
A System for Traded Control Teleoperation of Manipulation Tasks
using Intent Prediction from Hand Gestures

Yoojin Oh1, Tim Schäfer1, Benedikt Rüther1, Marc Toussaint2,3 and Jim Mainprice1,2
1Machine Learning and Robotics Lab, IPVS, University of Stuttgart, Germany

2Max Planck Institute for Intelligent Systems ; MPI-IS ; Tübingen/Stuttgart, Germany
3Technische Universität Berlin ; TUB ; Germany

Abstract— This paper presents a teleoperation system that
includes robot perception and intent prediction from hand
gestures. The perception module identifies the objects present
in the robot workspace and the intent prediction module
which object the user likely wants to grasp. This architecture
allows the approach to rely on traded control instead of direct
control: we use hand gestures to specify the goal objects for
a sequential manipulation task, the robot then autonomously
generates a grasping or a retrieving motion using trajectory
optimization. The perception module relies on the model-based
tracker to precisely track the 6D pose of the objects and makes
use of a state of the art learning-based object detection and
segmentation method, to initialize the tracker by automatically
detecting objects in the scene. Goal objects are identified from
user hand gestures using a trained a multi-layer perceptron
classifier. After presenting all the components of the system
and their empirical evaluation, we present experimental results
comparing our pipeline to a direct traded control approach (i.e.,
one that does not use prediction) which shows that using intent
prediction allows to bring down the overall task execution time.

I. INTRODUCTION

Intelligent robots can substitute or assist humans to accom-
plish complicated and laborious tasks. They are becoming
present in our lives from production lines to hospitals and our
homes. However, many applications remain challenging for
robots to function in full autonomy. Teleoperation is an in-
termediate solution for controlling robots in scenarios where
the task objectives have to be decided in real-time, such
as disaster relief [1], autonomous driving [2], or assistive
devices [3,4].

Shared control has been investigated to effectively blend
user and autonomous control during teleoperation. The linear
blending paradigm introduced by Dragan et. al [5] is still
widely applied in many shared control frameworks [4,6,7].
In the approach, the amount of arbitration is dependent on
the confidence of user prediction. However, the user loses
control authority when the robot predicts the user’s intent
with high confidence.

Some works allocate maximum control authority to the
user by providing minimal assistance only when it is nec-
essary. Broad et. al. [8] introduced minimum intervention
shared control that computes whether the control signal leads
to an unsafe state and replaces the user control if so. Our
recent work [9] formulates shared control as an optimization
problem, which can conveniently balance control authority
and optimality when a complete robot policy is available.

Corresponding author: yoojin.oh@ipvs.uni-stuttgart.de

User InterfaceSimulated Robot Environment

in Rai

Object Localization

Grasp Intent Prediction

RGB-D Image

Mask R-CNN + DBOT Tracker

Object Positions

𝑝𝑜𝑏𝑗𝑠

Hand FeaturesGrasp Intention

𝑜𝑏𝑗, 𝑑𝑖𝑟
Hand

Features

Object ID

Grab Direction

Classification Model

Fig. 1: Overview of the teleoperation system

While these works are relevant to the teleoperation of
simple manipulation task where direct control is not optimal,
they are generally limited to controlling the end-effector
of the robot by blending between direct and autonomous
control. They rely on a semantic mapping of the workspace
but they do not let the autonomy take complete advan-
tage of these models, so as to maximize control authority.
Additionally when using interfaces such as hand gestures
controllers, direct teleoperation is often nearly impossible as
the mismatch between the kinematics of the robot and hand
gestures is too large to produce fluid movements.

Hence in this systems paper, we demonstrate a complete
traded control teleoperation implementation, where the user
specifies the task objectives and executes the motion au-
tonomously. Contrarily to the aforementioned approaches, it
does not blend between direct and autonomous control. Our
system makes use of available models, in terms of object
poses and shapes to plan robot motion trajectories.

We present and evaluate all components needed for such
a system, which can be decomposed into three parts: 1)
a perception pipeline capable of identifying and tracking
objects, 2) an intent estimation system that can identify
which objects to grab and how, 3) a motion planning system
that can produce accurate manipulation motion in accordance
to the human intent. *

After presenting the individual components, we assess the
accuracy of the the different modules on dedicated tasks.
We evaluate the object localization and tracking module

*Video available at https://sites.google.com/view/
ohyn-teleoperation-pipeline/home

ar
X

iv
:2

10
7.

