
Unpacking Human Teachers’ Intentions for
Natural Interactive Task Learning

Preeti Ramaraj1, Charles L. Ortiz, Jr.2 and Shiwali Mohan2

Abstract— Interactive Task Learning (ITL) is an emerging
research agenda that studies the design of complex intelligent
robots that can acquire new knowledge through natural human
teacher-robot learner interactions. ITL methods are partic-
ularly useful for designing intelligent robots whose behavior
can be adapted by humans collaborating with them. Various
research communities are contributing methods for ITL and a
large subset of this research is robot-centered with a focus on
developing algorithms that can learn online, quickly. This paper
studies the ITL problem from a human-centered perspective
to provide guidance for robot design so that human teachers
can naturally teach ITL robots. In this paper, we present 1)
a qualitative bidirectional analysis of an interactive teaching
study (N=10) through which we characterize various aspects
of actions intended and executed by human teachers when
teaching a robot; 2) an in-depth discussion of the teaching
approach employed by two participants to understand the
need for personal adaptation to individual teaching styles; and
3) requirements for ITL robot design based on our analyses
and informed by a computational theory of collaborative
interactions, SharedPlans.

I. INTRODUCTION
We envision a future where robots can help people with

a myriad set of tasks in dynamic environments such as
homes, offices, shopping centers, and warehouses. However,
the eventual set of tasks that a robot will be requested to
perform when deployed will often be more diverse than
can be planned for at design time. An attractive solution
is to enable people to teach robots new tasks and relevant
information about their environments on the fly, which is
the focus of the approach called Interactive Task Learning
(ITL) [1]. ITL relies on the fact that people naturally engage
in interactive teaching and learning, and therefore can apply
those skills to teach a robot as well. A natural starting point,
then, is to better understand how humans teach.

Human teachers engage in a variety of interactive behav-
iors aimed at structuring the learner’s learning experience.
An important component is the teacher’s mental model
[2] of the learner: that is, understanding what the learner
knows and does not know and how a learner can apply its
knowledge to perform various tasks in the environment. A
teacher may apply various interactive strategies to develop
this understanding about the learner. For example, a human
parent (teacher) may ask a child (learner) to demonstrate a
skill (fold the towel), to identify concepts (where is your
head?), to instantiate a concept (can you show me what
angry looks like?), or compare objects (is an orca bigger
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than a beluga?). Responses to such requests aid the teacher
in adapting instruction that is more suitable to the learner’s
needs. Without reasonable estimates of a learner’s capabili-
ties, it is challenging for a human teacher to teach effectively.
A learner must also be able to understand what the teacher
intends with each instruction and respond appropriately while
absorbing new information as it is presented.

Our research goal, therefore, is to build ITL robots that can
engage in teaching interactions that are natural for humans.
For this, we look to plan-based theories of dialogue [3], [4]
that posit that exchanges between participants are intentional
and reflect the evolution of their mental states during collabo-
ration. Previous work [5]–[7] has leveraged these theories to
develop computational models that can manage ITL robot
interactions. While those approaches enable flexible and
mixed-initiative interaction, they are robot-centered and are
largely driven by the robot’s learning needs.

In this paper, we take a human-centered view, and focus on
uncovering the structure in human teaching and the diversity
of information it encompasses to support effective interaction
management in ITL robots. We describe a human participant
study (N=10) in which we asked participants to teach a task
to a learner robot played by the first author (Section III).
We conducted a qualitative, bidirectional analysis (Section
IV) of the data collected to characterize various aspects
of actions intended and executed by human teachers when
teaching a robot in a situated setting. Our contribution
includes a taxonomy that comprises the domain ontology,
concept expressions, modalities, and intentions expressed
by teachers in this setting. Then in Section V, we analyze
how a computational theory of collaborative interactions -
SharedPlans [3], [8] can be used to manage human-robot
interactions in an ITL setting and support different teaching
styles. We conclude in Section VI with our outlook for
future work directed toward developing methods for natural
interaction in ITL systems.

II. RELATED WORK
Even though robot learning from humans has been studied

widely [9], relatively few efforts have looked at how humans
would like to teach robots. Some prior work has looked at
how people use reinforcement signals such as reward and
punishment [10], [11] to teach robots. Khan et al. [12] on the
other hand, study human teaching strategies, while exploring
a single concept, that of “graspability” through binary labels
assigned to photos of everyday objects.

