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A Mixed-Integer Linear Programming Formulation for Human

Multi-Robot Task Allocation

Martina Lippi, Alessandro Marino

Abstract— In this work, we address a task allocation problem
for human multi-robot settings. Given a set of tasks to perform,
we formulate a general Mixed-Integer Linear Programming
(MILP) problem aiming at minimizing the overall execution
time while optimizing the quality of the executed tasks as
well as human and robotic workload. Different skills of the
agents, both human and robotic, are taken into account and
human operators are enabled to either directly execute tasks
or play supervisory roles; moreover, multiple manipulators can
tightly collaborate if required to carry out a task. Finally, as
realistic in human contexts, human parameters are assumed to
vary over time, e.g., due to increasing human level of fatigue.
Therefore, online monitoring is required and re-allocation is
performed if needed. Simulations in a realistic scenario with two
manipulators and a human operator performing an assembly
task validate the effectiveness of the approach.

I. INTRODUCTION

In the last decade, Human–Robot collaboration (HRC) has

received increasing interest of the research community, as

well as of the the industrial world. The benefits of having

humans and robots cooperating in the execution of complex

tasks lay in the possibility of achieving flexible and highly

reconfigurable production systems and of easily changing

task execution to accommodate different product families

while meeting high quality standards [1].

Antithetical yet complementary capabilities characterize

human and robot entities: reasoning and manipulation skills

for the human component, strength and endurance capabili-

ties for the robotic one. The different abilities make humans

and robots better suited to different sets of tasks, e.g., the

former are more apt to handle objects of small size or

with particular shapes and/or materials, while the latter are

more appropriate for manipulating heavy objects with regular

shapes or for performing repetitive tasks [2].

Indeed, a core component of HRC is how to optimally

distribute tasks between robotic and human counterparts;

despite the potentialities of human-robot collaborative sce-

narios, task allocation in these setups is far from trivial

since there are a variety of tasks that can be performed by

both and for which it must be decided to whom to assign

execution while maximizing certain criteria. Furthermore,

several tasks also exist that benefit from the simultaneous

collaboration of humans and robots, e.g., robots holding

large parts for assembly and humans performing operations

on these parts [3]. Concerning the optimization criteria,

different factors should be taken into account such as overall
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completion time, human fatigue, and specific expertise. In

addition, human parameters are generally challenging to be

quantified and can vary over time.

In this work, we propose a novel flexible task alloca-

tion formulation in which multiple manipulators and human

operators are involved. In the proposed framework, each

agent, either human or robotic, can be differently skilled at

a given task. Multiple manipulators can tightly collaborate if

required to carry out a task, while human operators can either

directly execute tasks or play a supervisory role, allowing to

guarantee a minimum task execution accuracy. Indeed, the

supervisory role can be useful, for example, in case where

the robotic component is not fully capable at a task and the

person monitors its activity to prevent errors from occurring.

Moreover, precedence as well as spatial constraints are taken

into account by the devised framework with the latter taking

into consideration that, due to workspace limitations, some

tasks might not be carried on simultaneously.

The devised solution aims at minimizing the overall re-

quired time while optimizing the quality of the executed

tasks as well as human and robotic workload. Moreover,

as realistic in human contexts, we consider that human

parameters can vary over time. Therefore, the proposed

framework also comprises online monitoring and possible

re-allocation whenever required to meet future constraints as

well as to preserve the solution optimality to a certain extent.

II. RELATED WORK

Task allocation and scheduling for multi-robot as well for

human-robot teams are important problems with applications

to manufacturing, warehouse automation, and pickup-and-

delivery [4]. Human-Robot and Multi-Robot Task Allocation

(HRTA and MRTA, respectively) share many common points

and methodologies but also have inherent differences due

to peculiarities of human agents. Indeed, the problem of

MRTA is formally addressed in [5] by combining operations

research and combinatorial optimization, and how this for-

malism can be used for the synthesis of new approaches is

shown. Since then, several approaches have been proposed

addressing many aspects and problems concerning both

MRTA and HRTA as, for example, distributed implemen-

tation; this is the case in [6] where authors focus on a

distributed multi-robot setting with tasks having time window

and ordering constraints.

The work in [7] formulates a MILP problem in which

temporal and spatial constraints are taken into account in the

framework of HRTA and re-planning is envisaged as well.

