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Trust, Shared Understanding and Locus of Control in Mixed-Initiative
Robotic Systems

Manolis Chiou1, Faye McCabe1, Markella Grigoriou1 and Rustam Stolkin1

Abstract— This paper investigates how trust, shared under-
standing between a human operator and a robot, and the
Locus of Control (LoC) personality trait, evolve and affect
Human-Robot Interaction (HRI) in mixed-initiative robotic
systems. As such systems become more advanced and able
to instigate actions alongside human operators, there is a
shift from robots being perceived as a tool to being a team-
mate. Hence, the team-oriented human factors investigated in
this paper (i.e. trust, shared understanding, and LoC) can
play a crucial role in efficient HRI. Here, we present the
results from an experiment inspired by a disaster response
scenario in which operators remotely controlled a mobile robot
in navigation tasks, with either human-initiative or mixed-
initiative control, switching dynamically between two different
levels of autonomy: teleoperation and autonomous navigation.
Evidence suggests that operators trusted and developed an
understanding of the robotic systems, especially in mixed-
initiative control, where trust and understanding increased over
time, as operators became more familiar with the system and
more capable of performing the task. Lastly, evidence and
insights are presented on how LoC affects HRI.

Index Terms— Human-Robot Teaming, Human-Robot Inter-
action, Trust, Locus of Control, Mixed-Initiative.

I. INTRODUCTION

As robots are increasingly integrated into human-robot
teams, it is pertinent to design human-robot systems that
facilitate trust, communication and interdependent working.
The irony of automation [1] is that without careful analysis
of how autonomous systems (i. e. robots in this context) are
introduced and their effect on the work and team, autonomy
can reduce situational awareness, decrease attention [2], and
increase workload, leaving humans to work through tasks
too nuanced for automation, in addition to supervision and
validation of the autonomy’s actions.

Having the human-in-the-loop to control, supervise, or
even with a peer-to-peer relationship with the robotic system,
offers a crucial advantage: the benefits of both agents’
capabilities whilst mitigating their weaknesses through col-
laboration. In remotely-operated robotic systems, robots can
keep humans from harm and share workload by conducting
tasks remotely and autonomously. Humans can take over
in abstract situations requiring contextual, imaginative or
moral thinking. Both human-robot team members operate
interdependently to solve problems, with work allocation
changing dynamically depending on the task. Human op-
erator personality traits, trust in the robot, self-trust, and
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understanding of the system all can play a role in establishing
how the system will be used and relied upon [3].

This paper focuses on team-oriented human factors aspects
of remotely operated Human-Initiative (HI) and Mixed-
Initiative (MI) robotic systems, in terms of the operator’s
trust in the system, shared understanding between the robot
and the operator, and the effect the Locus of Control (LoC)
personality trait has on HRI. This is done through an empir-
ical study in which human operators conducted a search and
rescue navigation task via remotely controlling a realistically
simulated mobile robot in either MI or HI control.

The MI and HI systems in our testbed allow for dynamic
switching between different Levels of Autonomy (LoA)
during task execution. Two different LoAs are used: tele-
operation, with an operator manually controlling navigation
via a joypad; and autonomy, where the robot autonomously
navigates towards human-defined waypoints. In HI control,
the human operator is solely responsible for switching LoA
based on their judgement [4]. In MI control, both the operator
and the robot’s AI have the authority to initiate actions and
switch LoA [5], meaning the robot is essentially a peer
with equal authority. This makes designing HRI uniquely
challenging, as transferring control authority fluidly requires
communication, trust and shared understanding within the
human-robot team.

This paper contributes evidence that MI robotic systems
can be appropriately trusted by operators; trust and shared
understanding increase over time; and efficient HRI within
the MI system is correlated with an operator’s familiarity
with the system (i.e. understanding). Additionally, this paper
contributes by reporting how LoC affects HRI both in MI and
HI control. Evidence suggests that operators with average
and high LoC are comfortable giving control of the task to
the robot’s AI.

II. RELATED WORK

A. Trust in Automation and Human-Robot Interaction

According to Chen and Barnes [6], the most relevant defi-
nition of trust is the one from Lee and See [7]: Trust is “the
attitude that an agent will help achieve an individual’s goals
in a situation characterized by uncertainty and vulnerability”.