There is even less work in the domain of teaching complex
tasks and procedures. Gil [13] describes the challenges in us-
ing human tutorial instruction to teach complex procedures.
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Fig. 1. Example of a wall shown to participants

Gil describes that this can be complex because procedures
involve an abundance of interrelated information in terms
of situating relevant objects in the environment, steps and
substeps of the procedure, as well as conveying control
structures. Additionally, human instruction can inherently
contain errors and omissions, which one must account for,
while designing a natural interface (or in this case, a learning
robot). Towards this goal, the contributions in [14], [15]
examine human tutorial instruction in HRI. Kaochar et al.
[14] conducted a Wizard of Oz experiment to study the
various teaching styles exhibited by teachers while teach-
ing a simulated robot a complex task. The teachers could
teach via demonstration and examples, provide reinforcement
signals and test the agent’s skills. They recommend that
teaching interfaces must help facilitate teaching using one
mode while refining through others for feedback, as well as
intermittent testing of the agent’s knowledge. Marge et al.
[16] qualitatively analyzed the Diorama corpus comprising
human-human and human-robot interactions in a collabora-
tive navigation task and created a taxonomy of intentional di-
alogue move types. They observed that humans issued direct
instructions requesting physical actions to robots; but with
other humans, they engaged in plan level conversations. They
propose that robots must be capable of translating high-level
intentions to realizable physical actions. While both of these
works emphasize the need to understand different aspects of
teaching, neither propose concrete recommendations on how
a robot can respond appropriately and further the teaching
interaction successfully.

Maclellan et al. [17] propose a Natural Training Inter-
actions (NTI) framework that identifies various teaching
patterns in natural human-machine teaching. Backed by
an established theory SharedPlans, we delve deeper into
direct instruction and apprentice learning teaching patterns
described in the NTI framework and propose constructs to
study and implement these patterns in ITL robots [5], [6],
[18]–[20].

III. STUDY DESIGN
We designed an observational study in which people taught

a learning partner through free-form, multi-modal interac-
tion. Due to the ongoing COVID-19 pandemic, we conducted
our study remotely using a video-conference application.

A. Study Materials
We developed a simulated, robotic, table-top world (shown

in Fig. 1) in Webots. The world has two tables: the one on

the right was designated as the storage area with a set of
simple 3-dimensional objects of varying colors and shapes
and the one on the left was designated as the main work
area where objects could be placed for teaching. We designed
our study1 as a contextual, semi-structured interview between
a researcher, playing the role of the robot (henceforth Re-
sAgent), and the participant playing the role of the teacher.
The participants were aware that ResAgent was played by
the researcher. The simulated environment was run on the
researcher’s computer and the participant was given remote
access to it. The researcher and the participant observed the
same world view presented in Fig. 1 and manipulated objects
in the world using a mouse pointer. Even though the objects
could also be manipulated by a simulated robotic arm, we
only used the mouse pointer to allow for more flexibility
during requests and action executions.

We asked the participants to teach ResAgent to build two
kinds of walls (a single color wall and a multicolor wall),
an example of which is shown in Fig. 1. We chose this task
since it could provide participants with a broad range of
teaching options that draw on a rich ontology of domain
concepts and task knowledge. We asked participants to use
simple sentences and wait for ResAgent’s response before
moving to the next instruction. We informed participants
that ResAgent did not know anything about the objects in
the environment, but that it could learn concepts such as
colors, shapes and relations from their instructions. We also
informed participants that ResAgent could point to and move
objects (after it has learned what they are) when asked.

We developed a response protocol for ResAgent to follow
while interacting with a participant. This protocol was based
on our understanding of learning algorithms implemented
in ITL robots as well as some exploratory pilot studies.
ResAgent simulated learning from a single example or a
demonstration. For example, upon being told the color or
shape of an object, ResAgent would simulate the learning of
the corresponding object label. Similarly, ResAgent would
learn to recognize and use relationships such as next to from
a single example in the domain. Upon successful learning,
ResAgent acknowledged its learning by responding (with
variations of) “I have learned the concept.” ResAgent could
also explain why a learning failure occurred in specific
scenarios. For example. if the participant used a concept
not taught previously, for example “right of” in “Move the
red block to the right of the green block”, ResAgent would
respond “I don’t know right of”. If the participant asked
ResAgent to perform an action that had not been demon-
strated, it would respond with “I cannot do that”. Movement
actions were assumed to be primitive achievable actions. On
encountering any unknown action or an instruction that had
more than one unknown concept, ResAgent would respond
with “I don’t understand.”. There were no restrictions on
what the teacher could say or what strategy could be pursued.
This was done to provide maximal flexibility to the teacher

1Accessible figure descriptions, teaching transcripts and related study
materials can be found at https://git.io/JcWw8.
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as well as to elicit different teaching strategies.