In detail, the solution is a multi-agent task sequencer that
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is inspired by real-time processor scheduling techniques and

is adapted to leverage hierarchical problem structure. The

same authors in [8] conduct experiments to establish the

effect on the task allocation solution of the team composition

and of the level of influence authority. In this perspective,

the allocation could be completely made by human, semi-

autonomous, with the human deciding which task to allocate

to himself/herself, or autonomous, i.e., the robot allocates

all tasks. The authors found that an autonomous robot can

outperform a human worker in the execution of part or all

of the process of task allocation, and that people preferred

to cede their control authority to the robot.

A closed-loop planning framework which adapts to vary-

ing human parameters and task sets is presented in [9].

Highly coupled tasks between humans and robots are con-

sidered and human parameters like task execution time,

workload and performance are adopted to update in real-time

parameters of human model with the purpose or replanning

whenever required.

The work in [10] considers a scenario requiring processing

multiple parts, each consisting of a series of tasks con-

strained by precedence relationships between them. Tasks

are executed by human workers and robots which are re-

sources required for processing tasks, and the problem is

identified as a simplification of the Multi-Mode-Resource-

Constrained-Project-Scheduling problem. Differently from

previous works, additional constraints, such as minimum

distance requirements and waiting times for agents, are added

in order to enhance the fluency of the mixed human-robot

team. Finally, heuristics are proposed by the authors to solve

the problem and mitigate the computational burden required

by the proposed model.

The problem of task allocation in a framework where

single human is involved is presented in [11]. The assembly

scheduling problem is adaptive in the sense that it is modu-

lated according to human capabilities: the latter is constantly

monitored and re-allocation is carried out if its variation is

above a pre-defined threshold; a genetic algorithm is then

used to solve the optimization problem.

In [12], the task distribution between humans and robots

is addressed by considering a quantitative classification of

task complexity. The latter considers physical features of

components to be assembled and tasks are differentiated

in high-complexity tasks due to the inherent complexity of

handling and mounting components and in low-complexity

tasks. It is shown that such a classification lowers deployment

and changeover times.

Human factors are considered also in [13], where task

allocation in human-robot assembly applications is addressed

by considering human capabilities and workload as well as

ergonomics aspects based on the human body posture.

Similarly to previous work, in [14] factors to be considered

in allocating tasks among a set of agents made of humans and

robots in industrial manufacturing scenarios are considered.

Tasks are decomposed in atomic actions and are offline

allocated based on indexes like complexity, agent dexterity,

required effort, and experiments are carried out to evaluate

system’s performance.

Finally, work in [15] focuses on large-scale instances in

which algorithmic solutions can be not suitable and proposes

a graph attention network-based scheduler which leverages

imitation learning to learn from expert demonstrations on

small scale problems.

With respect to previous works, the following novelties

are introduced:

• the offline task allocation takes into account several

features and constraints simultaneously, like time and

spatial constraints, and it allows to assign more than

one agent to the same task; moreover, the concept of

human supervision is introduced in order to increase

the quality of task execution;

• a closed-loop re-scheduling framework is devised that,

based on real-time monitoring of parameters perfor-

mance, is able to adapt to dynamic and stochastic agent

parameters.

III. PROBLEM SETTING

TABLE I

MAIN NOTATIONS INTRODUCED IN THE PAPER.

Variable Meaning

m Number of tasks

na Number of agents

nr Number of robot agents

nh Number of human agents

M ∈ R Arbitrary large positive constant

T Set of tasks T = {τ1, τ2, · · · , τm}
A Set of agents A = {a1, a2, · · · , ana} comprising

humans and robots

Ar Set of robot agents Ar = {ar,1, ar,2, · · · , ar,nr }
Ah Set of human agents Ah =

{ah,1, ah,2, · · · , ah,nh
}

g(τi) Task category to which τi is associated

Xi,j ∈ {0, 1} Binary decision variable for the assignment of task
τi to agent aj

Si,j ∈ {0, 1} Binary decision variable for the assignment of hu-
man supervision of task τi ∈ T to human agent
ah,j ∈ Ah

Pi,k ∈ {0, 1} Binary variable denoting a precedence constraint,
i.e., if Pi,k = 1 task τi must end before task τk ,
otherwise no order is assigned

Di,k ∈ {0, 1} Binary variable denoting if there is a spatial con-
straint, i.e., if Di,k = 1 task τi and τk require to
occupy the same location.