Hoff and Bashir [8] propose three layers of human-
automation trust: dispositional, situational, and learned trust.
Schaefer et al. [9] categorise factors that affect trust into three
categories; human-related, automation-related (the robot in
the current context), and environment-related. Hancock et
al. [10] conducted a meta-analysis of the trust literature
and concluded that robot performance-related factors, such
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as reliability and failure rate, have the largest influence on
trust. They argue that more experimental studies on human-
related factors are needed. Schaefer et al. [9] meta-analysis
on trust further confirms the importance of both automation
and human performance-related factors.

Most recent HRI research suggests that individual differ-
ences in trust might stem from whether the robot is perceived
as an advanced tool, a human-like teammate [11], and/or by
cultural differences [12]. Robot errors are found to have a
profound and lasting effect on trust [13]. Yang et al. [14]
present a data-based model where trust is either exponentially
increasing or decreasing based on the robot’s reliability and
initial user expectations.

Our literature survey found two studies on trust with
control modes similar to HI control, but no studies similar
to MI control. In Desai et al., [15] operators were allowed
to switch between fully autonomous and robot-assisted nav-
igation. They found that the effect reduced reliability has on
trust becomes less apparent over time. Additionally, when
assistance reliability dropped, participants switched to auton-
omy. Once reliability improved, participants waited longer
to switch back to autonomy compared to switching away
from autonomy. Nam et al. [16] proposed computational
MDP models to predict an operator’s trust levels towards a
robotic swarm equipped with a suggestion system regarding
LoA switching. They found that the formation shape of the
swarm affected trust when task performance was not readily
understandable.

In summary, although there is a body of literature on
trust in autonomous systems, the field of HRI requires more
studies that explore trust in scenarios where operators coop-
eratively perform tasks using remotely controlled variable-
autonomy robotic systems. Often, trust in HRI is studied in
tasks with a high level of abstraction or theoretical scenarios
[11], [13], [17]; when using decision aids or recommendation
robots [14], [17], [16]; or by observing the robotic system
conduct a task [18]. To the best of the authors’ knowledge,
there is a gap in the literature regarding the empirical
investigation of trust in robotic systems where the LoA varies
dynamically during task execution. This is especially true for
MI robotic systems where the autonomous agent has a peer-
to-peer relationship with the operator and can actively take
control and change the LoA.

B. Locus of Control

Locus of Control (LoC) is a personality trait and refers to
the degree people believe that their actions and behaviours
affect outcomes in events in their lives. Simply put, it is the
degree of control people believe they have over events. It is
usually divided into internal and external LoC. An internal
LoC means that a person believes that outcomes and events in
their life derive primarily from their own actions and efforts,
as they see a causal relationship between their behaviour and
rewards. In contrast, an external LoC means that a person
believes the outcome of events is mostly affected by forces
beyond their control, e.g. luck, fate, powerful others [19],
[20].

We hypothesise that due to its nature, LoC affects HRI
and consequently performance in systems where the operator
needs to cooperate with an autonomous agent to control
a remote robot to achieve a task. Despite its potential
importance, to the best of the authors’ knowledge, there is a
lack of research considering the operator’s LoC personality
trait in human-robot teams. In this paper, we aim to address
this gap in the literature by investigating the effect of LoC
in HI and MI robotic systems.

Our literature survey found two studies in shared control
telepresence robots. Takayama et al. [21] found that people
with an internal LoC took longer to complete an obstacle
course than people with an external LoC. Although not statis-
tically significant, they also report evidence that autonomous
assistance seemed to degrade performance for operators with
a very high internal LoC. This might suggest that individuals
with a high internal LoC have problems giving up control
to an autonomous system. In Acharya et al. [22] average
and high internal locus operators have the same level of
performance. Additionally, the high internal LoC operators
issued the most commands to the robot and had a high
percentage of command conflicts. These results suggest this
group may seek more control and grow frustrated with the
robot’s response.