B. Conducting the Study
The research company’s internal review board approved

the study materials and protocol as Exempt. We recruited
participants via internal mailing lists at the research company
as well as through personal connections. During recruitment,
we were careful to select participants that differed in demo-
graphics and backgrounds. We recruited 10 participants (5
female, 4 male, 1 non-binary). Their age range distribution
was: 18-24: 3, 25-34: 2, 35-44: 3, 45-54: 1, 55-64: 1.

Virtual meetings were scheduled with the participants. We
provided participants with a form that contained the study
description and requested consent to record the video, audio
and the shared screen manipulation during the study. Each
participant’s recorded video was later transcribed through an
automated transcription service. Due to the remote nature of
the study, we encountered some technical issues. Participants
sometimes experienced intermittent lag, and were unable to
see the environment or move the objects during those times.
In those situations, some participants asked the researcher
to move objects for them. We also experienced some in-
terruptions due to work-at-home restrictions. However, all
participants completed the study task.

IV. QUALITATIVE BIDIRECTIONAL ANALYSIS

Human teaching is substantially complex but good teach-
ing tends to be structured. We designed our analysis to
uncover structure in human teaching in a situated human
robot interaction. To guide our analysis, we introduce a few
constructs. Our conjecture is that a human teacher organizes
their teaching using a sequence of lessons that comprises
setting up a scenario in the environment and providing
corresponding information using different modalities. Each
lesson is targeted at a concept in the domain ontology. For
example, a teacher might introduce a color by pointing to an
object and describing it as red. During a lesson, the teacher
has a variety of intentions, such as defining a concept, intro-
ducing an example, or testing the student’s knowledge. These
can be realized through explicit communicative actions such
as commands or questions. Finally, the teacher organizes the
sequence of lessons into a curriculum which incrementally
introduces various concepts and tasks. In our analysis, we
ask the following questions.
1. What are the different types of concepts in the domain
ontology and which ones are taught by a human teacher?
A good understanding is important to craft appropriate algo-
rithms to enable a robot to learn the full space of concepts.
2. How do human teachers communicate during a lesson
and what modalities do they use to provide information?
For the robot to learn concepts correctly, it is important
that it understands how they are expressed by the teacher
(for example, by combining language and gesture in an
instruction). The manner in which the concept is expressed
will also influence how the robot adds to or modifies its
internal representation of the concept.
3. What communicative actions are employed by human
teachers and what underlying intentions motivate the

selection of those actions? Answering this question is
critical for informing a student robot design that is able to:
a) recognize the teacher’s intentions behind a communicative
action and b) provide a correct response through relevant
communicative or physical actions, or by adopting an inten-
tion to perform further internal reasoning and learning.
4. Is there individual variability in the curriculum
construction and delivery? People have different sets of
assumptions, experience and prior knowledge, which can
impact the curriculum that they follow during teaching. We
want to understand these variations to build robots that can
flexibly adapt to different teachers.

To answer these questions, we conducted a qualitative
analysis of the study data. We preprocessed this data to
create a dataset that organized the interactions as a sequence
of turns. Each turn comprised not only the verbal utterance
but also concepts mentioned, gestures used, object configura-
tions, and whether a failure occurred before, during, or after
the utterance. This dataset had 1142 total turns comprising
576 participant turns (of which 493 were valid instructions
addressing ResAgent and the rest were turns of participants
thinking out loud), 458 ResAgent turns and 108 turns that
were exchanges between the participant and the researcher
discussing technical issues or the study itself.

Our qualitative analysis was bidirectional —we conducted
both top-down and bottom-up analyses. In our top-down
analysis [21], we studied the literature describing ITL robots
and general interaction methods in HRI. This included prior
work on communication modalities such as language [22]–
[24], gaze [11], [24], gestures [24], [25] and visualization
[24]. Prior research has also studied concept expressions
during teaching such as examples and demonstrations [20],
[26] and verbal definitions [27]). We used this analysis to
generate a priori hypotheses about our questions.