01
82

9v
1

 [
cs

.R
O

]
 5

 J
ul

 2
02

1

https://sites.google.com/view/ohyn-teleoperation-pipeline/home
https://sites.google.com/view/ohyn-teleoperation-pipeline/home

on several objects in simulation, test the accuracy of our
grasp intent prediction module using a dataset of trajectories.
Finally, we present results using our grasp intent inference
module, where various users are simulated using degraded
user trajectories collected using the hand gesture controller.

We summarize our main contributions as the following:

• A teleoperation system capable of traded control using
hand gestures

• Simulated user experiment assessing the capacity of our
grasp intent prediction module to perform teleoperation
of pick and place motions

• A solution for automatic initialization of an existing
object tracking module using Mask R-CNN [10]

This paper is structured as follows: we present related
work in Section II.

Section III presents our user interface. Section IV presents
our object tracking pipeline, including the combination of
Mask R-CNN and a model-based object tracker. Section V
presents the assessment of the modules in our pipeline.
Conclusions are drawn in Section VI.

II. BACKGROUND AND RELATED WORK

A. Traded Control in Teleoperation

Traded control is a discrete switching mechanism between
high-level robot autonomy and low-level control depending
on predefined circumstances. It is also referred to as control
switching, as the system allocates all-or-none assistance
rather than a blended spectrum between user and robot
controls. The operator initiates a sub-task or behavior for
the robot and the robot performs the sub-task autonomously
while the operator monitors the robot [1,11]. [12] showed
that intent-based traded control can improve teleoperation
performance and alleviate difficulties in high-latency teleop-
eration scenarios.

B. Hand Gesture Recognition for Robot Control

The Leap Motion controller (Ultra Leap,
https://www.ultraleap.com/) is a consumer-grade, marker-
less motion capture sensor that tracks hand gestures and
finger movements up to 200 Hz. [13] showed that its
accuracy is below 2.5mm, however, the controller shows
inconsistent performance due to its limited sensory range
[14]. Nevertheless, its simplicity and its capability to track
the hand in 6-Dof are the reasons for its application.

Prior works used deep learning to improve the accuracy
of the gesture recognition, such as SVMs and random
forests [15], or neural networks using radial basis functions
(RBF) [16]. Similar to [17], we propose to train a gesture
classifier (i.e., which object is intended) for hand motion
recognition rather than mapping hand features directly to
robot configurations. Achieving higher accuracy is easier
on classification than regression (i.e., predicting accurate
positions) tasks, which is one of the justifications for our
traded control approach.

C. Depth Based Object Tracking (DBOT)

We utilize the implementation of depth-based object track-
ing methods described in [18] (“particle tracker”) and [19]
(“Gaussian tracker”) to acquire the 6D pose of objects during
teleoperation. Compared to recent learning-based methods
such as PoseCNN [20] and DenseFusion [21], the methods
take a model-based approach.

The particle tracker in DBOT tracks objects by computing
a posterior distribution over the object using a dynamic
Bayesian network for inference [18], while the Gaussian
tracker improves the performance of a Gaussian filter using
a robustification method as well as reducing the filter’s com-
putational complexity [19]. This approach has the advantage
of being robust without requiring any extra tuning or pre-
training.

III. TELEOPERATION USING TRADED CONTROL

A. Hand Gesture Based Robot Control

The user provides grasping intentions and commands by
performing reach-and-grasp motions with the right hand as if
the user naturally reaches and grasps an object while looking
at the environment from the robot’s perspective.

The hand motion is captured using a Leap Motion con-
troller. Features are captured and published via ROS topics
at a frame rate of 180Hz. Since the user is actually reaching
towards an invisible object, the grabbing positions vary sig-
nificantly as shown in 2a. We resolve this issue with a traded
control paradigm and learning a classifier to distinguish how
the user is intending to grab the object.

(a) Grab positions
(b) Disk top grab (c) Cylinder right grab

Fig. 2: (a) Grab positions from users tracked with the Leap
Motion controller, top grab (red)/right grab (blue). (b), (c)
User interface for reach and grab motion in a setting with
three objects.

B. Traded Control

To alleviate the inconsistent hand tracking performance,
we adopt a traded control method rather than a continuous
shared control paradigm. This also relieves the problems that
arise from the physical difference between the human arm
and the robot arm.

