinematics to compute the desired robot joint
angles based on the end-effector position of the haptic device.
The contact force (F contact) is computed using the joint
torque readings captured by the built-in torque sensors at
each joint of the Franka Emika Panda arm. These torques are
multiplied by the Jacobian to compute the end-effector torque
F eff , which is scaled by a factor of 0.0002 to compute
F contact, so that the forces can be safely rendered by
the haptic device. The proposed predictive haptic guidance
paradigm (Figure 2a, bottom block) generates appropriate
guidance forces (F guidance) in a shared control context.
It is composed of trajectory planning, intent detection and
adaptive guidance components, which are detailed in the rest
of this section.

Note that F contact and F guidance are never simultane-
ously rendered on the haptic device, as that could have
created conflicts in the perceived forces. In order to avoid
such conflicting forces, feedback force (F fb) is generated in
the following manner:

F fb =

{
F contact if F guidance=0

F guidance otherwise
(1)

B. Trajectory Planning

In this study, we use ProMPs to learn good robot trajecto-
ries from human demonstrations to reach and grasp a set of
objects and sort them by color by placing them in static bins
located in the scene (See Figure 1). The ProMP trajectories
are learned prior to the experiments, and are considered
to work as baseline robot plans, which are selected as
appropriate to the estimated intent. Each trajectory is learned

through 10 demonstrations, and encodes the skill in terms of
how each object shall be grasped and moved to each bin.

In order to capture the coordinated movement of the joints,
each ProMP model is learned using the robot joint angles
qt over time, t ∈ {0 · · ·T}. Time-varying variance of the
trajectories from multiple demonstrations are captured using
basis functions. Basis function representations significantly
reduce the number of parameters learned for each phase
of the learned motion, which is one greatest advantage of
ProMPs to speed up the learning procedure.

The time-varying basis matrix Ψt ∈ RD×KD, where D
and K are the number of DoFs and the basis functions,
respectively, is defined as follows:

Ψt =

 φt · · · 0
...

. . .
...

0 · · · φt

 . (2)

Here, each φt ∈ RK is a basis vector that contains the
normalized Gaussian basis functions

φi(zt) =
exp(− (z−ci)2

2h )∑K
j=1 exp(−

(z−cj)2
2h )

, (3)

where h is the width of the basis and ci is the center of
the basis function i. The phase variable z is a monotonically
increasing function of time, defined within the interval zt ∈
[0, 1], which enables temporal modulation of the trajectory.
The basis functions φi are thus defined on the phase instead
of time.

The basis function matrix φt is weighted by a vector w
to represent the trajectory for the joint as

qt = φtw , (4)

where w ∈ RK . A Gaussian distribution over the weight
vector w contributes to the variance of the trajectory for
each timestep, and can be formulated using parameters θ =
{µw,Σw} as

p(w; θ) = N (w |µw,Σw) , (5)

where µw and Σw are the mean and covariance of the
learned distribution, respectively. Since we have the affine
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function represented in (4) for a single joint, the distribution
of the states of all joints at time t using (2) can be obtained
as follows (Refer to [25] for details) :

p(qt; θ) = N (qt |Ψt µw, Φt Σw ΨT
t ) . (6)

This representation enables modulation through via points
using ProMP conditioning. In our context, ProMP condi-
tioning allows the robot to modify a trajectory for passing
through new via points to accomodate changes in object
configurations in the scene. The modified ProMP parameters
(µ∗w,Σ

∗
w) can be obtained by feeding joint angles q∗ to

ProMP at a specific timestep t as follows:

µ∗w = µw + L (q∗t − ΨT
t µw)

Σ∗w = Σw − LΨT
t Σw

L = Σw Ψt (Σ
∗
q + ΨT

t ΣwΨt)
−1

(7)