For our bottom-up analysis, we conducted an inductive
thematic analysis [28] of our dataset, to both validate our
a priori hypotheses, and extend them. We first manually
assigned open codes to each turn in the dataset. For example,
P10’s instruction of “Robot, these are green” was assigned
the code P10 provides information. We identified
76 unique participant-specific and 22 unique ResAgent-
specific open codes. We then conducted axial coding, a pro-
cess where different codes across the dataset were clustered
together to identify themes. Through repeated analysis and
identification of different themes, we validated our a priori
hypotheses — we extracted turns that could be considered
as representative of our a priori hypotheses. We further
analyzed the turns that could not be characterized within
our a priori hypotheses and expanded our hypotheses.

We generated a comprehensive taxonomy of teaching
aspects in a situated human-robot scenario that is presented
in Fig. 2. This taxonomy describes our a priori and extended
hypotheses, and answers some of the questions that we
posed at the beginning of our analysis. It comprises domain
ontology (Question 1), types of concept expression, and
modalities (Question 2), and intentions (Question 3). We
describe these in further detail in the following subsections.



Fig. 2. Taxonomy of different aspects of situated human-robot task teaching
generated through our qualitative analysis. The values in bold represent the
aspects that emerged through our bottom-up analysis, and the remaining
values represent the aspects that were part of our a priori hypotheses.

A. Domain Ontology
In the domain of our analysis, we observed the following

types of concepts presented by the teacher:
1) Property: Participants in our study taught the robot how

to recognize and label different properties, such as shape
and color (e.g., “These objects are blue”).

2) Relation: Participants either explicitly described a spa-
tial relation between two objects (e.g., “Robot, the green
cone is left of the green cube”), or implicitly while
demonstrating an action (e.g., “I am moving the blue
cylinder left of the red cone”).

3) Object Reference: To reference objects, participants
either used distinguishing properties (e.g., red box) or
gestures combined with deictic terms (e.g., “This object
is now a part of the wall”).

4) Composition: Compositions were introduced as com-
plex concepts, composed from basic concepts such as
properties, objects, and relations (e.g., “This is a wall”).

5) Situation: Participants described and referred to the
shared environment to provide contextual and spatial
knowledge (e.g., “This point is the center of the table”).

6) Action: Participant lessons included describing and
demonstrating actions, as well as evaluating the robot’s
ability to perform actions. (e.g., “Move the blue cylinder
to the right of the red cone”).

7) Method of action: When teaching the steps needed
to build a wall, it was clear that “building a wall”
was a high-level action performed “by” executing the
indicated steps (i.e., the method for that action).

B. Concept Expression and Modalities
Consistent with our top-down analysis, we found that

participants used a combination of definitions and instances
(examples, demonstrations) to describe and refer to different
types of concepts. We present some concrete examples of
these in section IV-C. By way of modalities, we observed
participants using the mouse to point to, select and circle
around the referred objects. Participants also used the mouse
to demonstrate boundaries of situation, as well as actions.
Typically, we observed participants use these gestures along

with deictic terms when they referred to instances of the
domain ontology in the environment. Multiple participants
referred to existing objects, or those that were last placed,
through language alone. The gestures observed in our study
are clearly restricted by the affordances [29] available in
this simulated environment. However, this data supports our
hypothesis that teachers naturally use non-verbal modalities
along with language for communicative actions.
C. Communicative Actions and Intentions

We observed the following intentions and communicative
actions by participants P1–P10.

1. Inform. The teacher can design a lesson to teach a new
concept to a student, by intending to inform in one of three
different ways (i.e., methods). The teacher can instantiate a
concept (that is, provide an instance or example of it). One of
P8’s instructions was “All these objects are cylinders.” This
instruction provides names for concepts present in the shared
situation. A second method is to describe. For example, P9
provided a definition of a wall: “A wall is a line made up
of multiple rectangles.”. Finally, the teacher can inform by
using a hybrid method. For example, P5 taught ResAgent
the property color by saying “I want the robot to note that
this is another color which is blue.” Through this utterance,
P5 provided a conceptual definition that blue is a color, as
well as indicated a property about “this” on the table.