These studies will be used to inform our discussion better.
However, a direct comparison between our work and [21],
[22] cannot be made. This is because our work uses MI
and HI control and not shared control, meaning the operator
interacts with the robotic system differently. In our MI and
HI control implementation, the system has the capability to
switch between different LoAs on-the-fly (i. e. teleoperation
and autonomy). In contrast, in shared control, the robot
moves according to a scheme for continuously blending
control signals from both human and an autonomous agent.
Additionally, we use a different LoC scale (i.e. the ICI) as it
[21] uses the Rotter’s scale [19] and [22] uses an abbreviated
version of the LoC Questionnaire (LOCQ). However, all
three scales are general measures of LoC.

III. MIXED-INITIATIVE AND HUMAN-INITIATIVE
CONTROL IMPLEMENTATIONS

In this paper, we assume a human-robot system that
has two LoAs: teleoperation, in which the human operator
controls the robot manually with the joypad; and autonomy,
in which the operator clicks on a desired location on the
map, and the robot’s AI plans and executes a trajectory with
the robot to that location. The human-robot system is able
to switch between these two LoAs by using two different
variable autonomy methods: either Human-Initiative (HI) or
Mixed-Initiative (MI) control.

The HI control switcher used is detailed in [4]. The control
switcher allows the operator to switch between different
LoAs on-the-fly and at any time by pressing a joypad button.
It is based on the ability and authority of a human operator
to initiate LoA switches based on their own judgment to
perform a task efficiently (e.g. improving task performance
or overcoming difficult performance degrading situations).



The robot’s autonomous agent does not have any authority
to switch LoAs.

In contrast, MI control is defined in [23] as “a col-
laboration strategy for human-robot teams where humans
and robots opportunistically seize (relinquish) initiative from
(to) each other as a mission is being executed...”. In the
current context, MI control refers to the authority of both
the robot’s MI control switcher and the operator to initiate
LoA switches at any moment. The MI control switcher used
was proposed in [5] and uses an expert-guided approach
to initiate LoA switches. It assumes the existence of an
AI task expert (i.e. a navigation planner in this paper) that
given a navigational goal, can provide the expected/ideal
task performance for the human-robot system in the absence
of performance-degrading factors. The comparison between
the system’s run-time performance with the expected expert
performance yields an online task effectiveness metric called
”goal-directed motion error”. In essence, this is the difference
between the robot’s current motion (i. e. linear velocity) and
the motion of the robot required to achieve its goal (i. e. reach
a target location) according to the expert planner. Hence,
this metric expresses how effectively the system performs
the navigation task, and the MI control switcher uses it to
infer if a LoA switch is needed. In practice, the MI control
switcher parameters were trained to use this error to initiate
LoA switches based on what the human operators did to
improve performance on data from previous experiments.
For further details regarding the expert-guided MI control
switcher, please refer to [5].

IV. EXPERIMENTAL STUDY

A disaster response inspired experiment in which a re-
motely operated mobile robot had to navigate and look for a
victim was conducted. The aim was, within the context of HI
and MI control, to investigate: (i) how learning (i. e. skills ac-
quisition) and training affects task performance; and (ii) the
LoC, trust in the robot, self-trust, and shared understanding
between the robot and the operator. The reader can refer to
[24] for further information on learning and training effects
on task performance. In this paper we investigate (ii) from
the perspective of the following hypotheses:

H1: Operators trust the MI and the HI robotic systems to
assist them and contribute to the task.

H2: Trust in the variable autonomy robotic systems
(i. e. both in HI and MI), will improve as the operators use
the system more.

Additionally, the following exploratory (i.e. more general)
hypotheses were investigated:

EH1: Trust in the robot, self-trust, and shared understand-
ing affect HRI in terms of performance, perceived workload,
use of autonomy LoA (i.e. how often it is used compared to
teleoperation), and LoA switching.

EH2: Locus of control affects HRI in terms of use of
the autonomy LoA, performance, levels of trust, and LoA
switching.

(a) (b)

Fig. 1. 1a: The experimental apparatus: the Operator Control Unit (OCU)
composed of a laptop, a joypad, a mouse and a screen showing the GUI;
and a laptop presenting the secondary task. 1b: A typical example of the
secondary task [24].

A. Apparatus and software

Gazebo, a high-fidelity robotic simulator, was used to
simulate the environment and the robotic system (see Figs.
3 and 2). The simulated Husky robot was equipped with a
laser range finder and an RGB camera. The simulation was
used to improve the repeatability of the experiment.