Once objects are identified as described in Section IV,
we predict the user’s intent of the target object and in
which direction the user is intending to grasp. As soon as
the intention is identified, the robot controller executes the
object reach and grab motion. The user still maintains control
authority by having the ability to decide in which order to
grab the set of objects, that is, we rely on the human user

RAI simulation/
RaiEnv DBOT

point cloud
& image

pose
 feedback

DBOT initalizer

initial pose

point cloud
& image

rai_baxter package

label

environment
config:
robot, objects and
poses

Fig. 3: Overview of the object tracking pipeline and an image
of the simulated robot environment.

for high-level decision making and the robot takes care of
the low-level control and motion planning.

C. Grasp Intention Prediction

We train a multi-layer perceptron using supervised learn-
ing to classify the goal object and the grasp direction. We
assume a fixed set of objects (m=3) along with their positions
and two possible grab directions (top/right, n=2), as shown
in Figures 2b and 2c.

The input includes eight features: distances from the hand
objects, x-component of the hand position, x-component
of the hand direction, x,y-components of the palm normal
vector, and y-rotation of the hand are selected through
experience. The model consists of three dense layers of 64
hidden units that are connected to two separate layers of two
units and outputs the class labels.

IV. OBJECT TRACKING PIPELINE

The object tracking pipeline is automatically initialized
and tracks the 6D pose of rigid objects. We make use of
the existing object tracking library [18,19] and provide a
solution to alleviate the burden of manual initialization. The
pipeline consists of two modules: object tracker initializer
(DBOT initializer) and the object tracker (DBOT) as shown
in Figure 3. The DBOT initializer receives camera images of
the environment (see Figure 4) and predicts the initial pose
as well as the semantic label of observed objects.

A. Automated Object Tracker Initialization

DBOT assumes that the initial pose of the object is given.
In practice, this initialization is done by the user by manually
positioning a marker over the object’s depth image in a 3D
visualization of the depth image. We use Mask R-CNN [10],
a state of the art instance segmentation method, to automate
the initialization process by identifying the masks and the
labels using transfer learning.

Once the depth pixels are segmented from the depth image
using the object mask, we use point cloud registration to
compute the object’s 6D pose. Utilizing the labels from
the Mask R-CNN, the corresponding mesh model of the
object is loaded and a set of points are sampled from the
mesh as a reference point cloud for registration. Rigid reg-
istration is performed using the coherent-point-drift (CPD)
algorithm [22], and we use the average position of the
masked point cloud as a rough initialization during the
registration. The output of the CPD is a 4×4 homogeneous

Fig. 4: Snapshot of our object tracking with real images

transformation matrix. We refer to this estimated pose as
mesh pose.

The process takes approximately 1-16 seconds, depending
on the number of tracked objects and the number of iterations
during point cloud registration. The step is performed once
to initialize the DBOT tracker.

B. DBOT Tracker

Once the DBOT trackers are successfully initialized, the
simulation or a real robot system can subscribe to the refined
poses from DBOT and use the information to perform precise
object manipulation. The DBOT tracker runs with 10Hz for
up to 7 objects on CPU. The performance can be further
improved by utilizing GPU.

V. EXPERIMENTS

A. Simulated Robot Environment

The environment consists of the Baxter robot with gras-
pable objects on a table as shown in Figure 3 right. A virtual
depth camera is added on Baxter’s head display to generate
first-person view images (RGB-D).

The simulated environment is created using the RAI†

interface. RAI includes a physics-simulated environment as
well as a robot motion optimization solver for k-Order
Motion Optimization (KOMO) problem[23]. The interface
provides simple functionality to define motion optimization
problems, by specifying the list of optimization objectives
that represent cost terms or in-/equality constraints.

B. Mask R-CNN Transfer Learning on a Synthetic Dataset

We use transfer learning to tune the Mask R-CNN to
ensure the detection of custom objects. We collect images
of the simulated robot environment including the following
objects: a cube, a sphere, a toy, a teapot, a cup, a jug, and a
bowl, as shown in Figure 6.

The simulated images are not like real images as they do
not include noise, shadows, irregular lighting conditions, or
texture. The images are augmented during training to ensure
the network generalizes towards real or non-perfect images.
Augmentations include flipping the image, affine transfor-
mation, light contrast, blur/sharpen, and color modifications.
The dataset is also collected with arbitrary robot arm joint
positions included in the image so that Mask R-CNN learns
to neglect robot arms during detection.