2. Expand past knowledge. A teacher may continue a les-
son about a concept by providing more information about it,
thereby expanding the student’s past knowledge. We saw this
in the form of providing additional examples of a property,
object or composition. For example, P10 provided ResAgent
with multiple wall configurations with the instruction “This
is a wall,” to help it generalize its understanding of a “wall.”
Some participants provided more information about a con-
cept in the form of distinguishing information. For example,
during P6’s first lesson of demonstrating the wall building
process, P6 decided to expand ResAgent’s knowledge of
a block. After using and referring to only ”cube-shaped
blocks”, P6 moved a cylinder to the table and said “There
are some blocks that are not shaped like cubes.” Some
participants also provided negative information, presumably
so that ResAgent could learn correct concept boundaries
using both positive and negative examples. For example, in
P4’s lesson about a “blue wall”, P4 first built a wall and
said to ResAgent, “This is a blue wall.” Once ResAgent
confirmed that it had learned successfully, P4 scattered the
objects across the table and said “This is not a blue wall.”

3. Evaluate. We often found that the participant tried (that
is, intended [30]) to evaluate ResAgent’s progress as a part
of a lesson by eliciting information from ResAgent to assess
its state of knowledge. We found that they accomplished this
through the following methods. In a test method, the teacher
can evaluate a robot’s knowledge by asking yes/no questions
to verify its knowledge of concepts and actions. For example,
P4 during their lesson about a “wall”, built a wall and asked
ResAgent “Is this a wall?” to verify that it had learned
this composition correctly. In a describe method, the teacher
can evaluate whether the robot can describe its conceptual



knowledge and shared environment, or retrospect on its
experience and use its conceptual knowledge to summarize
it. An example is seen when P10 asked ResAgent to describe
the result of its actions: “Can you tell me what you’ve
built?”. When the robot either stops arbitrarily or indicates
that it is unable to progress any further, the teacher can
ask the robot to explain. During P9’s lesson about a wall,
after providing examples, P9 asked ResAgent to build a
wall. However, ResAgent did not have enough knowledge
to execute the task and responded “I cannot do that.” P9
then asked “Why can’t you do that?” in response. ResAgent
was unable to answer this question since it was not part of
the response protocol and just repeated “I cannot do that.”
It would be useful for a robot to provide a response that
helps the teacher identify the missing concept, and design
an explicit lesson to teach it, so that the robot can recover
from this lack of knowledge. Lastly, a teacher can ask a robot
to demonstrate an action to confirm whether the robot has
learned the correct procedural how-to knowledge. Multiple
participants instructed ResAgent to “build” or “make” a wall
at the end of their lessons to evaluate its learning.

4. Correct student knowledge. Learning failures can
occur when the robot does not have the requisite or correct
concept definitions or when its concept definitions are either
over-general or over-specific; this can lead to incorrect scene
understanding or task execution. During a lesson, when a
participant used a concept that they had not taught yet or
discovered during an Evaluate action that ResAgent did
not know a concept, they either provided definitions or
demonstrated examples of the concept to update ResAgent’s
knowledge. For example, when P10 asked ResAgent to
perform an action by saying “Robot, can you move the green
cylinder immediately to the left of the green cube?,” Re-
sAgent responded “I don’t know left of.” P10 then corrected
by saying “The green cone is left of the green cube,” and
pointing to the objects while referring to them.

5. Revise instruction. In line with the functional reduction
strategies described in [31], we observed participants revising
their instructions by either self-correcting when they made
mistakes during an instruction, or rephrasing a recent instruc-
tion to make it clearer when ResAgent did not understand.
During P6’s lesson about compositions, P6 said “A vertical
line is when two or more blocks are above and below one
another and like a Northwest orientation.” When ResAgent
said it did not understand, P6 revised their instruction and
instead demonstrated the concept by saying “So this line is
horizontal and this line is vertical.” P1, during their lesson
introducing domain ontology, asked ResAgent to perform an
action, but immediately followed it up with “Cancel that.”
This case is challenging for the robot as it has to determine
which information, if any, from its previous interaction needs
to be revised or eliminated.

D. Variability in Curriculum Construction
Finally, as an answer to Question 4, Fig. 3 illustrates the

the differences in teaching styles of the study participants.
Despite teaching the same task, the lengths of teacher-student

Fig. 3. This color-intensity balloon plot depicts for each participant, the
total number of instructions with each intention, and the total number of
gestures used during instructions with a specific intention. Bigger circles
correspond to more instructions, whereas lighter color intensity corresponds
to higher number of gestures.

interaction varied across participants. P7 taught the task in
46 turns while P5 took longer and taught the task in 223
turns. We also observed people express different teaching
intentions to varying degrees. We see that some participants
(P1, P3, P8) structured their teaching primarily using inform
and evaluate intentions. Others (P2, P4, P5) expanded pre-
viously introduced concepts. We found that relatively few
participants used correct and revise intentions. However,
P9 and especially, P5 frequently revised their instructions
when ResAgent did not understand. Finally, we found that
all participants except P4 used gestures to teach but not
to the same degree. Some participants (P2, P3, P6) used
gestures extensively while others were conservative. The
concentration of gestures in inform and expand intentions
suggests that gestures are useful in providing extra-linguistic
information to learn from.