The software1 used was developed in Robot Operating
System (ROS) and is described in more detail in [4], [5].
The robot’s autonomous navigation uses the framework and
algorithms (i.e. Dijkstra’s algorithm and the dynamic window
approach) from ROS navigation stack [25].

The robot was controlled via an Operator Control Unit
(OCU) (see Fig. 1a). The OCU was composed of a mouse
and a joypad as input devices, a laptop running the software
and a screen showing the Graphical User Interface (GUI)
(see Fig. 2).

Fig. 2. Left: video feed from the camera, the control mode in use and
the status of the robot. Right: The map (as created by SLAM) showing the
position of the robot, the current goal (blue arrow), the AI planned path
(green line), the obstacles’ laser reflections (red) and the walls (black). In
the map participants had to navigate from point A to point B and then back
again to point A [24].

The experiment’s test arena was approximately 576m2

(see Figs. 2 and 3) and the training arena was approximately
72m2. Both arenas had similar level of difficulty.

The software used to display the secondary task was
OpenSesame [26], while the images of the stimuli used were

1The GitHub code repository for running the experiment in ROS is avail-
able under MIT license: https://github.com/uob-erl/fuzzy_
mi_controller

https://github.com/uob-erl/fuzzy_mi_controller
https://github.com/uob-erl/fuzzy_mi_controller


Fig. 3. The test arena used, simulating a disaster response scenario [24].

previously created and validated for mental rotation tasks in
[27].

B. Tasks and Performance Degradation Factors

Participants had to conduct a primary navigation task and
a cognitively demanding secondary task. In the primary task,
participants had to navigate from point A in Fig. 2 to point
B (where a victim was located) and back to point A.

In the secondary task, taking place parallel to the primary
task, participants were presented with a series of images,
each showing a pair of 3D objects (see Fig. 1b). In some
of the images, the objects were identical but rotated by
150 degrees. In the rest of the images, the objects were
mirror-image objects with opposite chirality. The operator
was required to verbally state whether or not the two objects
were identical. The images were displayed on the screen of
a laptop placed next to the OCU screen (Fig. 1a).

The secondary task represents situations in which the
robot operators must interrupt their control of the robot
while processing visual or spatial information (e.g. the exact
location of a victim or hazard) and relay this information to
the rescue team [28].

The secondary task was used to degrade the operator’s
performance (i.e. teleoperation); artificially generated noise
to the laser scanner range measurements was used to degrade
autonomous navigation performance (i.e. autonomy). This
noise was visible to the operator via the obstacle’s laser
reflections representation in the GUI (see Fig. 2). In each
experimental trial, each of these performance degrading
situations occurred once each and at random times. These
degrading factors appeared with the restriction that they
would not overlap and provide a similar level of degradation
in each trial. For every experimental trial, the artificial noise
and the secondary task, once initiated, lasted for 30 seconds.

C. Measuring trust, shared understanding and locus of con-
trol

Trust and shared understanding were measured by a
custom-made 5-point Likert scale questionnaire, with 1
on the scale denoting “strongly disagree” and 5 denoting
“strongly agree”. The questionnaire consisted of 6 questions

sub-grouped for measuring three different HRI related as-
pects. The term team refers to the human-robot team. The
questionnaire follows:

Q1: I trusted the robot to do the right thing at the right
time.

Q2: The robot’s performance was an important contribu-
tion to the team’s success.

Q3: I was confident in my ability to complete the task.
Q4: My performance was an important contribution to the

success of the team.
Q5: I accurately perceived the robot’s intentions.
Q6: The robot accurately perceived my intentions.
Trust in the robot scale questions Q1 and Q2 measure the

operator’s trust and confidence in the robot’s AI capabilities.
These questions were previously validated in [29].

Operator’s self-trust scale questions Q3 (used from [30])
and Q4 (adapted from [29]) measure the operator’s trust and
confidence in their abilities.

Shared understanding scale questions Q5 and Q6 measure
how well the operator thinks the robot understands their
intentions and how well the operator understands the robot’s
actions and intentions. Both questions were adapted from
[29].

The Internal Control Index (ICI) has been used to measure
LoC. ICI is a general measure of LoC based on Likert scale
questions and was developed by Duttweiler [31]. The use of
ICI in this study is based on three criteria: a) the ICI was
developed to counteract some of the original I-E Scale issues
[20], [31], [32]; b) it is known to be among the most reliable
scales for measuring LoC [32], [33]; c) the ICI is a general
measure of LoC with a single total score.