†https://github.com/MarcToussaint/rai

https://github.com/MarcToussaint/rai

(a) cube (b) sphere (c) lego toy

(d) teapot (e) cup (f) jug (g) bowl

Fig. 6: Objects used to train Mask R-CNN

0.00 0.02 0.04 0.06 0.08 0.10

Threshold (m)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
u
ra
cy

add-s all 7 objects

mask pose

mesh pose

particle pose 1s

gaussian pose 1s

particle pose 3s

gaussian pose 3s

Fig. 7: Accuracy-threshold curve of the average
ADD-S for seven objects with maximum threshold
of 10cm.

mask mesh particle 1s gaussian 1s particle 3s gaussian 3s
t t R t R t R t R t R

cube 89.1 90.3 96.0 97.4 97.0 93.9 97.0 97.7 97.2 90.7 96.9
sphere 76.1 79.2 97.0 97.9 97.0 97.5 97.0 97.9 97.0 98.0 97.0
lego toy 66.7 80.2 90.2 85.0 92.2 84.8 92.3 84.9 92.4 83.0 92.3
teapot 77.8 80.0 90.7 91.7 93.3 86.5 92.8 94.0 95.2 91.2 94.8
cup 90.9 90.2 95.0 94.0 95.9 85.1 95.6 94.3 96.2 77.1 95.7
jug 69.8 77.3 90.2 93.6 92.4 74.8 92.8 95.1 95.3 89.9 96.2
bowl 69.3 70.4 84.4 81.0 87.7 86.6 84.9 81.1 88.7 80.8 85.6

MEAN 77.1 81.1 91.9 91.5 93.7 87.0 93.2 92.1 94.6 87.2 94.1

mesh particle 1s gaussian 1s particle 3s gaussian 3s
AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm

cube 93.8 100.0 96.8 100.0 95.6 99.7 97.0 100.0 94.3 98.8
sphere 88.6 100.0 96.1 100.0 96.0 100.0 96.1 100.0 96.1 100.0
lego toy 90.8 99.3 93.3 98.1 93.4 96.7 93.4 97.3 92.3 88.4
teapot 88.2 100.0 93.7 100.0 91.3 94.0 95.2 100.0 93.8 95.2
cup 92.9 100.0 95.1 99.0 92.0 92.7 95.3 98.9 87.8 86.4
jug 84.6 98.8 91.8 99.6 86.6 82.7 95.2 99.6 93.3 94.5
bowl 80.4 78.7 83.6 80.2 85.5 78.1 82.9 80.2 83.9 75.0

MEAN 88.5 96.7 92.9 96.7 91.5 92.0 93.6 96.6 91.6 91.2

TABLE I: Accuracy object tracking pipeline. The upper table shows
position and orientation individually. The lower table shows the area
under the ADD-S curve (AUC) and <2cm metric.

We obtained detection rates from the Mask R-CNN rang-
ing from 92% to 95% with an error rate between 0.16% to
0.74% based on different training settings such as the number
of epochs (10 to 80 epochs) and the dataset size (107 to 50K
samples). The detection rate is defined as the number of
classified objects with respect to the number of ground truth
objects. The error rate is defined as the number of wrong
class predictions with respect to the number of classified
objects. The rest consists of undetected objects, presumably
simply not detected, out of sight, or just partially visible. We
do not report detailed results for each setting, as its effect
turned out to be marginal when comparing the results of the
whole initialization pipeline. As long as the detected label is
correct, a decent mask is adequate for estimating the initial
pose described in Section IV-A.

The model used during the evaluation of the pose ini-
tialization shown in Table I was trained with unmodified
images with 40 epochs. The detection rate of the Mask R-
CNN was 92.73% with an error rate of 0.16% out of a set
of 4,798 random samples. The images of the samples were
not included during the Mask R-CNN training and did not
contain the arms of the Baxter robot.

C. Accuracy of the Initial Object Pose Estimation

We evaluate the accuracy of the pose estimation using the
metric proposed in [20]. The average distance is computed
using the closest point distance of the pairwise distances
between two 3D models with ground truth transformation
(translation t, rotation R) and estimated transformation

(translation t̂, rotation R̂):

ADD-S =
1

m

∑
x1∈M

min
x2∈M

||(Rx1 + t)− (R̂x2 + t̂)|| (1)

in a setM with m number of points, for both symmetric and
asymmetric objects. Following prior works [20,21], we report
the area under the ADD-S curve (AUC) with a threshold up
to 0.1m by computing the pose accuracy while increasing
the threshold. Similarly, we also measure the percentage of
ADD-S below a threshold of 2cm, which is the minimum
tolerance for robot grasping manipulation.