Ci ∈ {0, 1} Binary variable which is 1 if task τi requires
two agents to be executed (collaborative task), 0
otherwise

ti, ti Start and end times of task τi
∆i,j Execution time required by agent aj to perform task

τi
TM Maximum overall execution time

qi,j Execution quality index for executing task τi by
agent aj

qsi,j Supervision quality provided by human agent aj ∈
Ah for task τi ∈ T

wi,j Workload of agent aj in performing task τi
ws

i,j Workload of human agent ah,j in supervising task
τi

Vi,k,j ∈ {0, 1} Auxiliary variable for allocating at most one task to
each agent at each time

Zi,k ∈ {0, 1} Auxiliary variable for spatial constraints

δ Re-allocation parameter



In this section, we describe the problem setting and intro-

duce the main variables of the paper, which are summarized

in Table I. We consider a human-multi-robot collaborative

scenario in which there are several tasks to accomplish, with

different requirements and constraints, and there are several

agents to which these tasks might be allocated. In detail,

agents are divided into human and robot agents. We denote

the set of agents by A = {a1, a2, · · · , ana
} = Ah ∪ Ar,

with Ah = {ah,1, ah,2, · · · , ah,nh
} the set of human agents

with cardinality nh, Ar = {ar,1, ar,2, · · · , ar,nr
} the set of

robotic agents with cardinality nr and na = nh + nr. A

set T = {τ1, τ2, · · · , τm} of m tasks with cardinality m is

defined in which:

• precedence constraints are defined, i.e., a binary variable

Pi,k is introduced for each couple of tasks τi, τk and is

1 if task τi must end before task τk, 0 otherwise. This

allows to express sequentiality of tasks;

• estimated execution times by each agent are defined,

i.e., ∆i,j is the execution time required by agent aj to

perform task τi;

• estimated workloads for each agent are defined, i.e., we

denote the workload for agent aj to execute task τi
by wi,j ;

• spatial locations are assigned, i.e., for each task τi the

location pi ∈ R
3 where it should be carried out is

defined. Based on this, we introduce the binary variable

Di,k which is equal to 1 if the execution locations of

task τi and τk are too close to be executed simultane-

ously, i.e., Di,k = 1 if ‖pi − pk‖ < ε with ε a positive

threshold, 0 otherwise. These variables are symmetric

by construction, i.e., Di,k = v implies Dk,i = v with

v ∈ {0, 1}, and enable to guarantee that no tasks

are simultaneously carried out in the same location.

Note that any criterion to define volume occupation for

executing each task can be adopted to define Di,k.

Based on the estimated execution times, it is possible to

define the maximum time TM to execute all the tasks. We

assume that tasks are partitioned into groups or clusters

according to common features, e.g., two pick-and-place

operations of the same kind of object reasonably belong

to the same cluster. We denote the group that is associated

with task τi by g(τi). Note that this does not undermine

the generality of the approach as m different groups can

be defined, i.e., each task can be associated with a different

group. In addition, we consider the following features for the

tasks:

F.1 a task must be executed with a certain level of accu-

racy and may be supervised by a human operator to

guarantee its correctness;

F.2 a task may be required to be carried out in a collabo-

rative fashion, e.g., transporting heavy/large objects;

F.3 a task can be suitable for humans only, e.g., manipulat-

ing objects with difficult geometry or which are highly

deformable;

F.4 a task can be suitable for robots only, e.g., carrying

very heavy objects or manipulating objects that can be

dangerous for human operators.

To formalize F.1, we introduce an execution quality index

qi,j ∈ [0, 1], ∀τi ∈ T , aj ∈ A which, for each pair

(agent aj , task τi), assesses the quality of the execution of

task τi by agent aj . We assume that tasks in the same group

are associated with same execution quality index for each

agent aj , i.e., qi,j = qk,j if g(τi) = g(τk), ∀τi, τk ∈ T . A

minimum quality q is required to guarantee a minimum task

execution accuracy. If an agent does not meet the minimum

quality requirement for a certain task, a human operator can

be assigned for its supervision. In this way, the human can

monitor if the task execution is correct or not, and possibly

intervene if necessary. We thus introduce a supervision

quality qsi,j ∈ [0, 1], ∀τi ∈ T , aj ∈ A which quantifies for

each human agent aj the achievable quality for task τi under

his/her supervision. Human intervention is allowed during

supervision, and supervision quality is equal to 0 for robotic

agents, i.e., only human operators can play supervision role.