D. Experimental Protocol

A total of 20 participants took part, with 10 controlling
the robot in HI, and the other 10 in MI. Participants
were a random sample from the University’s student and
staff population (University of Birmingham ethical review
no. ERN 19-0199AP2). The participants’ age was between
22-41 years old (M = 30.4, SD = 4.8), with 13 of
them male and 7 female. Before the experiment, participants
completed a custom-made 5-point Likert scale questionnaire
assessing their level of experience in playing video games,
operating robots, and/or related equipment. The number of
experienced participants was balanced between the two con-
ditions (i. e. between HI and MI). Additionally, participants
completed the ICI LoC questionnaire.

Each operator underwent extensive standardised training
[24] of approximately 20-25 minutes before the experi-
ment, conducted in a training arena that differed from the
experiment arena. Each system and experimental aspect
was introduced gradually, and participants were allowed to
practice using them: i. e. the GUI, the different LoAs, how
distances from obstacles in the virtual environment mapped
to the robot’s pose and movement, and the performance
degrading factors. Participants practised using either the MI
or HI capabilities to switch between LoAs depending on
the experimental condition they were allocated. To ensure



that all participants had attained a minimum skill level in
controlling the robot, they were not allowed to proceed with
the experimental trials until they had first demonstrated that
they could complete a training obstacle course within a
specific time limit, with no collisions, and while presented
with the two performance degrading factors.

During the experiment, each group of participants per-
formed 5 identical trials of the same tasks. At the end of
the third trial (i. e. half way through the experiment), all
participants had a 3-minute break to reduce the effect of
fatigue. At the end of each trial, participants completed the
trust and shared understanding questionnaire.

Participants were instructed to perform the primary task
(controlling the robot in the navigation task) as quickly and
safely (i. e. minimising collisions) as possible. Additionally,
they were instructed that when presented with the secondary
task, they should do it as quickly and as accurately as
possible (i. e. to have as many correct answers as possible in
the 30 second time limit). They were explicitly told that they
should prioritise the secondary task over the primary task
and should only perform the primary task if the workload
allowed.

The participants could only acquire situation awareness
(SA) via the GUI (see Fig. 2). When a LoA switch occurred
from either the operator or the MI control switcher, the
operators were alerted in three different ways: a) by an alarm
sound identical to the one denoting autopilot disconnection
in aircraft; b) by synthetic speech expressing the LoA the
system switched to; c) by a GUI notification.

At the end of the experiment, participants completed a raw
NASA-TLX task workload questionnaire [34].

V. RESULTS AND STATISTICAL ANALYSIS

When comparing the data from the HI and MI conditions,
these data were treated as between groups, i. e. independent
samples, with pairwise comparisons conducted with Mann-
Whitney U test. When analysing data between different trials
of the same condition (i. e. HI or MI), the data were treated
as within-subject/repeated measures. The Wilcoxon signed
ranks test was used for within-subject pairwise comparisons
and the Spearman’s rank for correlations. All tests were two-
tailed. We consider a result to be statistically significant
when it yields a p value less than 0.05. The trial number
is abbreviated as t1 for the first trial, t2 for the second, and
so on. For correlations, the metrics were averaged across
trials, as is standard practice.

To facilitate some comparison with relevant literature that
follows similar grouping [22], the ICI scale was divided
proportionally in three categories: operators with an ICI score
of a) between 28−65 have a high external LOC; b) between
66− 102 have an average LOC; c) between 103− 140 have
high internal LOC. The minimum possible score of the scale
is 28 and the maximum possible score is 140. In our sample
of participants the lowest ICI score was 96 and the highest
127. Thus, all participants fell into the average LOC (4
participants) and high internal (16 participants) categories.
The average ICI score of participants in MI and HI (see

Table I) did not show a statistical difference according to
a Mann-Whitney U test. This means that our sample (i.e.
participants) is equally distributed in terms of ICI between
conditions (i. e. HI and MI). Factors that seem to impact
LoC, such as social environment and family structure [35]
are very hard to control and are outside of the scope of this
paper.