Figure 7 and Table I show the accuracy of different
object tracking methods including the method described in
Section IV-A. The mask pose(or mask in Table I) indicates
the center position of the masked point cloud with an offset
(2cm in the z-axis of the camera coordinates) added to
compensate the bias in the point cloud. The mask pose
does not include rotation which explains the low AUC,
but is a good baseline when comparing translation. The
mesh pose shows better precision in translation compared
to the mask pose, nonetheless, its main role is to provide an
initial rotation estimation to initialize DBOT.

D. Accuracy of the DBOT Tracker

We report the result of the estimated pose once the
DBOT tracker is tracking the object after receiving the initial
mesh pose. The object pose from the DBOT is captured after
1 second and 3 seconds after initialization while the object is
kept static. Table I shows that both trackers outperform the
initial mesh pose. This indicates that the tracker was able to

refine the pose towards the correct object pose after receiving
the estimated pose.

The particle tracker refined the pose faster and is more
accurate than the Gaussian tracker. An assumption is that the
Gaussian tracker is less robust to inaccurate initialization.
The authors of DBOT mentioned in their paper [19] that
the particle tracker is slightly more robust, but the Gaussian
tracker is more precise. The Gaussian tracker can tolerate
distortions in the input point cloud as well as occluded
settings where the particle tracker is not able to track.

We compare our objects to similar objects in the YCB
dataset in terms of size and form, as shown in Table II.
A direct comparison of the results to prior work in pose
detection [20,21] is not completely fair, due to the different
datasets used for evaluation and that we utilized simulated
images. However, it justifies the feasibility of our approach
and its applicability in robot manipulation.

PoseCNN DenseFusion Own results
[20] [21] own mesh particle 3s

AUC <2cm AUC <2cm class AUC <2cm AUC <2cm

pitcher base 97.8 100.0 97.1 100.0 jug 84.6 98.8 95.2 99.6
bowl 81.0 54.9 88.2 98.8 bowl 80.4 78.7 82.9 80.2
mug 95.0 99.8 97.1 100.0 cup 92.9 100.0 95.3 98.9
wood block 87.6 80.2 89.7 94.6 cube 93.8 100.0 97.0 100.0

MEAN 90.35 83.73 93.03 98.35 87.93 94.38 92.6 94.68

TABLE II: Evaluation of 6D pose (ADD-S) on YCB-Video
dataset.

The mean AUC of DenseFusion for the four objects
is 93.03%. The mean AUC of the mesh pose is 87.93%
and for the particle tracker after 3s is 92.6%. As already
mentioned, the direct comparison is not totally fair, but as
an interpretation that the object tracking pipeline is robust
enough to be applicable in a robot manipulation setting.

E. Accuracy of the Grasp Intent Prediction

We collected reach-and-grab motion trajectories from two
users (1 male, 1 female). Each trajectory consisted of around
2∼5 seconds and we collected a total of 350 trajectories
for training in four different environment settings. The users
started with their right hand above the Leap Motion con-
troller and reached forward to grab a target object in a
specific direction (right or top) while looking at the display
similar to Figures 2b and 2c. The start and termination of
the trajectories were defined by a key press.

Figure 8 shows the average prediction accuracy over
18 grasp episodes of one environment using trajectories
excluded during training. The overall prediction accuracies
are 79.4% and 77.4% for target object prediction and grab
direction prediction. The goal object prediction accuracy
reached 100% before reaching 70% of the episode duration,
and the average accuracy for predicting the direction reached
up to 89% at termination. The low accuracy during the first
20% of the episode resulted from the time gap between the
start of recording and the start of the movement.

The reader may note that the prediction results are not
optimal and optimization of the hyperparameters can be

0 20 40 60 80 100

Episode Percentage (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
cc
u
ra
cy

Object Prediction

Direction Prediction

Fig. 8: Prediction accuracy of the grasp intention prediction
averaged over the duration of the episode

carried out for better results. Utilization of recurrent neural
networks may also help with improving the early prediction
accuracy.

F. Teloperation Task Experiment Setup

We designed a teleoperation task for manipulation to
test the efficacy of the system. We hypothesize that the
earlier the goal object is identified, the earlier the robot can
start planning the motion, which would lead to faster task
execution in a traded control setting.