As for the execution quality index, we consider that tasks

in the same group are associated with same supervision

quality index for each human agent ah,j , i.e., qsi,j = qsk,j
if g(τi) = g(τk), ∀τi, τk ∈ T . We consider that quality

indices are additive, i.e., the overall quality of a task is

given by the sum of the qualities of the agents that execute

and supervise it. Note that this is only a possible choice

made in the paper, but the proposed framework could be

easily extended to tackle different models for the quality, e.g.,

considering minimum or maximum quality of the involved

agents as overall quality of the task. Note that the quality

indices can generally vary over time and we update them at

the end of the execution of each task as detailed in Section V.

Concerning the remaining features, collaborative tasks in

F.2 are denoted by the binary variable Ci, ∀τi ∈ T which is

equal to 1 if task τi requires two agents to be accomplished,

0 otherwise. With regard to features F.3 and F.4, let Tj be

the set of tasks that can be carried out by agent aj ( either

robotic or human); these features can be easily expressed by

setting ∆i,j = M , with M an arbitrary high constant, or

wi,j = M for tasks τi ∈ T \ Tj .

IV. HUMAN MULTI-ROBOT TASK ALLOCATION PROBLEM

Let Xi,j be the binary decision variable for the assignment

of task τi to agent aj , i.e., Xi,j = 1 if agent aj has

to execute task τi, Xi,j = 0 otherwise, let Si,j be the

binary decision variable for the supervision of task τi by

the human agent aj , i.e., Si,j = 1 if human aj has to

supervise the execution of task τi, Si,j = 0 otherwise, and

let ti, ti be the starting and end time of each task τi ∈ T .

Our objective is to define the tasks assigned to each agent

and the respective starting and end times as well as the

supervision assignments by minimizing a cost function while

complying with system constraints. In detail, the following

MILP problem is formulated:



min
Xi,j ,Si,j ,ti,ti

max
τi∈T

ti

TM
︸ ︷︷ ︸

makespan

−
∑

τi∈T

∑

aj∈A

(
qi,jXi,j + qsi,jSi,j
︸ ︷︷ ︸

overall quality

− wi,jXi,j − ws
i,jSi,j

︸ ︷︷ ︸

overall workload

)

(1a)

s.t.
∑

aj∈A

Xi,j = 1 + Ci, ∀τi ∈ T (1b)

Si,j +Xi,j ≤ 1, ∀τi ∈ T , ah,j ∈ Ah

(1c)
∑

τi∈T

∑

ar,j∈Ar

Si,j = 0 (1d)

∑

aj∈A

(
qi,jXi,j + qsi,jSi,j

)
≥ q, ∀τi ∈ T (1e)

ti − ti ≥ Xi,j∆i,j ∀τi ∈ T , aj ∈ A
(1f)

tk − Pi,kti ≥ 0 ∀τi, τk ∈ T (1g)

tk − ti ≥ −M(2−Xi,j −Xk,j

− Si,j − Sk,j)−M(1− Vi,k,j)
∀τi, τk ∈ T , aj ∈ A

(1h)

ti − tk ≥ −M(2−Xi,j −Xk,j

− Si,j − Sk,j)−M Vi,k,j

∀τi, τk ∈ T , aj ∈ A

(1i)

tk − ti ≥ −M(1−Di,k)

−M(1− Zi,k)
∀τi, τk ∈ T (1j)

ti − tk ≥ −M(1−Di,k)

−M Zi,k

∀τi, τk ∈ T (1k)

According to the objective function in (1a), we aim to

minimize the system makespan, i.e., the overall execution

time, normalized with respect to the maximum execution

time TM while maximizing the overall process quality, given

by the cumulative quality of each task, and minimizing the

overall agents workload. The quality values at the allocation

time are considered, and supervision quality and workload by

human operators are also taken into account. The following

constraints are considered:

• equation (1b) ensures that the exact number of agents

is allocated to each task, i.e., for each task τi ∈ T a

total of one or two agents must execute it depending

on whether the task is collaborative (one agent case) or

not (two agents case);

• equation (1c) imposes the mutual exclusivity for su-

pervision and execution by human operators, i.e., for

each task τi ∈ T a human agent cannot simultaneously

execute (Xi,j = 1) and supervise it (Si,j = 1);

• equation (1d) imposes that no supervision can be per-

formed by robotic agents ar,j ∈ Ar;

• equation (1e) implies that a minimum quality q is

guaranteed for each task τi ∈ T . The overall quality

takes into account both the execution quality indices qi,j
of the assigned agents with Xi,j = 1 and the supervision

quality indices qsi,j for the assigned human supervisors

with Si,j = 1;