Fig. 4 examines in more detail the differences in the cur-
ricula employed by two participants P6 and P10. Fig. 4a and
4b illustrate how P6 and P10 sequenced their communicative
actions to form lessons that constituted the curricula2. P10
pursued a bottom-up interactive teaching strategy. P10 began
by presenting examples from the domain to teach concepts.
This can be observed in P10’s first lesson, where P10 used
inform and expand actions to provide examples of properties
(colors, shapes) and compositions (wall) to ResAgent. P10
then tested ResAgent’s ability to identify these concept
instances in the domain and corrected its knowledge through
examples when it failed. P10’s next lesson was to teach
ResAgent the process of building the same color wall, and
introduced relations through inform and correct actions. Af-
ter ResAgent successfully demonstrated building a wall, P10
proceeded to the lesson about multicolor walls. P10 provided
examples of walls through inform and expand actions, and

2P6 described their background as: ”I have a degree in Computer
Engineering, emphasis in Robotics. Pursuing a PhD in Human Computer
Interaction, have some knowledge of Human Robot Interaction & research.”
P10 described their background as: “I am a PhD student in English
Language and Literature, and I have no background in CS, computer
programming, or robotics.”



(a) Curriculum employed by P6

(b) Curriculum employed by P10

Fig. 4. Flowcharts of the P6 and P10 curricula. Innermost boxes with
dotted borders contain the intended communicative actions that P6 and P10
executed, along with the referred domain ontology. Bounding boxes with
dashed borders represent the lessons formed by grouping of actions for a
given purpose (present at the top of the box). Black arrows depict the flow of
communicative actions, and the blue arrows depict the flow of lessons. The
red double-headed arrows refer to the sub-lesson that the teacher provided,
when an instruction resulted in ResAgent’s failure, before proceeding ahead.

corrected ResAgent’s knowledge when it could not identify
them. P10’s instruction ended when ResAgent successfully
demonstrated building the red, blue and green wall.

P6 on the other hand, pursued a top-down narration-type
strategy. P6’s first set of lessons involved describing and
demonstrating the process of building a wall, that we explore
further in section V while discussing Fig. 5. P6’s second
lesson began with using inform and expand actions to provide
domain information, in preparation to teach same color walls.
P6 decided to first test ResAgent’s ability to build a “red”
wall. When it could not do it, P6 used the inform action to
provide it an example. P6 repeated this process with other
color walls, and ended their second lesson when ResAgent
successfully demonstrated building a same color wall.

V. SHAREDPLANS IN ITL ROBOTS
Our analyses in the previous section demonstrate that hu-

man teaching is intentional, dynamic and has a high degree of
individual variability. Teachers form intentions to assess and
improve the student’s domain knowledge. The intentions are
expressed through a repertoire of communicative teaching
actions. To exploit the full range of information available
in human teaching, an ITL robot must be able to sustain a

flexible interaction with the teacher. While an implemented
computational model is not within the scope of this paper,
below we discuss how a particularly well-developed theory
of collaboration called SharedPlans (SP) [3], [4], [8] can be
used to guide the design of interaction models in ITL robots.

SP makes use of a number of formal constructs that
enable one to model a collaboration. The first important
element is an intention. There are two types of inten-
tions: an intention-that ranges over participants and states
of the world, including the state of teaching. They capture
a participant’s commitment to a world state in which some
fact holds. For example, the teacher and the student might
have an intention-that the student understand what a wall
is. The second type is called an intention-to that ranges
over participants and actions (communicative, physical, and
internal), and represents the commitment that a participant
has to performing some action in the future. For example,
a student may intend-to convey its success in understanding
the concept of a wall to the teacher. An ITL robot must
be encoded with methods that allow it to infer (that is,
recognize) the overarching intentions of the teacher so that
it can act in a way that advances rather than inhibits the
achievement of a recognized intention.