We carried out a simulated user study by simulating
different behaviors of users. We collected trajectories from
three different types of virtual users
• Normal user consists of trajectories collected from

human users
• Noisy user by injecting a Gaussian noise to the Normal

user at each time step
• Biased random offset over the Normal user trajectory

to simulate imperfect perception during teleoperation,
e.g., recognizing the object as closer than it actually is.

The difference between a Noisy user and a Biased user
is that the Biased user has the same random noise over the
trajectory whereas the noise in the Noisy user changes every
time step.

The task is to perform a sequence of picking motions,
to grab three objects from a table. The user decides which
object to grab and demonstrates the picking motion.

We assume that the poses of all objects are known by
fusing the framework presented in Section IV, but the robot
must infer in which order the objects are grabbed. A goal
object is identified when the robot predicts the same target
for t consecutive time steps (t=80). The prediction of the
first k time steps are neglected to reduce the prediction error
in the beginning of the episode (k=300).

G. Evaluation of Control Modes

We denote Early mode as the control mode in which
the robot starts to plan its grasping trajectory towards the
predicted object during user demonstration. We compare this
mode with Late mode, where the robot does not start motion
planning until the user finishes the demonstration.

Control User Mode
Criteria Mode Normal Noisy Biased MEAN

Time until Early 9.6±1.1 10.3 ± 0.9 10.1± 1.3 10.
Execution (s) Late 14.6± 1.4 14.7 ± 1.2 14.1 ± 1.5 14.5

Episode Early 33.1 ±5.6 32.5 ± 3.7 33.9±5.3 33.2
Duration (s) Late 38.6 ±5.1 39.2 ± 3.1 38.1±5.4 38.6

Object Early 0.86± 0.49 0.89 ± 0.47 0.89 ± 0.62 0.88
Prediction (%) Late 0.97± 0.28 0.97 ± 0.28 0.89 ± 0.62 0.94

Direction Early 0.94± 0.37 0.97 ± 0.28 0.89 ± 0.62 0.93
Prediction (%) Late 1± 0 0.97 ± 0.28 0.97 ± 0.28 0.98

TABLE III: Teleoperation results for different simulated
users and control modes

The system was evaluated according to the following cri-
teria: time taken to predict goal object (time until execution),
episode duration, prediction accuracy (goal prediction, direc-
tion prediction) when the robot identified the goal. Table III
shows the results averaged over 12 episodes. The time until
execution is summed up over three object grasps and the
episode duration indicates the total time for picking three
objects including robot motion planning time. Although it
shows a compromise in the prediction accuracy, early motion
planning and execution based on goal prediction resulted in
shorter episode duration, as hypothesized. It is shown that
it was approx. 5 seconds faster than when the robot started
motion planning once the user finished the trajectory.

The Noisy user and the Biased error took longer before
the robot confidently identified the goal. However, there was
no penalty in the prediction accuracy except in the direction
prediction for the Biased user in Early mode. The prediction
model was robust enough to tolerate the noisy settings.
Overall, the results show that the proposed traded control
system can improve teleoperation performance while using
noisy hand gestures to control the robot.

VI. CONCLUSIONS

We presented a teleoperation system that utilizes intuitive
human grabbing hand gestures to perform sequential manip-
ulation tasks. To mitigate the issues that arise when using
hand gestures, the robot autonomously generates a grasping
or retrieving motion using trajectory optimization as soon as
the robot identifies the user’s intention.

For the object tracking pipeline, we proposed the combina-
tion of Mask R-CNN [10] and the model-based object tracker
DBOT [19] for automatic initialization and object localiza-
tion. In addition, we trained a prediction model to identify
the user intent from grabbing hand gestures during traded
control so that the robot can start planning its trajectory in
advance. The simulated user study indicated that using intent
prediction brought down the overall task execution time.

As the majority of our work is done in a simulated
environment, limitations may arise during the application
of the system in a real robot setting. We will focus on the
application of the system in a real robot setting for future
work.

ACKNOWLEDGMENT

This work is partially funded by the research alliance
“System Mensch”. The authors thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS)
for supporting Yoojin Oh.

REFERENCES

[1] C. Phillips-Grafflin, et al., “From autonomy to cooperative traded con-
trol of humanoid manipulation tasks with unreliable communication,”
Journal of Intelligent & Robotic Systems, vol. 82, no. 3-4, 2016.

[2] M. Johns, et al., “Exploring shared control in automated driving,”
ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), 2016.