• equation (1f) defines the minimum duration of each

task, i.e., if task τi is assigned to agent aj (Xi,j = 1),

then the allocation time ti − ti must be at least equal

to ∆i,j ;

• equation (1g) allows to guarantee the required tasks

sequentiality, i.e., for each pair of tasks τi, τk ∈ T if

Pi,k = 1 then τk has to start after τi ends, while if

Pi,k = 0 no precedence is imposed;

• equations (1h)-(1i) ensure that each agent aj ∈ A
cannot simultaneously execute or supervise more than

one task. To this aim, the auxiliary decision binary

variable Vi,k,j ∀aj ∈ A, τi, τk ∈ T is introduced. Let us

consider the case in which both tasks τi, τk are assigned

to agent aj , i.e., Xi,j = Xk,j = 1. By virtue of (1c)

and (1d), it follows that Si,j = Sk,j = 0. Equations

(1h)-(1i) thus lead to

tk − ti ≥ −M(1− Vi,k,j)

ti − tk ≥ −M Vi,k,j

implying that either tk ≥ ti (if Vi,k,j = 1) or ti ≥ tk (if

Vi,k,j = 0), but no simultaneous execution can occur.

Similar reasoning applies for the case in which Si,j =
Sk,j = 1. Finally, when the tasks are not assigned to the

same robots, no constraints are imposed by (1h)-(1i);

• equations (1j)-(1k) allow to specify that tasks that

occupy the same spatial location are not executed si-

multaneously. Similarly to the constraints in (1h)-(1i),

we introduce an auxiliary decision binary variable Zi,k

∀τi, τk ∈ T . Based on this, if a spatial limitation exists

between tasks τi, τk, then equations (1j)-(1k) lead to

specify that either τk starts after τi, i.e., tk ≥ ti when

Zi,k = 1, or the opposite holds true, i.e., ti ≥ tk when

Zi,k = 0.

Note that the proposed formulation is particularly versatile

and can be easily adapted to different collaborative produc-

tion processes and tasks involving an arbitrary number of

humans and robots.

V. ONLINE RE-ALLOCATION

Due to uncertainty in realistic scenarios, online re-

allocation may be necessary to meet future plan constraints,

as well as to preserve the optimality of the plans to a certain

extent. For this reason, we consider that at the end of the

execution of each task, first a monitoring step is performed

to update the respective parameters, i.e., quality, execution

time, and workload, next, the evaluation of a re-allocation

condition establishes whether re-allocation is necessary or

not for future plans on the basis of the updated parameters.

Note that re-allocation should only be performed when

necessary to avoid excessive computational burden of solving

problem (1) and the mental overload caused by frequent task

switching [16].



1) Parameters monitoring and update: The first step for

re-allocation is to measure the quality and workload indices

and execution times of both human and robotic agents at the

end of the execution of each task τi. We refer to the values

of the parameters before the update as nominal values in

the following. Based on these measures, the parameters are

updated as follows.

Concerning the quality update, a distinction is made de-

pending on whether the task τi is supervised or not. In the

case no supervision is foreseen, i.e., Si,j = 0 ∀ah,j ∈ Ah,

the measured quality becomes the current execution quality

for the assigned agents. When the task is collaborative, i.e.,

Ci = 1, the measured quality is equally distributed between

the two agents. In addition, when the quality index qi,j
is updated, also the quality indices of agent aj for tasks

belonging to the same group g(τi) are updated accordingly,

i.e., qk,j = qi,j ∀τk ∈ T such that g(τi) = g(τk). In the

case supervision is foreseen, i.e., it exists ah,j ∈ Ah such

that Si,j = 1, we further distinguish the cases in which the

human does and does not intervene during the supervision.

This is motivated by the fact that when human supervision is

required, the human does not need to necessarily intervene

during the task execution if the assigned agents are able to

carry it out autonomously. Hence, if the human does not in-

tervene, the measured quality becomes the execution quality

of the executing agents, while if the human intervenes, the

measured quality becomes his/her supervision quality and

no update is made on the execution quality of the assigned

agents.

As far as the workload and the execution times are con-

cerned, they are updated to the measured values. Moreover,

workload and the execution times for the tasks of the same

group g(τi) are updated according to the same proportion,

e.g., if the measured execution time is increased by 10%
compared to the nominal one, then also the execution times

of the tasks belonging to the same group are increased

by 10%. Clearly, only the parameters associated with the

involved agents, either supervising or executing the task, are

updated. Furthermore, any other update policy is possible

depending on the particular scenario.