This is a required feature as the object poses can change
during manipulation, such as if pushed around while picking.
The conditioning guarantees a smooth trajectory that blends
with robot’s current behavior and allows precise task com-
pletion as shown in Figure 3. In this example, the trajectory
is conditioned to pass through two points, one at midway
(Figure 3a) and another at the end (Figure 3b). The via point
is the robot’s joint position calculated at target end-effector
positions. The plots shows that a trajectory can be smoothly
altered to meet the new conditions for all joints successfully.

a ) Conditioning with a new via-point, marked by an asterisk at t = 0.5s

b ) Conditioning with a new via-point at t = 0.5s and a new goal point at t = 1s

Fig. 3. Conditioned ProMP trajectories for seven joints (q0 - q6). The
black line and the blue area refer to the mean ProMP trajectory and
its variance learned through multiple demonstrations, respectively. The
conditioned mean trajectory for each case is shown via the red line, whereas
the red asterisks are the conditioning points.

Fig. 4. Intent detection training flowchart

C. Intent Detection with DQN

This section describes how intent detection is enabled in
our shared-control framework. Consider that there is a list of
goals in the environment, each with a corresponding ProMP
trajectory formulated in (6). To estimate the human’s motion
intention, we use a Deep Q-Network (DQN), which takes
robot’s end-effector position as input and predicts the in-
tended ProMP trajectory. In addition, an interpolated path is
computed to reach the nearest phase on the intended ProMP
trajectory. This is later blended with the conditioned ProMP
trajectory to compute smooth guidance. Using the DQN
allows the selection of the nearest trajectory quickly, without
iterating over all phases in all ProMP trajectories. Besides,
the long-term reward maximization facilitates adding further
constraints such as obstacles and joint limits.

The DQN uses the reward function r, which is the negative
Cartesian distance between the robot’s current end-effector
position s and the end-effector position at the nearest phase
z of the intended ProMP trajectory p(qz; θ):

r = − min
z∈[0,1]

(d(s, T p(qz; θ))) (8)

Here T is the forward kinematics transformation, which
maps the joint space to Cartesian space. Since we are dealing
with multiple goals and multiple plans corresponding to
each of these goals, during training, the intent recognition
engine continuously loops through all possible trajectories
to avoid overlapping; hence enabling convergence to a single
trajectory.

The Q value is iteratively updated using a Bellman
equation, which is described in (9). In this function, rt +
γ max

a
Q(st+1,a) plays the role of the target value.

Q(st,at)← Q(st,at) + α[rt + γmax
a
Q(st+1,a)−Q(st,at)]

(9)

where Q(s,a) is the Q value for taking action a at state s, α
is learning rate, r is the reward value, and γ is the discount
factor.
The DQN uses the loss function in (10) to perform gradient
descent, where N is the number of samples, y is the Q target
value and Q(s,a; θ) refers to the Q value of taking action
a at state s given parameters θ.

Loss =
1

N

N∑
i=1

(yi −Q(si,ai; θ))
2 (10)
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Fig. 5. Estimated intentions with respect to the distance of the end effector
to nearest phase on the ProMP trajectory for reaching four targets.

Figure 4 describes the training phase of our intent detec-
tion model. The initial end-effector positions are randomly
distributed in the workspace. Epsilon-Greedy algorithm bal-
ances between exploration and exploitation in choosing steps
towards six directions. The episode terminates when the
robot reaches one phase of any learned ProMP trajectory.
We use experience replay to randomly pick samples from
this memory to get the collected experience for training
the network. The system contains two networks, which are
similar in structure but different in parameters, known as
target and prediction (also called evaluation) networks. The
parameters of the prediction nets will transfer to the target
one after a defined number of iterations.

Figure 5 demonstrates how estimated intent changes with
respect to Cartesian distance calculation over a period of
time. The results are presented on a simple scenario, where
the human moves freely in between four target objects
(numbered 1 − 4) within a 3D scene. Respectively, four
ProMP trajectories are learned to reach each object. The
DQN model can detect the target that matches the nearest
trajectory. Note that due to the ProMP representation, the
learned trajectory distributions may overlap and hence the
resulting intent may oscillate in case two trajectories are
close to each other.