The following metrics were analysed in conjunction with
trust and LoC: primary task completion time (sec); secondary
task number of correct answers; secondary task accuracy
(i. e. the percentage of correct answers from the total re-
sponses given); the number of LoA switches; percentage of
time spent in autonomy LoA; NASA-TLX score.

Results H1: The mean trust in the robot (i.e. Q1 and Q2)
across trials was M = 4.39, SD = 0.67 for HI and M =
4.71, SD = 0.26 for MI. The mean self-trust (i.e. Q3 and
Q4) across trials was M = 4.44, SD = 0.56 for HI and M =
4.22, SD = 0.43 for MI. The mean shared understanding
(i.e. Q5 and Q6) across trials was M = 4.44, SD = 0.61
for HI and M = 4.59, SD = 0.28 for MI. No statistically
significant differences were found in self-trust, trust in robot
and shared understanding between HI and MI.

Results H2: In HI, no significant difference was found
between t1 and t5 concerning trust in the robot, self-trust and
shared understanding (see Fig. 4 and Table I). In contrast, in
MI, trust in the robot (Z = −2.21, p = .034), self-trust (Z =
−2.59, p = .01) and shared understanding (Z = −2.56, p =
.01) are significantly higher in t5 compared to t1 (see Table
I). As can be seen in Fig 4 there is a clear increase of trust,
self-trust, and shared understanding in MI over time.

Results EH1: In MI, a significant negative correlation was
found between shared understanding and operator-initiated
LoA switches (ρ = −.66, p < .038). A significant negative
correlation was found between shared understanding and
primary task completion time (ρ = −.72, p < .019). No
other correlation was found in MI between the trust metrics
and any of the other metrics.

In HI, a strong negative correlation was found between
self-trust and the NASA-TLX (ρ = −0.79, p = 0.006). No
other correlation was found between trust in robot, shared
understanding and any other metric.

Results EH2: In HI, a significant negative correlation
(ρ = −.67, p < .034) between ICI and trust in the robot was
found. No significant correlation was found between ICI and
other measured metrics.

In MI, no significant correlation was found between ICI
and any of the metrics.

VI. DISCUSSION

A. Trust and shared understanding

Regarding H1, the results show that operators trusted the
robot’s capabilities to contribute to the task both in HI and
in MI, hence confirming H1. More specifically, in MI, the
evidence shows strong levels of trust denoted by the high
proportion of “strongly agree” responses, especially in t5.
Additionally, operators had confidence in their ability to



(a) (b)

Fig. 4. Mean trust and shared understanding scores across trials for 4a Human-Initiative and 4b Mixed-Initiative. The error bars indicate the standard
error. The range of values in the y-axis in both graphs is [1,5] (i.e. a 5-point Likert scale).

TABLE I
DESCRIPTIVE STATISTICS AND PAIRWISE COMPARISONS.

metric & condition descriptive statistics significance
Mixed-Initiative:
trust in robot t1 M = 4.6, SD = 0.32

p = 0.034trust in robot t2 M = 4.9, SD = 0.21
self-trust t1 M = 3.75, SD = 0.8

p = 0.01self-trust t5 M = 4.5, SD = 0.53
shared understanding t1 M = 4.15, SD = 0.47

p = 0.01shared understanding t5 M = 4.8, SD = 0.35
ICI M = 111.3, SD = 10.42
Human-Initiative:
trust in robot t1 M = 4.35, SD = 0.78

p > 0.05trust in robot t5 M = 4.55, SD = 0.21
self-trust t1 M = 4.15, SD = 1.13

p > 0.05self-trust t5 M = 4.7, SD = 0.26
shared understanding t1 M = 4.25, SD = 1.11

p > 0.05shared understanding t5 M = 4.7, SD = 0.53
ICI M = 108.7, SD = 6.1

complete the tasks and had a good shared understanding with
the robot, both in HI and in MI.

In HI, H2 evidence suggests that trust in the robot, trust in
self, and shared understanding did not change significantly
over time, although some non-significant increase can be
observed (see Fig. 4a). This might suggest that the stan-
dardised training has provided participants with a close to
maximum trust and understanding they could have for the
HI system in the context of this experiment. However, the
lack of statistically significant evidence could also be because
of the relatively small sample size.