2) Re-allocation strategy: After the parameters are up-

dated, it is necessary to establish whether to online re-

allocate the remaining tasks or not. We propose to per-

form re-allocation i) firstly, to ensure the feasibility of the

allocation, i.e., re-allocation is performed if constraints of

future tasks are violated considering the updated parameters.

As instance, if the execution quality of an agent for a

group g(τi) is decreased to a value lower than q during

the monitoring and update step, and a task from this group

must be executed by the same agent in the future, then

supervision may be required to guarantee the minimum

quality constraint (1e); ii) secondly, re-allocation depends on

the change in performance. More specifically, let T + ⊂ T
be the subset of tasks which still need to be executed and let

Ĉ+ be the cost function related to tasks in T + and evaluated

with the parameters available at current planning time, i.e.,

Ĉ+ = max
τi∈T +

ti

TM

−
∑

τi∈T +

∑

aj∈A

(

q̂i,jXi,j + q̂si,jSi,j

− ŵi,jXi,j − ŵs
i,jSi,j

)

where the notation (̂·) is used to denote the best estimate

of the parameters available so far. Similarly, let C+ be the

cost function related to future tasks and evaluated with the

updated parameters. Re-allocation is carried out when the

following condition is met

δ ,
|Ĉ+ − C+|

Ĉ+
> δt (2)

with δt a positive constant. The rationale behind (2) is that

re-allocation is also performed to preserve the allocation

optimality with a certain tolerance. In particular, the higher

the re-allocation parameter δ, the more likely the allocation

made with parameters at planning time is not optimal for

the updated parameters. Finally, online re-allocation is per-

formed also iii) when a new batch of operations to execute is

available or iv) when the available resources, either robotic or

human, change with respect to the planned ones [17], e.g., a

new human operator is available or a fault on a robot occurs.

VI. SIMULATION RESULTS

In this section, the proposed approach is evaluated in a

realistic simulation environment.

A. Simulation setup
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Fig. 1. Simulation setup composed of two manipulators (ar,1,ar,2) and a
human operator (ah,1). Objects to assemble are numbered and the desired
structure is shown in transparency in the dashed box. The reference frame
is shown in the bottom right corner.

A simulation collaborative setup, shown in Fig. 1, com-

posed of two Kinova Jaco2 (nr = 2), with 7-DOFs, mounted

on sliding tracks (1-DOF) and a human operator (nh = 1) is

employed to validate the proposed approach. The left human

hand of the simulated human operator is teleoperated in real-

time by a person through a Microsoft Xbox controller. The

developed architecture is reported in Fig. 2. Specific buttons

are used to grasp/release objects as well as to move along x,y

and z axes as detailed in Fig. 2 (bottom left). All software

components are developed in Matlab interfaced with i) the

controller, to receive human inputs, ii) Gurobi solver1, to

1https://www.gurobi.com
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Fig. 2. Architecture of the validation setup. The human operator sends
commands through a controller which is interfaced with Matlab. The latter
resorts to Gurobi solver to find a solution for the optimization problem
and communicates with V-REP simulation environment. Visual feedback is
provided to the human through V-REP.

solve the optimization problem, and iii) Coppelia V-REP2,

to simulate the operating environment. The latter provides

visual feedback to the human operator. An illustrative video

showing the effectiveness of the developed framework is

available at the link3.

A collaborative assembly process is considered in which a

structure with two levels is built, as depicted in transparency

in Fig. 1 and highlighted by the green dashed box. In

particular, the following objects, divided in three groups, are

involved: i) 8 cubes that make up the bases of the levels

(four cubes for each level), ii) two planar surfaces with

size 0.75 m × 0.5 m × 0.05 m (one for each level), iii) four

office items, namely a cup, headphones, keyboard and mouse,

which are added on the planar surfaces (two on each level).

Objects are numbered as shown in Fig. 1 and a pick-and-

place task τi is defined for each object i. Due to the size of

the planar surfaces (objects 5 and 10), their transport cannot

be carried out by a single agent. Therefore, the respective

tasks are set as collaborative, i.e., C5 = C10 = 1.