The intent recognition engine continuously computes a
reward during motion, based on the current end-effector
position. This reward is used to select the target object
and the corresponding trajectory. A sequence of steps are
computed to attract the human toward the nearest target
trajectory phase. Figure 6 illustrates the operation of the
intent detection engine in the example scene used in Figure
5. Here, the human starts the motion from point A, and
moves to reach point B along the blue trajectory. At this
point, the DQN model outputs the current intention as Object
2, and estimates the nearest phase on the corresponding
ProMP trajectory to reach this object. The guidance action is
computed to attract the human toward this trajectory (marked
with the red dotted line between B and the ProMP trajectory).
However, the human doesn’t comply with guidance, and

Fig. 6. Intent detection responds to the human operator’s behaviors: The
grey lines are the mean ProMP trajectories towards 4 different objects (1−
−4). Blue lines connecting points A, B, C indicate the movement of the
human. The red and green dotted lines are the paths output by the DQN
model at point B and C, respectively. The guidance attracts the human
toward the most likely ProMP trajectory, however it can be easily overridden.

continues the motion to proceed to Point C along the blue
trajectory. At C, the intent recognition engine estimates that
the human’s intent has changed to Object 4, hence guidance
is provided to lead the human to the closest phase in the
corresponding trajectory over the green dotted line.

In order to ensure teleoperators retain control over robotic
autonomy, we implemented a mechanism to break robot
guidance if the human doesn’t choose to move toward the
guided trajectory e.g. move to another direction within a
given time window, (0.3s in our experiment). In this case,
guidance forces are cancelled and the DQN will detect
another target.

D. Adaptive Haptic Guidance

As the intended target is estimated, we generate two
consecutive motion plans. The first is the output of the intent
detection engine, and describes a path to snap to the closest
phase on the indended ProMP trajectory. The second one is
the ProMP trajectory conditioned with the (possibly changed)
object pose. The robotic autonomy is programmed as haptic
virtual fixtures guiding on these two trajectories. In order to
avoid jerky changes in the guidance forces when starting and
stopping the guidance, an exponential function is applied on
the force profile to damp the forces.

As mentioned earlier, modulating the role switching be-
havior between robot autonomy and human control is impor-
tant in shared control. If the robot is too persistent in guiding
the human, the operation could become restraining for human
decision taking. What is important to note here is that the
intent detection engine estimates a path to the intended
trajectory and this information can be used to capture the
confidence about the correctness of the estimated intent. This
is implemented regarding the number of steps required to
snap to the estimated ProMP trajectory. Since this path leads
the robot from its current position to the nearest phase on
trajectory, a large number of steps indicate that the human
is relatively far away from the robot’s plan, thus the belief
that the detected target is correct is weak. Accordingly, the
adaptive guidance mechanism we propose weights the force
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guidance given through the haptic device by introducing
a belief coefficient based on the distance to the intended
ProMP trajectory. The belief coefficient will make sure that
the engine doesn’t put too much force towards one trajectory
while the user is still moving undecidedly. As a result, if
the user suddenly switches to a different direction, the force
guidance will be switched off until the next detection.

Equation 11 denotes how we calculate our adaptive force,
where k is the scaling gain (k = 9), N is the predefined
threshold for the maximum number of steps to the ProMP
trajectory to consider as user intention, r is the number of
steps taken to the intended phase on the ProMP trajectory,
st+1 is the next expected end-effector position from st on
the computed trajectory.

F guidance = k(N − r)(st+1 − st) (11)

IV. EXPERIMENTS

In order to evaluate the proposed framework, we con-
ducted a user study in a teleoperated pick-and-place scenario.
A 3D Systems Touch X haptic device is used to control a
Franka Emika Panda robot arm with 2-finger grippers as the
remote system. The participants monitored the operation of
the remote arm through a 2D screen.