In MI, and in contrast with HI, the evidence presented
confirms H2 and shows that trust and understanding of
the system improved over time. This is important evidence
pointing towards two directions: reliability of and familiarity
with the system. First, in conjunction with the performance
increase over time in [24], this gives evidence to support the
reliability of the MI system in the context of this experiment,
backed up by the trust model of Yang et al. [14] which
predicts that trust in a robot increases with robot reliability.
Additionally, this further contributes to the current literature
(see Section II-A) in showing that trust is mainly driven by

performance (e.g. reliability). Secondly, this increase in trust
and shared understanding may be related to the increased
amount of HRI which occurs in MI compared with HI.
The interaction in the MI condition is more complex and
meaningful when compared to HI, as the robot’s MI control
capabilities are more actively involved and perceivable by
the operator via the control-switching initiative. This in turn,
could have led to increased familiarity with the system
over time. An explanation can be found in [7]: for trust to
grow, humans must be familiar with the system’s operations,
methods, and constraints. By understanding the “three Ps”
of a system [7], [36]; performance, process, and purpose;
an operator can develop an appropriate level of trust in a
system. Thirdly, a “dip” in trust was observed in t4 as three
participants rated their trust lower in t4 compared to t3.
However, in t5, trust increased again to the highest level
across all trials. The authors predict this could have been
due to a few negative interactions by chance in t4. The dip
in trust was rapidly reconciled in t5.

Regarding EH1 in MI, shared understanding was nega-
tively correlated with both the number of operator-initiated
LoA switches and the primary task completion time (shorter
time means better performance). These results provide ev-
idence that the more an operator understood the MI sys-
tem, the less they initiated LoA switches and the better
they performed. The above evidence explains and adds to
the findings in [24] in which the total number of LoA
switches was decreasing over trials (i.e. time). Additionally,
the performance improvement over time in [24] suggests that
operators become more efficient in LoA switching as they
use and understand the system more. Lastly, in MI, the lack
of correlation with the use of autonomy LoA might suggest
that trust mostly reflects the LoA switching capabilities of the
MI control switcher, or the system as a whole, rather than
explicitly the autonomy LoA. However, trust and the use
of autonomy in both HI and MI conditions were relatively
high across participants, and hence a bigger and more diverse
sample is required to explore this further.

Regarding EH1 in HI, the negative correlation found
between self-trust and the perceived workload (i.e. NASA-



TLX) means that the more operators trusted themselves and
were confident about operating the robot, the lower their
perceived workload. This is possibly due to an absence of
assistance from the robot in terms of LoA switching. This
is further supported by the lack of evidence of such a corre-
lation in MI, in which the robot’s MI control switcher was
actively helping with LoA switching and the operators with
low self-trust did not experience an increase in workload.
This could be because the robot takes some of the burden
of control and/or psychologically the active AI role makes
operators perceive their workload as less intensive, knowing
that the robot’s autonomous agent will take the initiative if
they do not perform well. However, the causality can be
the other way around as the self-perceived ability to use the
robot’s capabilities can be possibly influenced by workload.

B. Locus of control

The negative correlation in the HI condition between ICI
and trust in the robot means operators with highly internal
LoC trust the robot less. This differs in the MI condition,
where no correlation was found. An explanation for this
may be that individuals who score highly on internal LoC
consider themselves solely responsible, negatively impacting
how likely they are to trust somebody else to accomplish the
task and transfer control and therefore, responsibility.

Additionally, an autonomous system that can take control
as in MI, may be more likely to be perceived as an assistant
or collaborator rather than a tool [3]. In contrast, in HI
control, the robot is more likely to be perceived as a tool, as
it is unable to interact with the operator actively and must
obey their instructions. With no way to experience the more
“intelligent” side of the robot, allowing it to assess human
performance and take control when necessary, an operator
must actively decide to relinquish control. If the operator
has a high internal LoC and no way to become familiar
with the robot’s reliability, they lack the ability to develop
more trust in the robot. This is because trust is based upon
familiarity with the robot’s behaviour and this would only be
possible through relinquishing control, which goes against
their internal LoC.