Precedence constraints are introduced to properly build

the two-level structure: tasks 1− 4, which position the cubic

bases for the bottom level, need to be completed in order

to start task 10, which positions the bottom planar surface;

the latter task then needs to be finished to position the cubic

bases for the top level (tasks 6 − 9) as well as the office

items 11, 12. After tasks 6− 9 and 11, 12 are accomplished,

the top planar surface can be placed (task 5). Finally, when

the planar surface is mounted, the remaining two office items

(tasks 13− 14) can be placed.

Spatial constraints are defined for the cubic bases 7, 8,

i.e., D7,8 = D8,7 = 1, since they are placed close

together in the initial configuration as shown in Fig. 1.

For the same reason, spatial constraints are also introduced

for the office items 13, 14 (keyboard and mouse), i.e.,

D13,14 = D14,13 = 1.

2https://www.coppeliarobotics.com
3http://webuser.unicas.it/lai/robotica/video/HRC-MILP.mp4

Execution times for the robotic agents ar,1, ar,2 are

computed by considering average linear velocity equal to

0.05 m/s and average angular velocity equal to 1.3 rad/s.

Execution times for the human agent are set by recording

once the required times by the human operator to perform

the tasks and multiplying these times by a factor greater

than 1 (1.1 in our case) in order to obtain more conservative

estimates. Moreover, ∆i,j = M is set if object i is outside

the reachable workspace of agent j. The resulting maximum

execution time in (1a) is TM = 668.37 s.

Finally, workload of the robotic agents (a1, a2 ∈ A) is

initialized to 0.5 for tasks associated with the first group

of objects, i.e., for the cubic bases of the structure, while

it is set equal to 1 for the remaining tasks. Concerning

the human agent, unit workload is considered for executing

and supervising tasks associated with groups 1 and 3, i.e.,

wi,3 = 1, ws
i,3 = 1 for each ∀τi such that g(τi) = 1 or

g(τi) = 3, with 3 the index of the human agent (i.e.,

a3 ∈ A). High execution workload is considered instead to

perform the collaborative tasks 5 and 10 for which it holds

w5,3 = w10,3 = M , thus preventing the assignment of these

heavy tasks to the human operator.

The following set of parameters is used: q = 0.8 and

M = 1000 in the problem formulation (1) and δt = 0.15 for

the re-allocation condition in (2).

In the following, first we discuss the allocation and results

obtained to carry out the described assembly process with

the proposed framework. Next, we perform a simulation

campaign to prove the effectiveness of the re-allocation

strategy. Quality values are detailed in the respective case

studies.

B. Experimental results
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Fig. 3. Optimal allocation for the three agents to perform the assembly
process. Each task is highlighted with a different color and start and end
times are represented as well as assigned agents. Dashed thin lines are used
to denote supervision tasks by the human operator a3 .

The experiment consists in performing the assembly pro-

cess according to the optimal allocation obtained as solution

of (1). Quality indices for the two robotic agents are ini-

tialized to 0.8 and 0.7, respectively, for tasks belonging to

group 1 (i.e., cubic bases), to 0.4 and 0.4 for the collaborative

tasks belonging to group 2 (i.e., planar surfaces), and to 0.5
and 0.5 for tasks belonging to group 3 (i.e., office items).

The latter low values are motivated by the fact that the office

http://webuser.unicas.it/lai/robotica/video/HRC-MILP.mp4


items have more complex shapes to be manipulated by the

robots than the objects in the other groups. With regard to the

human agent, unit execution and supervision quality indices

are considered for all tasks, i.e., qi,3 = 1, qsi,3 = 1 ∀τi ∈ T .

Before starting the execution of the tasks or when re-

allocation is performed, the human operator is informed of

the planned allocation through a visual information as shown,

for example, in Fig. 3. At execution time, whenever the

person has to start executing or supervising a task, an appro-

priate message is displayed in the V-REP simulator console

as reported in the attached video together with a complete

execution of the experiment3. In addition, an audio signal is

generated to inform the human operator. When a task τi is

required to be supervised, i.e., Si,3 = 1, the human operator

can intervene and possibly reposition the object involved in

the task. Let N (µ, σ2) denote a Gaussian distribution with

mean µ and variance σ2. To simulate realistic scenarios, a

perturbation of the final objects position generated according

to a Gaussian distribution N (0, 0.02) is introduced during

the pick-and-place operations by the robotic agents. During

the monitoring phase, the quality of a completed task is

assessed by computing the difference between the desired

configuration of the object and its measured one.