12 subjects (1 female, 11 male) aged between 23 and
38 from different academic backgrounds, participated in the
study. 5 participants had no prior experience working with
robotic arms and 3 had experience using haptic devices. At
the beginning of the trials, the participants were given an
instruction sheet providing the details of the experiment and
the required task. A practice session is presented to allow
participants to get familiar with the robot and teleoperation
using the haptic device. The practice session was maintained
until participants felt comfortable with the control interface.
The participants signed an informed consent form at the
beginning of the experiment. A full ethics approval (reference
2019-Jul-0802) was obtained from the Human Ethics Com-
mittee in the University of Lincoln, where the experiments
took place in, and a full risk assessment was completed
before the commencement of the studies. Appropriate auto-
matic and manual safety measures were installed, including
physical and software-based kill switches, and moderated
by the experimenter to stop the haptic device in case of
emergency.

Among 12 subjects, 2 were left-handed and all of them
used their dominant hands to control the remote robot. The
Franka fingers were controlled using the button on the haptic
device stylus. The experimental scene is shown in Figure
2b, where four objects and two trays, colored either red
or yellow, were placed within the workspace of the Panda
robot. Participants were asked to sort each object to the trays
with matching colors. The colors of the trays were constant,
whereas the colors of objects were pseudo-randomly chosen
(i.e. the same colors were selected in each trial, so all par-
tipants experimented with the same object color sequence).
The controller was agnostic to the colors; as a result, only the
human could decide which object should go to which tray.

The objects were located relatively close to each other, so
that the intent detection was not straightforward. We tested
two conditions within the experiment:
• Manual mode: Users had complete control of the remote

arm through the haptic device. They were provided with
collision forces with objects and the scene.

• Guided mode: In addition to collision forces, the users
were also provided with guidance forces that led the
haptic stylus over a learned trajectory to reach and
place objects, using the proposed intent-aware predictive
haptic guidance paradigm.

A balanced within-subjects design was used in the ex-
periment, so that all participants experimented with both
conditions. The subjects were randomly allocated into two
groups to eliminate ordering effects, where the first group
experimented with the manual mode first, whereas the second
group experimented with the guided mode first. Participants
were not informed in advance which mode they experimented
on. Each participant completed three trials in each condition,
carrying out 12 picking and placing operations (3 trials × 4
objects in the scene) in total.

As the robot does not know which tray the objects should
be sorted in, the high-level decisions were made completely
by the human operators. In our experimental scenario, the
predictive haptic guidance was provided during both picking
and placing phases of the task. Object positions were tracked
continuously to condition the ProMP trajectories. Objects
that are already sorted were removed from the list of targets
that were considered for intent detection. We recorded time-
stamped joint torques, positions and velocities during the
experiment. The following metrics are used to evaluate the
results of the user study:
• Time: The total time to pick and place four objects is

recorded for each trial.
• Number of correctly sorted objects: The number of

correctly sorted objects, i.e. those placed in a tray of
the same color, are counted for each trial.

• Number of grasping attempts: The number of times
that the user pressed the haptic device button to close the
Franka grippers is counted as the number of grasping
attempts per trial.

• Energy: We compute the energy consumption of the
task by integrating the human exerted power over time
as E =

∑T
t=0 τ(t) q̇(t), where τ and q̇ are joint torques

and velocities of the remote robot, respectively, and T
is the duration of the trial.

• Trajectory length: The total length of the trajectory in
each trial is computed to measure trajectory complexity.

• Trajectory smoothness: Spectral arc length [34] of
robot joint motions is computed, and their average is
used to measure motion smoothness at each trial.

At the end of each condition block, the participants were
given the NASA Task Load Index (TLX) [35] to assess their
perceived workload on a 5-point Likert scale.