The next element is that of a belief. Beliefs capture a
participant’s view of the world, in some symbolic represen-
tation. Participants’ beliefs can differ, as they do at certain
points in ITL settings: the recognition of such differences
often triggers a teaching action to correct a student’s beliefs.
Sometimes, the teacher must introduce a new concept before
the student can form an appropriate belief that can be cor-
rectly tied to its sensory perceptions: for example, knowledge
of which structures constitute a wall. Successful instruction
also requires that participants acquire mutual belief of the
current state of the world and interaction; this is facilitated
through a perceptually obtained common ground.

Since, a major focus of SP is on tasks and actions, the
theory introduces recipes that reflect action decomposition.
For example, the task of building a wall can be hierarchically
decomposed into a recipe or set of steps, such as picking up
and placing the first block, picking up the next block and
placing it next to the first one, and so on. Each sub-action in
a recipe can be viewed as part of the method for the higher
level action. Similar to beliefs, a robot’s recipes may be
incomplete or incorrect. The teacher helps the robot learn the
right recipes to successfully perform actions in the domain.
Since teacher communications are also actions, they too can
be decomposed into more basic actions through recipes. A
teacher will often sequence teaching actions in a way that
reflects a personal teaching strategy. During an interaction,
the robot has to infer the most likely intention that the teacher
has adopted given its library of recipes. For example, if the
teacher corrects a robot misconception, that inform action is
grounded in the teacher intention-that the robot modify its
beliefs accordingly. The robot must recognize that implicit
intention, and ask for clarification if it cannot.

Fig. 5 illustrates SP constructs, as applied to task-based
dialogue processing, in an annotation of a portion of P6’s



DP1 T intends-that R learns the concept of a ”wall”.
DP1.1T intends-to teach R by demonstrating the act of
building a wall.

1) T: “So, to build a wall.” (T informs R that T intends-to
demonstrate the action of building a wall. R recognizes
the intention and also adopts an intention-to learn how
to build a wall.)

2) T: “First, take one block and put it anywhere on the
board.” (T informs R of the first step of the recipe (the
method of action) and demonstrates it. R recognizes T’s
intention.)

3) R: “I have learned an example of a block.” (R informs
T that it has learned the concept ”block” as a side-
effect. T infers that R did not know that previously and
T corrects T’s own beliefs.)

4) T: “So then, take the next block of any type and put
it directly next to the one you just placed.” (T informs
R of the next step and expands its recipe knowledge.
The attentional state segments blocks into those being
placed and those already placed.)

5) R: ”I have learnt another example of a block. I have
learnt an example of next-to.” (R informs T that it has
learned another example of a block and the side-effect
of the relation next-to)

6) T: ”Continue taking blocks and placing them next to
the one you just placed.” (T informs R to repeat the
steps. The attentional state begun in (4) allows for a
more compact statement than: ”...taking blocks from
those not placed yet...”)

7) R: ”I have learned another example of next to” (R
informs T that it has learned another example of the
relation.)

DP1.1.1 T intends-that R learn the concept “hori-
zontal line”

8) T: “So, when you’re placing blocks next to
each other, you want them to be in a hor-
izontal line, like this.” (T informs R with a
demonstration of a new concept. This becomes
a constraint on the wall recipe.)

9) R: “I have learned an example of a horizontal
line” (R informs T of belief of success)

10) T: ”So, we have fully built our wall.”
11) R: ”I have learnt an example of a wall.”

DP1.2 T intends-to evaluate R’s state of learning
12) T: “Feel free to try completing the wall.” (T has just

removed a block from the wall. T intends-to evaluate
R’s understanding and implicitly requests that R finish
building the wall)

13) R: “I am taking control of the mouse. Done” (R
recognizes T’s intention and, instead of not doing
anything, understands that it is being tested. It therefore
completes the ”building wall” action and informs T of
belief of success)

14) T: “Good job.” (T informs R that R’s belief is correct)

Fig. 5. Actual interaction between the participant teacher P6 (T), and the
robot student ResAgent (R) that illustrates SP constructs in the context of
ITL. T uses demonstration and narration to teach the concept of a wall. The
anonymized video of this interaction can be found at https://youtu.
be/bspbZhsCOpw.