Figure 3 shows the planned optimal allocation to carry

out the assembly process. In detail, tasks (highlighted with

different colors) assigned to each agent aj with j = 1, 2, 3
are represented along with their start and final times. Dashed

thin lines are used to denote supervision tasks by the human

operator a3. A solution with makespan equal to 497.97 s

is found in which all precedence, quality, simultaneity and

spatial constraints are fulfilled. In particular, the execution

of all tasks belonging to group 1 is distributed between the

two robotic agents: tasks 3, 4, 8, 9 are assigned to agent a1,

while tasks 1, 2, 6, 7 are assigned to agent a2. Among the

latter tasks, task 8 starts after task 9 is accomplished in

order to meet the spatial constraints. Moreover, supervision

of the tasks 1, 2, 6, 7, executed by the robotic agent a2,

is obtained in order to ensure minimum quality q. In this

regard, as visible from the video, the human operator only

intervenes during task τ7 to reposition the respective cubic

base. Collaborative tasks 5 and 10 are assigned to the

robotic agents to position the planar surfaces, while office

items (i.e., tasks 11, 12, 13, 14) are assigned to the human

operator, achieving the best compromise quality/effort among

the involved agents. Online monitoring of the parameters is

made during the execution but no constraints are violated

nor the performance parameter δ exceeds the re-allocation

threshold δt, implying that no re-allocation is made in this

case study. However, its validation is extensively carried out

in the following.

C. Re-allocation results

To prove the effectiveness of the online re-allocation

procedure, we perform a simulation campaign in which

we monitor the values of the performance parameter δ,

quantifying the similarity between the planned cost and the

measured one, as well as of the cost function obtained

with and without re-allocation. In particular, this case study

focuses on evaluating the optimality provided by the re-

allocation strategy compared to the static allocation. Random

initial conditions as well as random online perturbations of

the performance are considered for the simulation campaign.

Initial values of the quality indices (both for execution and

supervision) are set by adding a Gaussian random noise

N (0, 0.2) to the minimum quality q. The actual execution

time of each task is generated by perturbing the value at

planning time with a Gaussian random noise N (0, 0.02).
Similarly, at the end of the execution of each task, mea-

sured quality and workload for execution and supervision

are generated by perturbing the values at planning time

with a Gaussian random noise N (0, 0.1). Perturbations are

generated in such a way to always guarantee feasibility of the

allocation, thus enabling the evaluation of the re-allocation

impact on the solution optimality. Moreover, possible human

intervention during supervised tasks is established according

to a uniform discrete distribution in the range {0, 1}.
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Fig. 4. Comparison of the values of the parameter δ at the end of each
task obtained when re-allocation is enabled (in blue) and when it is not (in
red). Average and standard deviation values are computed over 50 trials.

Figure 4 reports the obtained values of the parameter δ

at the end of each task when re-allocation is enabled (in

blue) and when it is not (in red), i.e., in the latter case

the initial allocation is maintained throughout the execution.

Average and standard deviation values over 50 trials are

shown. The figure makes evident the general improvement

(i.e., lower values) given by the re-allocation procedure on

the parameter δ compared to the case of static allocation.

More specifically, average δ equal to 0.08 is achieved with

reallocation, while average δ equal to 0.21 is reached without

reallocation. Note that same results for the initial and final

tasks are obtained since at the beginning the same initial

allocation is considered by the two solutions (with and

without re-allocation), while at the end no further tasks need

to be executed meaning that T + = ∅ and Ĉ+ = C+ = 0.

Finally, the optimality improvement is also confirmed by

the evaluation of the cost function achieved by the solu-

tions with and without reallocation. In particular, the former

achieves 0.91± 1.15, while the latter achieves 2.62± 0.68,

thus leading to an average improvement on the obtained cost

function equal to ≈ 65% compared to the case of static

allocation (i.e., without re-planning).



VII. CONCLUSION

In this work, the task allocation problem in a human

multi-robot collaborative scenario was addressed. A general

framework was proposed that allows to obtain optimal allo-

cation considering several aspects, like execution quality and

workload, cooperative tasks, human supervision and spatial

constraints. The problem is formulated as a Mixed-Integer

Linear Programming Problem and an optimal allocation is

found; re-allocation is obtained via real-time monitoring of

execution parameters and when performance falls below a

given threshold a new plan is computed. Future work aims

at validating the solution in a real scenario and at considering

also plan switching cost in the optimization problem. Further-

more, we plan to define an adaptive procedure to determine

the threshold δt for online re-allocation according to human

preferences.
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