In order to investigate the statistical significance of ob-
served differences between the conditions, we conducted t-
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tests for the continuous level measures. Wilcoxon signed-
rank tests were conducted for ordinal level survey data.

Figures 7 and 8 illustrate a comparison of the quantitative
metrics. The results indicate no significant effect of the
conditions (manual vs. guided mode) on task completion
time and energy. On the other hand, a statistically significant
difference is observed in terms of the trajectory smoothness
(t(36) = 3.01, p < 0.005) and trajectory length (t(36) =
2.27, p < 0.05). This indicates that the subjects performed
significantly more smoothly under guidance, and completed
the motions in a more targeted and concise manner.

In terms of task performance, we observed that the sub-
jects completed the sorting task almost perfectly (with the
exception of a single object being misplaced in the manual
mode over all trials) in both conditions. A statistical signifi-
cant difference between conditions is observed in the number
of grasping attempts with t(36) = 2.02 and p < 0.05.

Fig. 7. Mean values and standard errors of the means for task completion
time, trajectory smoothness in joint space, trajectory length, and energy,
under manual and guided modes. For the spectral arc length metric, the
values closer to zero indicate smoother trajectories.

Figure 9 shows the results of the workload assessments
under each condition. No statistical significant differences
are observed for any of the subjective measures. Overall,
the participants assessed the workload rather low in all
dimensions of the NASA-TLX in both modes, indicating that
the task was not perceived as hard or mentally demanding.

Fig. 8. The medians and IQRs for the number of correctly sorted objects
and grasping attempts under each condition.

V. CONCLUSIONS AND FUTURE WORK

This study proposes a predictive haptic guidance method-
ology, combining intent detection, trajectory planning and

Fig. 9. Comparison of perceived task workload in two modes.

adaptive assistance as a shared-control solution. This is an
end-to-end mechanism, applicable to teleoperated pick and
place tasks in industrial applications. We employed a deep
reinforcement learning method for detecting an operator’s
intended goal and finding the shortest path towards baseline
ProMP trajectories, learned from experts’ demonstrations.
Attraction toward dynamic objects are handled leveraging the
Gaussian conditioning property of ProMPs. Force guidance
is adaptively rendered on the haptic device, based on the
robot’s confidence of the detected intent.

The results of the user study shows that our system
can provide operators with intuitive assistance. With force
guidance, participants can grasp objects more precisely and
optimize their trajectories, which is manifested in signifi-
cantly lower number of grasping attempts, shorter trajectory
length and smoother joint trajectories.

The proposed framework has the ability to detect users’
intention in real time and generate a complete trajectory
from current pose to the intended target based on the learned
knowledge from experts’ demonstration. The current study
works with a limited number of trajectories, hence its ability
to work in unknown scenes is not readily demonstrated.
Please note that the paradigm can be extended to iteratively
learn trajectories from experience to handle situations where
current robot trajectories are far away from learned models.
However, this is beyond the scope of the current study and
will be examined as part of future work.

Due to COVID-19 and related workplace restrictions, the
experimental study was conducted on a simulation frame-
work, where manipulating and grasping with robot is easier
than what one would have with a real robot arm. Through
using the haptic interface, the participants were able to feel
realistic sensations, and strong significant differences are
observed during the experiment. As future work, we will
implement the interaction mechanism on a physical robot.

The current paradigm does not consider strong conflicts
between the plans of the user and the robot. Although the
framework can handle slight changes to target configurations,
larger diversions are not tested in this experiment. In addi-
tion, the paradigm does not model situations where human
intentions are significantly different than the plans in the
robot’s repertoire. To tackle this, active learning mechanisms
can be integrated in the current framework to enable iterative
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learning to enrich the robot’s behaviour library. In addition,
extending on our recent work [36], [37], we plan to integrate
active conflict recognition within this framework, and as
a result, handle not only collaborative but also conflicting
scenarios in physical human-robot interaction.
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