teacher-robot interaction. Associated with groups of utter-
ances (shown inside a box) is a discourse purpose (DP). The
sub-boxes in the figure indicate that the enclosed discourse
segment has its own purpose and is subsidiary (that is,

contributes in some way, to the higher level purpose). The
grouping of utterances into segments, each of which serves
some particular role in the discourse, is referred to as the
linguistic structure. A second, deeper structure is referred to
as the intentional structure. This consists of the DP of each
segment, expressed in terms of the language of beliefs and
intentions discussed earlier, together with relations between
another DP. For example, in Fig. 5, utterances 1-11 describe
how to build a wall; i.e., the recipe for building a wall.
The sub-segment consisting of utterances 8 and 9 is a
sub-dialogue describing a horizontal line constraint on the
positioning of the block. In DP1.1.1, T intends-that R learn
the concept “horizontal line” which contributes to the success
of the higher level DP1.1 and induces a structure between
those two segments. The DPs can be thought of as related in
the same way that a lower level action is related to a higher
level action in a recipe. The final important element of dialog
is referred to as the attentional state: at any stage of an
interaction, the participants access only a subset of salient
entities under discussion. One example of the evolution of
the attentional state is illustrated in utterances (4) and (6).
Since teacher-student interactions are situated, entities are
often brought into salience through pointing and deictics.

The SP framework can address many of the requirements
that we have uncovered while attempting to answer the
questions that we posed in Section IV:

1. SP provides a rich representation of actions and their
decomposition together with a non-propositional logical lan-
guage that supports representation of properties and relations.

2. Dialogue structure is not stipulated ahead of time
but can follow the natural improvisational flow of normal
conversations. Helpful actions are automatically triggered by
intentions-that so that perceived teaching/learning obstacles
can be overcome. Alternative modalities can simply be
represented as special actions with their own effects.

3. SP supports multiple intentions and since teaching
intentions are grounded in action they can be decomposed
like any other action. Since intentions are closely tied to
action, explanations for why a student did something can be
easily generated. Partiality of intentions and beliefs naturally
support expand and revise [32].

4. Individual variability of instruction and curriculum is
directly supported in SP as shown above: DPs can follow
whatever order a teacher finds suitable.

VI. DISCUSSION AND CONCLUSION

In this paper, we study how humans teach to design ITL
robots that can participate in a natural teaching interaction.
Towards this end, we designed and conducted a study in
which participants taught a learning agent in a simulated,
robotic domain. Our analysis shows that people naturally
decompose a complex task into a variety of concepts (prop-
erties, relations, compositions, etc.) and incrementally intro-
duce these as parts of lessons in a curriculum. In a les-
son, conceptual knowledge is presented through definitions,
demonstrations and examples, and use a combination of
language and non-verbal modalities to convey information.

https://youtu.be/bspbZhsCOpw
https://youtu.be/bspbZhsCOpw


Teachers adopt a variety of intentions in a lesson to introduce
concepts as well as to understand and evaluate a student’s
competency. We propose a taxonomy that organizes these
aspects of human-robot teaching to analyze the teaching
process of two participants, thereby demonstrating the utility
of the taxonomy in modeling human teaching.

Our analysis also reveals that there is significant individual
variability in how people design and deliver a curriculum.
To design a robot that can learn from the full range of
information available in human teaching, it is necessary
to develop a computational model that can handle this
inherent variability. The paper explores the applicability of
a computational theory of collaboration, SharedPlans, in
managing human-robot teaching interactions. One of the
advantages of SharedPlans is its flexibility in adapting its
theoretical constructs to many alternative teaching styles
by modeling the teaching interaction as a collaboration
between the teacher and the student towards a mutual goal. It
represents a promising approach to designing a robot that can
accommodate different teachers and their teaching strategies.

While the analyses in this paper are promising, they
represent only an initial exploration directed towards under-
standing human teaching in ITL settings. Our study had 10
participants who taught a simple task with a limited set of
objects. We expect that other aspects of teaching will emerge
with more complex tasks as well as with participants from
diverse backgrounds, cultures, and experiences. Another lim-
itation is the remote nature of our study. While we expect
the taxonomy of intentions to be applicable in real human-
robot interaction scenarios, the experimental setup that we
adopted limits the gestures that people can use. Despite these
limitations, our work lays the foundation for a structured
understanding of ITL teaching and provides a framework that
can be used for building and evaluating future ITL robots.

Often, HRI and, specifically, ITL have approached inter-
actions from a robot-learner perspective by building simple
and scripted interaction models. In the future, we will apply
the SharedPlans theory to implement a teacher-centered
interaction model in an ITL robot that will enable it to adopt
correct intentions in response to a teacher’s communicative
acts, and respond correctly to further the interaction.
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