The absence of correlation evidence between primary
task performance and the LoC, both in HI and in MI, is
in accordance with the findings of [22], that performance
between average and high internal LoC operators are indis-
tinguishable. This makes sense as all of our participants fell
into the category of having average or high internal locus
of control. Hence, EH2 in terms of performance cannot be
confirmed in the current study. However, it cannot be rejected
either due to the lack of high external LoC participants in
our sample, requiring further investigation.

Our results did not find evidence of a correlation between
ICI and the number of operator-initiated LoA switches in
both MI and HI. This might suggest that LoC is not inter-
acting with the number of commands (i.e. LoA switches in
our case) the operators give to the robot. This is contrary to
the increased shared control commands given to the robot in
[22] by the high internal locus operators.

The lack of evidence of correlation both in MI and HI be-
tween ICI and the percentage of task time spent in autonomy
LoA, in conjunction with the high percentage of time spent in
autonomy LoA by the participants, M = 79.9, SD = 19.56
in HI and M = 76.8, SD = 18.5 in MI, might suggest that
average and high internal individuals have no issues with
giving control to the autonomous navigation in the context
of this experiment. This does not agree with the suggestion
made by Takayama et al. [21] that high internal individuals
have problems giving control. However, as mentioned in the
related work Section II-B, a direct comparison with [22],
[21] cannot be made.

C. Limitations, insights, and future challenges

This study aimed to be a starting point towards investi-
gating trust, shared understanding, and locus of control in
dynamic variable autonomy systems such as HI and MI.
Towards this end, in this section, we will provide insights,
discuss how to overcome some of the limitations, and provide
suggestions for future research.

First, although we consider the number of participants
sufficient to capture some of the trends accurately (e.g.
trust increasing in MI over time) it might have prevented
us from finding others (e.g. slower increase in trust in
HI). Additionally, correlation does not necessarily mean
causation. Establishing causation in human factors research
can be challenging. Future experiments should include a
large number of participants from different age groups and
explicitly control for trust, predisposition to robot use, and
personality traits so causal relationships can be investigated.

Second, due to the complex nature of HRI in MI, there
is a need for an MI specialised framework of trust able to
capture its multiple dimensions. For example, the current
trust measurement does not explicitly differentiate between
trust in the robot’s autonomous navigational ability and trust
in the robot’s LoA switching capabilities in MI. Future work
can tackle this by measuring trust based on momentary
interactions (e.g. before and after an MI control switcher
initiated changes) and investigating the impact of varying
the robot’s navigational reliability on the frequency of LoA
switching. Additionally, multidimensional post hoc ques-
tionnaires measuring trust in the context of MI should be
developed. Once such a framework is validated, it can lead
to computational models of trust such as in [37] which can
inform the MI system’s LoA switching policies. We consider
this a major challenge for the field.

Third, there was no explicit effort to convey trust or
make the MI system more transparent to the operator but
only follow basic guidelines. Hence, transparency and other
factors that affect trust were not explicitly controlled or
taken into account. Extensive training mitigated some of
these problems by explaining how the system works to the
operators and providing them with a basic understanding of
the MI algorithm. Future work should explicitly investigate
and design interfaces that promote transparency in the MI
context. This is a crucial step towards true human-robot
teaming.



Lastly, similar to other related work, all participants had an
average or high internal LoC. This perhaps limits the findings
only to those users, excluding those with a high external LoC.
A future study should aim to incorporate individuals with a
larger variety of LoC, although this is difficult to control for.
Another way this could be explored is by studying the LoC
of real robot operators, the expectation being they would
possess a high level of internal LoC, especially concerning
the robot’s control.

VII. CONCLUSION

This paper presented an empirical investigation of HRI
in MI and HI variable autonomy systems in terms of trust
in the robot, self-trust, shared understanding between the
robot and the operator, and the locus of control personality
trait. The evidence presented supports the idea that operators
learn to trust (i.e. trust increasing over time) the MI robotic
system, and their understanding of the system improves
over the course of several interactions in the context of
this work. Furthermore, evidence was reported on how LoC
affects HRI. Average and high internal LoC operators were
found to be comfortable giving control to the robot’s AI for
conducting the navigation task.

Lastly, this work provided insights and highlighted re-
search areas for advancing human factors and HRI w.r.t
trust in variable autonomy robotic systems. Of particular
importance is developing a framework for measuring the
different dimensions of trust, towards computational models
of trust, capable of informing MI LoA switching policies.
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