[3] K. Muelling, et al., “Autonomy infused teleoperation with application
to brain computer interface controlled manipulation,” Autonomous
Robots, vol. 41, no. 6, 2017.

[4] A. Goil, et al., “Using machine learning to blend human and robot con-
trols for assisted wheelchair navigation,” in IEEE 13th International
Conference on Rehabilitation Robotics (ICORR), 2013.

[5] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, 2013.

[6] S. J. Anderson, et al., “Experimental performance analysis of a
homotopy-based shared autonomy framework,” IEEE Transactions on
Human-Machine Systems, vol. 44, no. 2, 2014.

[7] M. Gao, et al., “Contextual task-aware shared autonomy for assistive
mobile robot teleoperation,” IEEE/RSJ Int. Conf. on Intel. Robots And
Systems (IROS), 2014.

[8] A. Broad, et al., “Operation and imitation under safety-aware shared
control,” in Workshop on the Algorithmic Foundations of Robotics,
2018.

[9] Y. Oh, et al., “Natural gradient shared control,” IEEE Int. Symp. on
Robot and Human Interactive Communication (RO-MAN), 2020.

[10] K. He, et al., “Mask r-cnn,” IEEE Int. Conf. on Computer Vision
(ICCV), 2017.

[11] J. Kofman, et al., “Teleoperation of a robot manipulator using a
vision-based human-robot interface,” IEEE transactions on industrial
electronics, vol. 52, no. 5, 2005.

[12] J. Bohren and L. L. Whitcomb, “A preliminary study of an intent-
recognition-based traded control architecture for high latency telema-
nipulation,” IEEE/RSJ Int. Conf. on Intel. Robots And Systems (IROS),
2017.

[13] F. Weichert, et al., “Analysis of the accuracy and robustness of the
leap motion controller,” Sensors, vol. 13, no. 5, 2013.

[14] J. Guna, et al., “An analysis of the precision and reliability of the
leap motion sensor and its suitability for static and dynamic tracking,”
Sensors, vol. 14, no. 2, 2014.

[15] G. Marin, et al., “Hand gesture recognition with jointly calibrated leap
motion and depth sensor,” Multimedia Tools and Applications, vol. 75,
no. 22, 2016.

[16] W. Zeng, et al., “Hand gesture recognition using leap motion via
deterministic learning,” Multimedia Tools and Applications, vol. 77,
no. 21, 2018.

[17] W. Qi, et al., “Multi-sensor guided hand gestures recognition for
teleoperated robot using recurrent neural network,” IEEE Robotics and
Automation Letters, 2021.

[18] M. Wüthrich, et al., “Probabilistic object tracking using a range
camera,” IEEE/RSJ Int. Conf. on Intel. Robots And Systems (IROS),
2013.

[19] J. Issac, et al., “Depth-based object tracking using a robust gaussian
filter,” IEEE Int. Conf. Robotics And Automation (ICRA), 2016.

[20] Y. Xiang, et al., “Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes,” arXiv preprint
arXiv:1711.00199, 2017.

[21] C. Wang, et al., “Densefusion: 6d object pose estimation by iterative
dense fusion,” IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[22] Kenta-Tanaka et al., “probreg.” [Online]. Available: https://probreg.
readthedocs.io/en/latest/

[23] M. Toussaint, “Komo: Newton methods for k-order markov con-
strained motion problems. e-print,” arXiv preprint arXiv:1407.0414,
2014.

https://probreg.readthedocs.io/en/latest/
https://probreg.readthedocs.io/en/latest/

	I Introduction
	II Background and Related Work
	II-A Traded Control in Teleoperation
	II-B Hand Gesture Recognition for Robot Control
	II-C Depth Based Object Tracking (DBOT)

	III Teleoperation using Traded Control
	III-A Hand Gesture Based Robot Control
	III-B Traded Control
	III-C Grasp Intention Prediction

	IV Object Tracking Pipeline
	IV-A Automated Object Tracker Initialization
	IV-B DBOT Tracker

	V Experiments
	V-A Simulated Robot Environment
	V-B Mask R-CNN Transfer Learning on a Synthetic Dataset
	V-C Accuracy of the Initial Object Pose Estimation
	V-D Accuracy of the DBOT Tracker
	V-E Accuracy of the Grasp Intent Prediction
	V-F Teloperation Task Experiment Setup
	V-G Evaluation of Control Modes

	VI Conclusions
	References

